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Abstract

We study a feasibility-seeking problem with percentage violation constraints (PVCs). These are additional
constraints that are appended to an existing family of constraints, which single out certain subsets of the
existing constraints and declare that up to a specified fraction of the number of constraints in each subset is
allowed to be violated by up to a specified percentage of the existing bounds. Our motivation to investigate
problems with PVCs comes from the field of radiation therapy treatment planning (RTTP) wherein the fully
discretized inverse planning problem is formulated as a split feasibility problem and the PVCs give rise to
nonconvex constraints. Following the CQ algorithm of Byrne (2002, Inverse Problems, Vol. 18, pp. 441–53),
we develop a string-averaging CQ-method that uses only projections onto the individual sets that are half-
spaces represented by linear inequalities. The question of extending our theoretical results to the nonconvex
sets case is still open. We describe how our results apply to RTTP and provide a numerical example.

Keywords: string-averaging; CQ-algorithm; split feasibility; percentage violation constraints; radiation therapy treatment
planning; dose-volume constraints; common fixed points; cutter operator

1. Introduction

1.1. Motivation

In this work, we are motivated by a linear split feasibility problem with percentage violation con-
straints (PVCs) arising in radiation therapy treatment planning (RTTP). We first provide the back-
ground in general terms.
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Inverse RTTP. This problem, in its fully discretized modeling approach, leads to a linear feasibil-
ity problem (LFP). This is a system of linear interval inequalities:

c ≤ Ax ≤ b, (1)

wherein the “dose matrix” A is precalculated by techniques called in RTTP “forward calculation”
or “forward planning” and the vector x is the unknown vector of “intensities” that, when used in
setting up the treatment machine, will realize this specific “treatment plan.” The vectors b and c con-
tain upper and lower bounds on the total dose Ax permitted and required in volume elements (vox-
els) of sensitive organs/tissues and target areas, respectively, inside the irradiated body. The com-
ponents of b and c are prescribed by the attending oncologist and given to the treatment planner.

PVCs. In general terms, these are additional constraints that are appended to an existing fam-
ily of constraints. They single out certain subsets of the existing constraints and declare that up
to a specified fraction of the number of constraints in each subset is allowed to be violated by up
to a specified percentage of the existing bounds. Such PVCs are useful in the inverse problem of
RTTP, mentioned above, where they are called “dose-volume constraints” (DVCs). When the sys-
tem of linear interval inequalities is inconsistent, that is, there is no solution vector that satisfies all
inequalities, the DVCs allow the oncologist and the planner to relax the original constraints in a
controlled manner to achieve consistency and find a solution.

Split feasibility. PVCs are, by their very nature, integer constraints, which change the feasibility
problem to which they are attached from being a continuous feasibility problem into becoming a
mixed-integer feasibility problem. An alternative to the latter is to translate the PVCs into con-
straints sets that are appended to the original system of linear interval inequalities but are formu-
lated on the vectors Ax, rather than directly on x. This gives rise to a “split feasibility problem,”
which is split between two spaces: the space of “intensity vectors” x and the space of “dose vectors”
d := Ax in which A is the operator mapping one space onto the other.

Nonconvexity. The constraint sets, which arise from the PVCs, in the space of “dose vectors”
are nonconvex sets, but due to their special form enable the calculation of orthogonal projections
of points onto them. This opens the door for applying our proposed dynamic string-averaging
(SA) CQ-method to the RTTP inverse problem with PVCs. Mathematical analysis for the case of
nonconvex sets remains an open question. Looking at it from the practical point of view one may
consider also alternatives such as reformulating PVCs as �1-norm constraints; see, for example,
Candès et al. (2008) and Kim et al. (2013).

Group structure of constraints. Each row in system (1) represents a constraint on a single voxel.
Lumping together constraints of voxels, according to the organ/tissue to which they belong, divides
matrix A and the whole system into “groups” of constraints, referred to as “blocks of constraints”
in a natural manner. These groups affect the formulation of the split feasibility problem at hand
by demanding that the space of intensity vectors x be mapped separately by each group of rows of
matrix A into another space of dose vectors d .

1.2. Contribution

Motivated by the above, we deal in this paper with the “multiple-operator split common fixed point
problem” (MOSCFPP) defined next.
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Problem 1 (The MOSCFPP). Let H and K be two real Hilbert spaces, and let r and p be two natural
numbers. Let Ui : H → H, 1 ≤ i ≤ p, and Tj : K → K,1 ≤ j ≤ r, be given operators with nonempty
fixed point sets Fix(Ui) and Fix(Tj ), respectively. Further, let Aj : H → K, for all 1 ≤ j ≤ r, be given
bounded linear operators. In addition, let � be another closed and convex subset of H. The MOSCFPP
is as follows:

Find an x∗ ∈ � such that x∗ ∈ ∩p
i=1Fix(Ui) and, (2)

for all 1 ≤ j ≤ r, Ajx∗ ∈ Fix(Tj ). (3)

This problem formulation unifies several existing “split problem” formulations and, to the best
of our knowledge, has not been formulated before. We analyze it and propose a “dynamic SA CQ-
method” to solve it, based on techniques used in some of those earlier formulations. We show in
detail how this problem covers and applies to the linear split feasibility problem with DVCs in
RTTP. Our convergence results about the dynamic SA CQ-algorithm presented here rely on con-
vexity assumptions. Therefore, there remains an open question whether our work can be expanded
to cover the case of the nonconvex constraints in the space of dose vectors d used in RTTP. Recent
work in the field report on strides made in the field of projection methods when the underlying
sets are nonconvex; see, for example, Hesse et al. (2014), Bauschke et al. (2014), and Attouch et al.
(2013). This encourages us to expand the results presented here in the same way.

1.3. Structure of the paper

We begin by briefly reviewing relevant “split problem” formulations that have led to our proposed
MOSCFPP and a “dynamic SA CQ-method” to solve it. Starting from a general formulation of
two concurrent inverse problems in different vector spaces connected by a bounded linear operator,
we explore the inclusion of multiple convex constraint sets within each vector space. Defining op-
erators that act on each of these sets allows us to formulate equivalent fixed point problems, which
naturally leads to our MOSCFPP. We then provide some insight into how one may solve such a
problem, using constrained minimization, or successive metric projections as part of a CQ-type
method (Byrne, 2002). These projection methods form the basis of our “dynamic SA CQ-method,”
which is introduced in Section 4. Important mathematical foundations for this method are provided
in Section 3, which serve to describe the conditions under which the method converges to a solu-
tion in Section 5. Finally, we bring PVCs into our problem formulation (Section 6) and consolidate
our work by providing examples of how the MOSCFPP and “dynamic SA CQ-method” may be
applied in RTTP (Section 7). A numerical example is provided on a synthetically created treatment
plan, detailed in Section 8.

An important comment must be made here. The introduction of a new mathematical model for
an application naturally calls for simulated numerical validation, particularly when a new algorithm
is proposed. Here we present a rudimentary numerical example since more complex clinically rel-
evant treatment plans rely heavily on the medical physics context of the RTTP problem. As such,
they call for evaluation of the results in the context of the RTTP problem itself and require a ded-
icated proper background and framework which are outside the scope of this paper. An extensive
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analysis of the methods presented in this paper, on a number of clinical treatment plans, will be
published in an appropriate medical physics journal.

2. A brief review of “split problems” formulations and solution methods

The following brief review of “split problems” formulations and solution methods will help put our
work in context. The review is nonexhaustive and focuses only on split problems that led to our
new formulation that appears in Problem 1. Other split problems such as “the common solution
of the split variational inequality problems and fixed point problems” (see, e.g., Lohawech et al.,
2018) or “split Nash equilibrium problems for noncooperative strategic games” (see, e.g., Li, 2019)
and many others are not included here. The “split inverse problem” (SIP), which was introduced by
Censor et al. (2012) (see also Byrne et al., 2012), is formulated as follows.

Problem 2 (The SIP). Given are two vector spaces X and Y and a bounded linear operator A : X →
Y . In addition, two inverse problems are involved. The first one, denoted by IP1, is formulated in the
space X and the second one, denoted by IP2, is formulated in the space Y . The SIP is as follows:

Find an x∗ ∈ X that solves IP1 such that y∗ := Ax∗ ∈ Y solves IP2. (4)

The first published instance of an SIP is the “split convex feasibility problem” (SCFP) of Censor
and Elfving (1994), which is formulated as follows.

Problem 3 (The SCFP). Let H and K be two real Hilbert spaces. Given are nonempty, closed and
convex sets C ⊆ H and Q ⊆ K and a bounded linear operator A : H → K. The SCFP is:

Find an x∗ ∈ C such that Ax∗ ∈ Q. (5)

This problem was employed, among others, for solving an inverse problem in intensity-
modulated radiation therapy treatment planning (see Censor et al., 2006; Davidi et al., 2015; Censor
et al., 2005). More results regarding the SCFP theory and algorithms, can be found, for example,
in Yang (2004); López et al. (2012); Gibali et al. (2018), and the references therein. The SCFP was
extended in many directions to Hilbert and Banach spaces formulations. It was extended also to
the following “multiple sets split convex feasibility problem” (MSSCFP).

Problem 4 (The MSSCFP). Let H and K be two real Hilbert spaces and r and p be two natural
numbers. Given are sets Ci, 1 ≤ i ≤ p and Qj,1 ≤ j ≤ r, that are closed and convex subsets of H and
K, respectively, and a bounded linear operator A : H → K. The MSSCFP is:

Find an x∗ ∈ ∩p
i=1Ci such that Ax∗ ∈ ∩r

j=1Qj . (6)

Masad and Reich (2007) proposed the “constrained multiple set split convex feasibility problem”
(CMSSCFP) which is phrased as follows (see also Latif et al., 2016).

Problem 5 (The constrained multiple set split convex feasibility problem (CMSSCFP)). Let H and
K be two real Hilbert spaces and r and p be two natural numbers. Given are sets Ci, 1 ≤ i ≤ p and
Qj, 1 ≤ j ≤ r, which are closed and convex subsets of H and K, respectively, and for 1 ≤ j ≤ r, given
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bounded linear operators Aj : H → K. In addition let � be another closed and convex subset of H.
The CMSSCFP is as follows:

Find an x∗ ∈ � such that x∗ ∈ ∩p
i=1Ci and Ajx∗ ∈ Qj, for 1 ≤ j ≤ r. (7)

Another extension, due to Censor and Segal (2009), is the following “split common fixed points
problem” (SCFPP).

Problem 6 (The SCFPP). Let H and K be two real Hilbert spaces and r and p be two natural numbers.
Given are operators Ui : H → H, 1 ≤ i ≤ p, and Tj : K → K, 1 ≤ j ≤ r, with nonempty fixed point
sets Fix(Ui),1 ≤ i ≤ p and Fix(Tj ), 1 ≤ j ≤ r, respectively, and a bounded linear operator A : H →
K. The SCFPP is as follows:

Find an x∗ ∈ ∩p
i=1Fix(Ui) such that Ax∗ ∈ ∩r

j=1Fix(Tj ). (8)

Problems 3–6 are SIPs but, more importantly, they are special cases of our MOSCFPP of Prob-
lem 1.

Focusing in a telegraphic manner on algorithms for solving some of the above SIPs, we observe
that the SCFP of Problem 3 can be reformulated as the constrained minimization problem:

min
x∈C

1
2
‖PQ(Ax) − Ax‖2, (9)

where PQ is the orthogonal (metric) projection onto Q. Note that the term “orthogonal projec-
tion” is commonly used mainly for subspaces while “metric projection” refers to projection onto
any kind of sets (see, e.g., Cegielski, 2012, Section 2.2.4). Since the objective function is convex and
continuously differentiable with Lipschitz continuous gradients, one can apply the projected gradi-
ent method (see, e.g., Goldstein, 1964) and obtain Byrne’s well-known CQ-algorithm (Byrne, 2002).
The iterative step of the CQ-algorithm has the following structure:

xk+1 = PC (xk − γ A�(Id − PQ)Axk), (10)

where A� stands for the adjoint (A�=AT the transpose, in Euclidean spaces) of A, γ is some positive
number, Id is the identity operator, and PC and PQ are the orthogonal projections onto C and Q,
respectively. For the MSSCFP of Problem 4, the minimization model considered in Censor et al.
(2005), is

min
x∈RM

⎛
⎝ p∑

i=1

dist2(x,C) +
r∑

j=1

dist2(Ax, Q)

⎞
⎠, (11)

leading, for example, to a gradient descent method that has an iterative simultaneous projections
nature:

xk+1 = xk − γ

p∑
i=1

αi
(
Id − PCi

)
xk +

r∑
j=1

β jA�
(
Id − PQj

)
Axk, (12)
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where γ ∈ (0, 2
L ) with

L :=
p∑

i=1

αi +
r∑

j=1

β j‖A‖2
F , (13)

where ‖A‖2
F is the squared Frobenius norm of A.

Inspired by the above and the work presented in Penfold et al. (2017), we propose in the sequel a
“dynamic SA CQ-method” for solving the MOSCFPP of Problem 1.

3. Preliminaries

Through this paper H and K are two real Hilbert spaces and let D ⊂ H. For every point x ∈ H,
there exists a unique nearest point in D, denoted by PD(x) such that

‖x − PD(x)‖ ≤ ‖x − y‖, for all y ∈ D. (14)

The operator PD : H → H is called the metric projection onto D.

Definition 1. Let T : H → H be an operator and D ⊂ H.
(i) The operator T is called Lipschitz continuous on D with constant L > 0 if

‖T (x) − T (y)‖ ≤ L‖x − y‖, for all x, y ∈ D. (15)

(ii) The operator T is called nonexpansive on D if it is 1-Lipschitz continuous.
(iii) The fixed point set of T is

Fix(T ) := {x ∈ H | T (x) = x}. (16)

(iv) The operator T is called c-averaged (c-av) (Baillon et al., 1978) if there exists a nonexpansive
operator N : D → H and a number c ∈ (0, 1) such that

T = (1 − c)Id + cN. (17)

In this case we also say that T is c-av (Byrne, 2004). If two operators T1 and T2 are c1-av and c2-av,
respectively, then their composition S = T1T2 is (c1 + c2 − c1c2)-av (see Byrne, 2004, Lemma 2.2).

(v) The operator T is called ν-inverse strongly monotone (ν-ism) on D if there exists a num-
ber ν > 0 such that

〈T (x) − T (y), x − y〉 ≥ ν‖T (x) − T (y)‖2, for all x, y ∈ D. (18)

(vi) The operator T is called firmly nonexpansive (FNE) on D if

〈T (x) − T (y), x − y〉 ≥ ‖T (x) − T (y)‖2
, for all x, y ∈ D. (19)

A useful fact is that T is FNE if and only if its complement Id − T is FNE. Moreover, T is FNE if
and only if T is (1/2)-av (see Goebel and Reich, 1984, Proposition 11.2; Byrne, 2004, Lemma 2.3).
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In addition, T is averaged if and only if its complement Id − T is ν-ism for some ν > 1/2; (see, e.g.,
Byrne, 2004, Lemma 2.1).

(vii) The operator T is called quasi-nonexpansive (QNE)

‖T (x) − w‖ ≤ ‖x − w‖ for all (x, w) ∈ H × Fix(T ). (20)

(viii) The operator T is called is called a cutter (also firmly quasi- nonexpansive) (T ∈ T)
if Fix(T ) 
= ∅ and

〈T (x) − x, T (x) − w〉 ≤ 0 for all (x, w) ∈ H × Fix(T ). (21)

(ix) Let λ ∈ [0, 2], the operator Tλ := (1 − λ)Id + λT is called λ-relaxation of the operator T .
With respect to cutters above it is known that for λ ∈ [0, 1], the λ-relaxation of a cutter is also a cutter
(see, e.g., Cegielski, 2012, Remark 2.1.32).

(x) The operator T is called ρ-strongly quasi-nonexpansive (ρ-SQNE), where ρ ≥ 0, if
Fix(T ) 
= ∅ and

‖T (x) − w‖ ≤ ‖x − w‖ − ρ‖T (x) − x‖, for all (x, w) ∈ H × Fix(T ). (22)

A useful fact is that a family of SQNE operators with non-empty intersection of fixed point sets is
closed under composition and convex combination (see, e.g., Cegielski, 2012, Corollary 2.1.47).

(xi) The operator T is called is called demi-closed at y ∈ H if for any sequence {xk}∞k=0 in D such
that xk → x ∈ D and T (xk) → y, we have T (x) = y.

Next we recall the well-known demi-closedness principle (Browder, 1965).

Lemma 1. Let H be a Hilbert space, D a closed and convex subset of H, and N : D → H a nonex-
pansive operator. Then Id − N (Id is the identity operator on H) is demi-closed at y ∈ H.

Let A : H → K be a bounded linear operator with ‖A‖ > 0, and C ⊆ H and Q ⊆ K be nonempty,
closed, and convex sets. The operator V : H → H which is defined by

V := Id − 1
‖A‖2

A�(Id − PQ)A (23)

is called a Landweber operator and U : H → H defined by

U := PCV (24)

is called a projected Landweber operator with V as in (23); see, for example, Cegielski (2012, 2015,
2016).

In the general case where T : H → H is quasi-nonexpansive and A : H → K is a bounded and
linear operator with ‖A‖ > 0, a so-called Landweber-type operator (see, e.g., Cegielski, 2016) is
defined by

V := Id − 1
‖A‖2

A�(Id − T )A. (25)

Note that (23) is a special case of (25), since PQ is FNE, thus, quasi-nonexpansive.

© 2020 The Authors.
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4. The dynamic string-averaging CQ-method

In this section we present our “dynamic SA CQ-method” for solving the MOSCFPP of Problem 1.
It is actually an algorithmic scheme which encompasses many specific algorithms that are obtained
from it by different choices of strings and weights. First, for all j = 1, 2, . . . , r, construct from the
given data of Problem 1, the operators Vj : H → H defined by

Vj := Id − γ jA�
j (Id − Tj )Aj, (26)

where γ j ∈ (0, 1
L j

), Lj = ‖Aj‖2. For quasi-nonexpansive Tj this definition coincides with that of
“Landweber-type operators related to Tj” of Cegielski (2016, Definition 2) with a relaxation
of γ j .

For simplicity, and without loss of generality, we assume that r = p in Problem 1. This is not
restrictive since if r < p we will define Tj := Id for r + 1 ≤ j ≤ p, and if p < r we will define
Ui := Id for p + 1 ≤ i ≤ r, which, in both cases, will not make any difference to the formulation of
Problem 1.

Define � := {1, 2, . . . , p} and for each i ∈ � define the operator Ri : H → H byRi := UiVi. An
index vector is a vector t = (t1, t2, . . . , tq) such that ti ∈ � for all i = 1, 2, . . . , q. For a given in-
dex vector t = (t1, t2, . . . , tq) we denote its length by �(t) := q, and define the operator Z[t] as the
product of the individual operators Ri whose indices appear in the index vector t, namely,

Z[t] := Rt�(t)Rt�(t)−1 · · · Rt1, (27)

and call it a string operator. A finite set � of index vectors is called fit if for each i ∈ �, there exists
a vector t = (t1, t2, . . . , tq) ∈ � such that ts = i for some s ∈ �.

Denote by M the collection of all pairs (�, w), where � is a fit finite set of index vectors and

w : � → (0, ∞) is such that
∑
t∈�

w(t) = 1. (28)

For any (�, w) ∈ M define the convex combination of the end points of all strings defined by
members of � by


�,w(x) :=
∑
t∈�

w(t)Z[t](x), x ∈ H. (29)

We fix a number � ∈ (0, 1/p) and an integer q̄ ≥ p and denote by M∗ ≡ M∗(�, q̄) the set of all
(�, w) ∈ M such that the lengths of the strings are bounded and the weights are all bounded away
from zero, namely,

M∗ := {(�, w) ∈ M | �(t) ≤ q̄ and w(t) ≥ � for all t ∈ �}. (30)

The dynamic SA CQ-method with variable strings and variable weights is described by the fol-
lowing iterative process.
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Algorithm 1. The dynamic SA CQ-method with variable strings and variable weights

Initialization: Select an arbitrary x0 ∈ H,
Iterative step: Given a current iteration vector xk pick a pair (�k, wk) ∈ M∗ and calculate the next iteration vector by

xk+1 = 
�k,wk (xk). (31)

The iterative step of (31) amounts to calculating, for all t ∈ �k, the strings’ end points

Z[t](xk) = Rit
�(t)

· · · Rit2
Rit1

(xk), (32)

and then calculating

xk+1 =
∑
t∈�k

wk(t)Z[t](xk). (33)

This algorithmic scheme applies to xk successively the operators Ri := UiVi whose indices belong
to the string t. This can be done in parallel for all strings and then the end points of all strings
are convexly combined, with weights that may vary from iteration to iteration, to form the next
iterate xk+1. This is indeed an algorithm provided that the operators {Ri}p

i=1 all have algorithmic
implementations. In this framework, we get a sequential algorithm by allowing a single string created
by the index vector t = � and a simultaneous algorithm by the choice of p different strings of length
one each containing one element of �. Intermediate structures are possible by judicious choices of
strings and weights.

5. Convergence

Next we prove the equivalence between Problem 1 and a common fixed point problem which is not
split, give a description of Fix(Vj ), and state a property of Vj .

Lemma 2. Denote the solution set of Problem 1 by � and assume that it is nonempty. Then, for Vj as
in (26),

(i) x∗ ∈ � if and only if x∗ solves the common fixed point problem:

Find x∗ ∈ (∩p
i=1Fix(Ui)

) ∩
(
∩r

j=1Fix(Vj )
)
; (34)

(ii) for all j = 1, 2, . . . , r:

Fix (Vj ) = {x ∈ H | Ajx ∈ Fix (Tj )} = A−1
j (Fix (Tj )), (35)

where A−1
j denotes here the inverse image (preimage) of Aj, that is, A−1

j : K → H and for any y ∈ K,
A−1

j (y) := {x ∈ H | Ajx = y};
(iii) if, in addition, all operators Tj are cutters then all Vj are cutters (i.e., are 1-SQNE);
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(iv) if Tj is ρ-SQNE, Aj ∩ FixTj 
= ∅ (here we refer to Aj as the image set of Aj) and satisfies the
demi-closedness principle then Vj also satisfies the demi-closedness principle.

Proof. (i) We need to show only that

x∗ ∈ ∩r
j=1Fix(Vj ) ⇔ Ajx∗ ∈ Fix (Tj ) for all j = 1, 2, . . . , r. (36)

Indeed, for any j = 1, 2, . . . , r,

Ajx∗ ∈ Fix (Tj ) ⇔ Ajx∗ − TjAjx∗ = 0

⇔ A�
j (Id − Tj )Ajx∗ = A�

j0 ⇔ −γ jA�
j (Id − Tj )Ajx∗ = 0

⇔ x∗ − γ jA�
j (Id − Tj )Ajx∗ = x∗ ⇔ x∗ ∈ Fix(Vj ). (37)

(ii) Follows from (37).
(iii) To show that Vj is a cutter take w ∈ Fix(Vj ), γ j ∈ (0, 1

L j
) and ξ ∈ H.

1
γ j

〈
w − Vj (ξ ), ξ − Vj (ξ )

〉 =
〈
w − ξ − γ jA�

j (Tj − Id )Ajξ, A�
j (Id − Tj )Ajξ

〉
=

〈
w − ξ, A�

j (Id − Tj )Ajξ
〉
+ γ j‖A�

j (Id − Tj )Ajξ‖2

= 〈
Ajw − Ajξ, (Id − Tj )Ajξ

〉 + γ j‖A�
j (Id − Tj )Ajξ‖2

= 〈
Ajw − Tj (Ajξ ), (Id − Tj )Ajξ

〉 + γ j‖A�
j (Id − Tj )Ajξ‖2

− ‖(Id − Tj )Ajξ‖2. (38)

Since Tj is a cutter and Ajw ∈ Fix (Tj ), we have〈
Ajw − Tj (Ajξ ), (Id − Tj )Ajξ

〉 ≤ 0. (39)

Also,

γ j‖A�
j (Id − Tj )Ajξ‖2 ≤ γ j‖Aj‖2‖(Id − Tj )Ajξ‖2 ≤ ‖(Id − Tj )Ajξ‖2, (40)

for all γ j ∈ (0, 1/Lj ). Using the above we get that〈
w − Vj (ξ ), ξ − Vj (ξ )

〉 ≤ 0, (41)

which proves that Vj is a cutter.
(iv) Proved in Cegielski (2016, Theorem 8(iv)). �
The special case where in Problem 1 there is only one operator A : H → K and (3) is replaced by

for all 1 ≤ j ≤ r, Ax∗ ∈ Fix (Tj ), (42)

which amounts to Ax∗ ∈ ∩r
j=1Fix (Tj ) was treated in the literature (see, e.g., Wang and Xu, 2011;

Cegielski, 2015, 2016). The extensions to our more general case, necessitated by the application
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to RTTP at hand, follow the patterns in those earlier papers. In our convergence analysis, we rely
on the convergence result of Reich and Zalas (2016, Theorem 4.1) who, motivated by Censor and
Tom (2003, Algorithm 3.3), invented and investigated the “modular SA (MSA) method” (Reich
and Zalas, 2016, Procedure 1.1).

For the convenience of the readers we quote next in full details Procedure 1.1 and Theorem 4.1 of
Reich and Zalas (2016). We adhere to the original notations of Reich and Zalas and later identify
them with the notations of our work. Let Ui : H → H be a finite family of quasi-nonexpansive
mappings where i ∈ I := {1, 2, . . . , M} and define U0 := Id . The problem under investigation is the
common fixed point problem of finding an x ∈ C := ∩i∈I Fix(Ui). The algorithmic scheme is

x0 ∈ H, xk+1 = Tkxk, (43)

where the operator Tk depends on a chosen subset of the input operators Ui.
Reich and Zalas proposed Procedure 1.1 for constructing operators Tk (called “modules”) is as

follows. Fix N ∈ N, for n = 1, 2, . . . , N; let ε ∈ (0, 1) be a fixed parameter; define modules Vn :=
U−n for all n = −M, . . . , 0. For n = 1, 2, . . . , N define modules Vn by choosing one of the following
cases:

(a) Relaxation: Fix a singleton Jn = { jn} ⊆ {−M, . . . , 0} and a relaxation αn ∈ [ε, 2 − ε], and set

Vn := Id + αn
(
Vjn − Id

)
. (44)

(b) Convex combination: Fix a nonempty subset Jn ⊆ {−M, . . . , n − 1} and weights ω j,n ∈ [ε, 1 −
ε] satisfying

∑
j∈Jn

ω j,n = 1, and set

Vn :=
∑
j∈Jn

ω j,nVj . (45)

(c) Composition: Fix a “string” Jn ⊆ {−M, . . . , n − 1} with length less than M + n and set

Vn := � j∈JnVj . (46)

Using the above MSA procedure of Reich and Zalas, by preforming Nk steps with parameter
εk > 0, Tk is defined as the last module from the pool, that is, Tk := V k

Nk
. Such constructions of

the operators Tk lead to various combination schemes such as sequential, convex combination, and
composition. An SA scheme that is relevant to our method here is obtained by taking a convex
combination of multiple compositions, as in Reich and Zalas (2016, Equation (1.12)).

Reich and Zalas Theorem 4.1 is quoted next.

Theorem 2. Let {xk}∞k=0 be a sequence generated by the iterative method

x0 ∈ H, xk+1 = Tk(xk) (47)

and assume that
(i) each operator Ui, i ∈ I is a cutter;
(ii) I ⊆ Ik ∪ Ik+1 ∪ · · · ∪ Ik+s−1, for each k = 0, 1, 2, . . ., and some s ≥ M − 1;
(iii) the sequence {Nk}∞k=0 is bounded.

© 2020 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



12 M. Brooke et al. / Intl. Trans. in Op. Res. 0 (2020) 1–25

If, for each i ∈ I, the operator Ui satisfies Opial’s demi-closedness principle then the sequence
{xk}∞k=0 converges weakly to some point in C.

If, for each i ∈ I, the operator Ui is approximately shrinking and the family C := {Fix Ui | i ∈ I} is
boundedly regular then the sequence {xk}∞k=0 converges strongly to some point in C.

Our convergence theorem for the dynamic SA CQ-method now follows.

Theorem 3. Let p ≥ 1 be an integer and suppose that Problem 1 with r = p has a nonempty solution
set �. Let {Ui}p

i=1 and {Ti}p
i=1 be cutters on Hilbert spaces H and K, respectively. Further assume

that Ui − Id and Ti − Id are demi-closed at zero for all i. Then any sequence {xk}∞k=0, generated by
Algorithm 1 with Ri := UiVi for all i, where Vi are defined as in (26), converges weakly to a point
x∗ ∈ �.

Proof. First, we identify the notations in our work with those in Reich and Zalas (2016).
(i) The operators {Ui}M

i=1 of Reich and Zalas (2016, Theorem 4.1) are our {Ri}p
i=1 where Ri := UiVi

as described in the beginning of Section 4.
(ii) Our operators 
�k,wk (31) are identified with the algorithmic operators Tk of Equation (1.12)

in Reich and Zalas (2016).
(iii) Our operators {Ui}p

i=1 and {Ti}p
i=1 are assumed to be cutters, then so are also {Vi}p

i=1, by
Lemma 2(iii). Hence, the composition operators Ri := UiVi are ρ-SQNE for all i and, therefore,
also our 
�k,wk are ρ-SQNE for all k.

(iv) We assume that our Ui − Id and Ti − Id are demi-closed at zero for all i, therefore, by
Lemma 2(iv), Vi − Id are also demi-closed at zero. So, our operators Ri = UiVi, as composition
of demi-closed operators, are demi-closed, see for example (Cegielski, 2015, Theorem 4.2). Our
operators Ri = UiVi are identified with {Ui}M

i=1 of Reich and Zalas (2016).
Next, we show that our dynamic SA CQ-method fits into the MSA (Reich and Zalas, 2016,

Procedure 1.1) and that the assumptions of Reich and Zalas (2016, Theorem 4.1) hold.
Since we identify our 
�k,wk from (31) with the right-hand side of Equation (1.12) of Reich and

Zalas (2016) (being careful with regard to the duplicity of symbols that represent different things in
that work and here), Algorithm 1 can be represented by the iterative process of Equation (1.2), or
Equation (4.2), of Reich and Zalas (2016).

Next we show the validity of the assumptions needed by Reich and Zalas (2016, Theorem 4.1).
Assumption (i) of Reich and Zalas (2016, Theorem 4.1): The operators {Ui}M

i=1 of Reich and
Zalas (2016, Theorem 4.1) are our Ri := UiVi. Although our Ri are not necessarily cutters, the
arguments in the proof of Reich and Zalas (2016, Theorem 4.1) are based on the strongly quasi-
nonexpansiveness of the operators Tk there (our 
�k,wk) and by Lemma 2(iii), our operators {Vi}p

i=1
(defined in (26)) are cutters and this together with the assumption on our {Ui}p

i=1 and {Ti}p
i=1, yields

that the composition operators Ri := UiVi are ρ-SQNE for all i and, thus, so are also our 
�k,wk .
Assumptions (ii) + (iii) of Reich and Zalas (2016, Theorem 4.1): Since the construction of the

operators 
�k,wk is based on M∗ (30) which mandates a fit �, it guarantees that every index i ∈ �

appears in the construction of 
�k,wk for all k > 0, thus, Assumption (ii) in Reich and Zalas (2016,
Theorem 4.1) holds. Following the same reasoning, it is clear that the number of steps Nk, defined
in the MSA (Reich and Zalas, 2016, Procedure 1.1), is bounded.

The weak convergence part of the proof of Reich and Zalas (2016, Theorem 4.1) requires that all
(their) {Ui}M

i=1 satisfy Opial’s demi-closedness principle (i.e., that Ui − Id are demi-closed at zero).
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In our case, we assume that Ui − Id and Ti − Id are demi-closed at zero for all i. By Lemma 2(iv)
above Vi − Id are also demi-closed at zero. So, we identify {Ui}M

i=1 of Reich and Zalas (2016) with
our Uis and Vis and construct first the operators Ri = UiVi, and then use them as the building bricks
of the algorithmic operators 
�k,wk .

Observe that in our proposed dynamic SA scheme the weights are chosen, in every iteration k,
so that (�k, wk) ∈ M∗ (see the iterative step of Algorithm 1). This requires, according to (30), that
w(t) ≥ � for all t ∈ �, where � ∈ (0, 1/p) is a fixed positive number. Therefore, for any t it must
hold that

∑∞
k=0 wk(t) = ∞, meaning that we “visit” every operator infinitely many times. This fully

coincides with the assumption in (Reich and Zalas, 2016) that wk(i) ∈ [ε, 1 − ε] for some ε > 0
which implies that

∑∞
k=0 wk(i) = ∞ for all i, in their notation.

Thus, the desired result is obtained. �

Remark 1. (i) If one assumes that the Tj operators are FNE, then similar arguments as in the proof
of Moudafi (2011, Theorem 3.1) show that the Vj operators are also averaged and then Reich and
Zalas (2016, Theorem 4.1) can be adjusted to hold for averaged operators.

(ii) It is possible to propose inexact versions of Algorithm 1 following Reich and Zalas (2016,
Theorem 4.5) and Combettes’ “almost cyclic sequential algorithm” (Combettes, 2001, Algorithm
6.1).

(iii) Our work can be extended to cover also underrelaxed operators, that is, by defining
Ri := (Ui)λ(Vi)δ for λ, δ ∈ [0, 1]. This is allowed due the fact that if an operator is firmly quasi-
nonexpansive, then so is its relaxation.

(iv) Reich and Zalas (2016, Theorem 4.1) also includes a strong convergence part under some
additional assumptions on their operators {Ui}M

i=1. It is possible to adjust this theorem for our case
as well.

(v) We proposed here a general scheme that allows dynamic SA; the closest CQ variant appears
in the work of Wang and Xu (2011, Theorem 3.1) where only sequential, cyclically controlled,
iterations are allowed.

(vi) For the case of a two-set nonconvex feasibility problem (non-CFP), Attouch et al. (2013,
Theorem 5.3) propose a CQ variant but without a relaxation and if more than two nonconvex sets
are allowed, then a fully simultaneous method is obtained.

6. Percentage violation constraints arising in radiation therapy treatment planning

6.1. Transforming problems with a PVC

Given p closed convex subsets Ω1, Ω2, . . . , Ωp ⊆ R
n of the n-dimensional Euclidean space R

n, ex-
pressed as level sets:

Ω j = {
x ∈ R

n | f j (x) ≤ v j
}
, for all j ∈ J := {1, 2, . . . , p}, (48)

where f j : R
n → R are convex functions and v j are some given real numbers, the CFP is to find a

point x∗ ∈ Ω := ∩ j∈JΩ j . If Ω = ∅ then the CFP is said to be inconsistent.
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Problem 7 (CFP with a PVC (CFP + PVC)). Consider p closed convex subsets Ω1, Ω2, . . . , Ωp ⊆ R
n

of the n-dimensional Euclidean space R
n, expressed as level sets according to (48). Let 0 ≤ α ≤ 1 and

0 < β < 1 be two given real numbers. The CFP+PVC is as follows:
Find an x∗ ∈ R

n such that x∗ ∈ ∩p
j=1Ω j and in up to a fraction α (i.e., 100α%) of the total number

of inequalities in (48) the bounds v j may be potentially violated by up to a fraction β (i.e., 100β%) of
their values.

A PVC is an integer constraint by its nature. It changes the CFP (48) to which it is attached from
being a continuous feasibility problem into becoming a mixed-integer feasibility problem. Denoting
the inner product of two vectors in R

n by 〈a, b〉 := ∑n
i=1 aibi, the LFP with PVC (LFP + PVC) is

the following special case of Problem 7.

Problem 8 (LFP with a PVC (LFP + PVC)). This is similar to Problem 7 with f j , for j = 1, 2, . . . , p,
in (48) being linear functions, meaning that the sets Ω j are half-spaces:

Ω j = {
x ∈ R

n | 〈
a j, x

〉 ≤ b j
}
, for all j ∈ J, (49)

for a set of given vectors a j ∈ R
n and b j some given real numbers.

Our tool to “translate” the mixed-integer LFP + PVC into a “continuous” one is the notion
of sparsity norm, called elsewhere the zero-norm, of a vector x ∈ R

n which counts the number of
nonzero entries of x, that is,

‖x‖0 := |{xi | xi 
= 0}|, (50)

where | · | denotes the cardinality, that is, the number of elements, of a set. This notion has been
recently used for various purposes in compressed sensing, machine learning and more. The rectifier
(or “positive ramp operation”) on a vector x ∈ R

n means that, for all i = 1, 2, . . . , n :

(x+)i := max(0, xi) =
{

xi, if xi > 0,

0, if xi ≤ 0.
(51)

Obviously, x+ is always a component-wise nonnegative vector. Hence, ‖x+‖0 counts the number of
positive entries of x and is defined by

‖x+‖0 := |{xi | xi > 0}|. (52)

We translate the LFP + PVC to the following.

Problem 9 (Translated problem of LFP + PVC (for LFP with upper bounds)). For the data of Problem
8, let A ∈ R

p×n be the matrix whose columns are formed by the vectors a j and let b ∈ R
p be the column

vector consisting of the values b j, for all j ∈ J. The translated problem of LFP+PVC (for LFP with
upper bounds) is as follows:

Find an x∗ ∈ R
n such that

〈
a j, x∗〉 ≤ (1 + β )b j, (53)

for all j ∈ J, and ‖(Ax∗ − b)+‖0 ≤ αp. (54)
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The number of the violations in (53) is ‖(Ax∗ − b)+‖0 and ‖(Ax∗ − b)+‖0 ≤ αp guarantees that
the number of violations of up to β in the original row inequalities remains at bay as demanded.
This is a split feasibility problem between the space R

n and the space R
p with the matrix A mapping

the first to the latter. The constraints in R
n are linear (thus convex) but the constraint

x∗ ∈ S := {y ∈ R
p | ‖(y − b)+‖0 ≤ αp} (55)

is not convex. This makes Problem 9 similar in structure to, but not identical with, Problem 3.
Similarly, if the linear inequalities in Problem 9 are in an opposite direction, i.e., of the form

c j ≤ 〈a j, x〉, for all j ∈ J, then the translated problem of LFP+PVC will be as follows.

Problem 10 (Translated problem of LFP + PVC (for LFP with lower bounds)). For the data of
Problem 8, let A ∈ R

p×n be the matrix whose columns are formed by the vectors a j and let c ∈ R
p be

the column vector consisting of the values c j, for all j ∈ J. The translated problem of LFP+PVC (for
LFP with lower bounds) is as follows:

Find an x∗ ∈ R
n such that (1 − β )c j ≤ 〈

a j, x∗〉, (56)

for all j ∈ J, and ‖(c − Ax∗)+‖0 ≤ αp. (57)

This is also a split feasibility problem between space R
n and space R

p with matrix A mapping the
first to the latter. The constraints in R

n are linear (thus convex) but the constraint

x∗ ∈ T := {y ∈ R
p | ‖(c − y)+‖0 ≤ αp} (58)

is again not convex.

6.2. Translated block LFP + PVC

Consider an m × n matrix A divided into blocks A�, for � = 1, 2, . . . , �, with each block forming
an m� × n matrix and

∑�

�=1
m� = m. Further, the blocks are assumed to give rise to block-wise LFPs

of the two kinds; those with upper bounds, say for � = 1, 2, . . . , p, and those with lower bounds,
say for � = p + 1, p + 2, . . . , p + r. PVCs are imposed on each block separately with parameters α�

and β�, respectively, for all � = 1, 2, . . . , �. The original block-LFP prior to imposing the PVCs is

A�x ≤ b�, for all � = 1, 2, . . . , p,

c� ≤ A�x, for all � = p + 1, p + 2, . . . , p + r.
(59)

Such constraints will be termed “hard dose constraints” (HDCs). After imposing the PVCs and
translating the systems according to the principles of Problems 9 and 10 we obtain the translated
problem of LFP + PVC for blocks.
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Problem 11 (Translated problem of LFP + PVC for blocks). Find an x∗ ∈ R
n such that

A�x∗ ≤ (1 + β�)b�, for all � = 1, 2, . . . , p,

(1 − β�)c� ≤ A�x∗, for all � = p + 1, p + 2, . . . , p + r,

‖(A�x∗ − b�)+‖0 ≤ α�m�, for all � = 1, 2, . . . , p,

‖(c� − A�x∗)+‖0 ≤ α�m�, for all � = p + 1, p + 2, . . . , p + r.

(60)

This is a split feasibility problem between the space R
n and the space R

m but with a structure
similar to Problem 5 where, for � = 1, 2, . . . , �, each A� maps R

n to R
m� . Again, it is not identical

with Problem 5 because here the constraints in R
m� , for � = 1, 2, . . . , �, are not convex. . Although

Problem 11 defines an upper PVC on exactly p blocks and a lower PVC on exactly r blocks, we
can, without loss of generality, choose to define PVCs only on a subset of these blocks. For blocks
without a PVC, the problem reverts to a standard LFP.

7. Application to radiation therapy treatment planning

The process of planning a radiotherapy treatment plan involves a physician providing dose pre-
scriptions that geometrically constrain the distribution of dose deposited in the patient. Choosing
the appropriate nonnegative weights of many individual beamlet dose kernels to achieve these pre-
scriptions as best as possible is posed as a SIP. We focus, for our purposes, on constraining the
problem with upper and lower dose bounds, and DVCs, which we more generally refer to as PVCs
in this work. DVCs allow dose levels in a specified proportion of a structure to fall short of, or
exceed, their prescriptions by a specified amount. They largely serve to allow more flexibility in the
solution space.

Problem 11 describes the split feasibility problem as it applies in the context of RTTP. Each block
represents a defined geometrical structure in the patient, which is classified either as an avoidance
structure or a target volume. An example of an avoidance structure is an organ at risk, in which one
wishes to deposit minimal dose. An example of a target structure is the planning target volume, to
which a sufficient dose is prescribed to destroy the tumoral tissue. If there are p avoidance structures,
any number of blocks in {1, 2, . . . , p} can have lower PVCs applied. Similarly, if there are r target
volumes then any number of blocks in {p + 1, p + 2, . . . , p + r} can have an upper PVC applied.

This problem can be formulated as the MOSCFPP described in Problem 1 as follows. For the
data of Problem 11, define �̄ ⊆ {1, 2, . . . , p + r} and for all i = 1, 2, . . . , m�, let

Ci
� := {x ∈ R

n
+ | 〈ai

�, x〉 ≤ (1 + β�)b�
i }, (61)

for all � ∈ {1, 2, . . . , p} where R
n
+ is the nonnegative orthant, and

Ci
� := {x ∈ R

n
+ | (1 − β�)c�

i ≤ 〈ai
�, x〉}, (62)

for all � ∈ {p + 1, p + 2, . . . , p + r}. Additionally, let

Q� := {A�x = v ∈ R
m� | ‖(v − b�)+‖0 ≤ α�m�}, (63)
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for all � ∈ {1, 2, . . . , p} ∩ �̄ and

Q� := {A�x = v ∈ R
m� | ‖(c� − v)+‖0 ≤ α�m�} (64)

for all � ∈ {p + 1, p + 2, . . . , p + r} ∩ �̄. The above A� are blocks of the original matrix A and we
denote by A�x = v the image of the vector x under A�.

Problem 12 (Translated problem of MOSCFPP for RTTP). Let the operators PCi
�

: R
n → R

n be
orthogonal projections onto Ci

� for all � ∈ {1, 2, . . . , p + r} and i ∈ {1, 2, . . . , m�}, and let PQ�
: R

m� →
R

m� be orthogonal projections onto Q�, for all � ∈ Γ . The translated MOSCFPP for RTTP is as
follows:

Find an x∗ ∈ R
n
+ such that x∗ ∈

p+r⋂
�=1

m�⋂
i=1

Fix(PCi
�
) and,

for all � ∈ Γ, A�x∗ ∈ Fix(PQ�
). (65)

We seek a solution to Problem 12 using our dynamic SA CQ-method, described in Algorithm 1.
We define, for all � ∈ �,

V� := Id − γ�AT
� (Id − PQ�

)A�, (66)

where γ� ∈ (0, 1
L�

), L� = ‖A�‖2 and AT
� is the transpose of A�.

Remark 2. In practical use relaxation parameters play an important role:
(i) Each projection operator PCi

�
: R

n → R
n may be relaxed with a parameter λ� ∈ (0, 2) defined

on the block � ∈ {1, 2, . . . , p + r}.
(ii) The relaxation parameters λ�, as defined in (i), and γ�, as given in (66), are permitted to take

any value within their bounds on any iterative step of Algorithm 1. That is, they may depend on
(vary with) the iteration index k and, therefore, be labeled λk

� and γ k
� .

(iii) The sets Q� are nonconvex and if for a given α�m� it is nonempty, then it is also closed and
then projection onto Q� exists, is not necessarily unique, but can be calculated explicitly; see, for
example, Penfold et al. (2017, Equation (24)). For properties regarding similar sets, see, for example,
Beck (2017, Subsection 6.8.3). A recent work of Hesse et al. (2014) includes an investigation of these
questions; see Section III there. Answers about the sets Q� and projections onto them in the specific
setting related to the RTTP problem considered here are not yet available.

Tracking the percentage of elements in the current iteration of dose vectors A�xk that are violat-
ing their constraints enables one to impose an adaptive version of Algorithm 1 using the comments
in Remark 2. If, for example, one block has more PVC violations than LFP (dose limit constraints)
violations then one could choose to alter the relaxation parameters at the next iteration, λk+1

� and
γ k+1

� , in order to place less emphasis on the projections onto Ci
�.
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8. Numerical implementation

8.1. Operator definitions

In Problem 12 we introduced the orthogonal projection operators PCi
�
, which acts in the space of

the pencil beam intensity vector x, and PQ�
, which acts in the space of the dose vector A�x. Here

we provide explicit formulae, as examples, for calculating these projections in practice. Given an
arbitrary vector z ∈ R

n and some � ∈ {1, 2, . . . , p + r} and i ∈ {1, 2, . . . , m�}, if it is the case that z is
not in Ci

� then it must be projected onto the nearest hyperplane which defines the boundary of Ci
�.

Otherwise, no action is taken. If block � represents an avoidance structure (� ∈ {1, 2, . . . , p}) then
the projection can be calculated by

PCi
�
(z) =

⎧⎪⎪⎨
⎪⎪⎩

z, 〈ai
�, z〉 ≤ (1 + β�)b�

i ,

z + λ�

(1 + β�)b�
i − 〈ai

�, z〉
〈ai

�, ai
�〉

ai
�, 〈ai

�, z〉 > (1 + β�)b�
i ,

(67)

where λ� ∈ (0, 2) is a user-selected relaxation parameter. Alternatively, if � represents a target struc-
ture (� ∈ {p + 1, p + 2, . . . , p + r}) then the projection can be similarly calculated using

PCi
�
(z) =

⎧⎪⎪⎨
⎪⎪⎩

z, 〈ai
�, z〉 ≥ (1 − β�)c�

i ,

z + λ�

(1 − β�)c�
i − 〈ai

�, z〉
〈ai

�, ai
�〉

ai
�, 〈ai

�, z〉 < (1 − β�)c�
i .

(68)

Note that, since in the above λ� ∈ (0, 2) are used, the projections PCi
�
(z) are relaxed projections.

It is of interest to note that in clinical practice a structure may well have both an upper bound
and a lower bound placed on the permitted dose. Such cases can be handled by simply defining two
blocks for the same structure, one as an avoidance block, to which (67) applies, and one as a target
block, to which (68) applies.

Projection of the dose vector onto Q� follows a slightly more elaborate procedure. We first define
a helper set,

Q� := {y ∈ R
m� | ‖y+‖0 ≤ α�m�}, (69)

and describe the projection onto the set, PQ�
, by the following rules: for an arbitrary vector y ∈ R

m� ,

first count the number of positive entries, ‖y+‖0. If ‖y+‖0 ≤ α�m� then the vector is in Q� and no
action is needed; PQ�

= Id , the identity operator. However, if ‖y+‖0 > α�m� then PQ�
replaces the

�(‖y+‖0 − α�m�)� smallest positive components of y with zeros and leaves the others unchanged.
We can now define PQ�

in terms of a projection onto the helper set. Given v ∈ R
m� ,

PQ�
(v) =

{
PQ̄�

(v − b�) + b�, � ∈ {1, 2, . . . , p} ∩ �,

−PQ̄�
(c� − v) + c�, � ∈ {p + 1, p + 2, . . . , p + r} ∩ �.

(70)
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Algorithm 2. The dynamic SA CQ-method: A pseudo-code example for RTTP

Since the sets Q� are nonconvex, the projection is not necessarily unique. If this happens then
any one of the possible vectors has to be chosen. The reader is referred to related results by Lu and
Zhang (2012, Proposition 3.1), Hesse et al. (2014, Equation (20)), and Schaad (2010, p. 54).

8.2. Inverse planning algorithm

We provide here a practical example of how Algorithm 1 may be implemented for inverse plan-
ning in RTTP. In this example we initialize each of the beamlet weights to unit intensity, x0 =
(1, 1, . . . , 1)T , before running through multiple cycles of an iterative scheme that is equivalent to
a fully sequential Algorithm 1 with unit weights, wk = 1 for all k, in (33). The pseudo-code of
this procedure is detailed in Algorithm 2. The two “for” loop control cycles therein imply that the
blocks, �, may be chosen in any order, without replacement, and so may the voxels, i, within each
block. Within each cycle, a nonnegativity constraint is enforced after all possible projections have
been applied. This sets any unphysical negative entries in the beamlet intensity vector, x, to zero.
In this example, a preset number of cycles are performed before stopping and accepting the final
solution. However, one may easily replace this by a tolerance-based stopping criterion.

8.3. Numerical example

A two-dimensional pseudo-dose grid was created using MATLAB, version R2019a (The Math-
Works, Inc., 2020). The grid is made of a matrix of dimensions 512 × 512 representing 262,144
pixels which altogether comprise an area of dosimetric interest. In a clinical treatment plan this
would be the entire patient geometry and the pixels would be replaced by a large number of three-
dimensional voxels. Without loss of generality, we assume two spatial dimensions for simplicity. In
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Fig. 1. (a) A single Gaussian pseudo-dose kernel contribution shown at one grid point. (b) Homogeneous pseudo-dose
of 50 units formed by superimposing all 1,156 Gaussian contributions. (c) Optimized pseudo-dose map showing the

structures for which the prescription in Table 1 was applied.

Table 1
Prescription chosen for the two-dimensional numerical example

Structure HDCs DVCs

Avoidance A Dmax = 25 D10% ≤ 20
Avoidance B Dmax = 40 D25% ≤ 30
Target Dmin = 60 D90% ≥ 65

Dmax = 70

Note: Pseudo-dose units are arbitrary. DV % represents the dose that is re-
ceived by exactly V% of the structure. Dmax and Dmin represent the maxi-
mum and minimum dose constraints, respectively.

order to achieve a basic emulation of dose deposited by multiple beamlets, 1156 Gaussian pseudo-
dose kernels were uniformly distributed across the grid. Each kernel had a standard deviation of
20 pixels and an amplitude such that their sum produced a homogeneous intensity map, with a
mean value of 50 units. Figure 1a shows a visualization of the intensity (pseudo-dose) matrix due
to a single Gaussian kernel, with each dotted grid point representing the center of one of the 1156
kernels. Figure 1b shows the sum of all contributions. Note that each kernel contributes equally to
the sum at this stage, prior to the inverse planning procedure. From this point on, for the proper
RTTP context, we will assume that pixel values directly correspond to “dose.”

We have thus far introduced 1156 different matrices of dimensions 512 × 512. In order to form
a dose-influence matrix, A, for use in inverse planning, each matrix is collapsed to a single column
vector with 262,144 entries, ensuring to keep track of which indices corresponded to which spatial
positions in the dose grid. The matrix A is formed by all column vectors and therefore has 262,144
rows and 1156 columns.

A prescription composed of four HDCs, for minimum and maximum dose bounds, and three
DVCs, shown in Table 1, was applied to three arbitrarily defined disjoint square regions. DVCs in
Table 1 are written in the standard notation, DV %, which is the dose that is received by exactly V %
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Fig. 2. Cumulative dose-volume histogram (DVH) showing the percentage of each structure that has received a certain
dose. HDC and DVC prescriptions are shown as filled circles.

of the structure. In the framework of this paper, an upper DVC on block � is equivalent to writing
D100α�% ≤ b� and a lower DVC is equivalent to D100α�% ≥ c�. Dmax and Dmin represent the maximum
and minimum dose constraints, respectively. The three defined square regions can be seen overlaying
the dose solution in Fig. 1c. These consist of two avoidance regions, “Avoidance A” and “Avoidance
B,” and one target region, “Target.” The column indices of the matrix A corresponding to pixels
inside the boundary of these regions can be used to form submatrices, A1, A2, and A3, respectively.

We now have a framework in which Algorithm 2 can be applied. We have A� for � ∈ {1, 2, 3} with
p = 2 and r = 1, and we have x0 = (1, 1, . . . , 1)T with 1156 entries. In this particular case, both
lower and upper bounds on the dose have been prescribed for the “Target” structure. Therefore, we
will actually use A� for � ∈ {1, 2, 3, 4}, where A4 = A3 and � = 3 corresponds to the minimum dose
constraint while � = 4 corresponds to the maximum dose constraint.

Algorithm 2 was applied to the problem described above in order to reduce the dose in the avoid-
ance structures and elevate it in the target structure, according to the prescription in Table 1. Forty
cycles (Ncycles = 40) were used and the relaxation parameters, λ� and γ�, were set to their midrange
values, 1 and 1/‖|A�‖2, respectively. Explicitly, λ1 = λ2 = λ3 = λ4 = 1, γ1 = 1.546 × 10−6, γ2 =
1.545 × 10−6, and γ3 = γ4 = 1.030 × 10−6. Figure 1c shows a visualization of the dose solution
following the algorithmic procedure. It is common in the clinic to evaluate plans using their dose-
volume histogram (DVH), which shows the percentage of each structure that has received a certain
dose. Figure 2 shows a suitable DVH for this plan, with all prescriptions being approximately met.
General convergence to the solution is indicated by a decrease in the total number of pixels vi-
olating the constraint imposed upon them, shown in the log-loss plot in Fig. 3. Further, log-loss
plots for all four types of constraints (minimum dose, maximum dose, lower DVC, and upper DVC)
are displayed in Fig. 4. Again, these all show a general decrease in the number of violations and,
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Fig. 3. The number of total violations as a function of the number of the algorithmic cycles. A decrease indicates
improvement in meeting the prescription.
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(minimum and maximum doses) and DVCs. An upper DVC is that which is applied to an avoidance structure while a

lower DVC is that which is applied to a target structure.
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therefore, indicate that the solution gradually improves as the number of cycles increases.
As mentioned in Section 1.3, more extensive analysis in the context of RTTP and, in particular,

medical physics is necessary in order to justify the use of the proposed dynamic SA CQ-method.
This work is ongoing and will be published in an appropriate medical physics journal.

9. Conclusions

We introduced a new split feasibility problem called MOSCFPP. This problem generalizes some
well-known split feasibility problems such as the split CFP, SCFPP, and more. Following the re-
cent work of Penfold et al. (2017), and motivated from the field of RTTP, the MOSCFPP involves
additional so-called PVCs that give rise to nonconvex constraints sets. A new SA CQ-method for
solving the problem is introduced, which provides the user great flexibility in the weighting and
order in which the projections onto the individual sets are executed.

List of acronyms

CFP convex feasibility problem
CMSSCFP constrained multiple set split convex feasibility problem
DVC dose-volume constraint
DVH dose-volume histogram
FNE firmly nonexpansive
HDC hard dose constraint
LFP linear feasibility problem
MOSCFPP multiple-operator split common fixed point problem
MSA modular string averaging
MSSCFP multiple sets split convex feasibility problem
PVC percentage violation constraint
RTTP radiation therapy treatment planning
SCFP split convex feasibility problem
SCFPP split common fixed points problem
SIP split inverse problem
SQNE strongly quasi-nonexpansive

Acknowledgments

We thank Scott Penfold, Reinhard Schulte, and Frank Van den Heuvel for their help and encourage-
ment of our work on this project. We are grateful to the reviewers for their constructive and helpful
comments on the previous version of this paper. This work was supported by Cancer Research
UK, grant number C2195/A25197, through a CRUK Oxford Centre DPhil Prize Studentship and
by the ISF-NSFC joint research program grant number 2874/19. All authors contributed equally
to the writing of this paper. All authors read and approved the final manuscript.

© 2020 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



24 M. Brooke et al. / Intl. Trans. in Op. Res. 0 (2020) 1–25

References

Attouch, H., Bolte, J., Svaiter, B.F., 2013. Convergence of descent methods for semi-algebraic and tame problems: prox-
imal algorithms, forward-backward splitting, and regularized Gauss–Seidel methods. Mathematical Programming
137, 91–129.

Baillon, J.B., Bruck, R.E., Reich, S., 1978. On the asymptotic behavior of nonexpansive mappings and semigroups in
Banach spaces. Houston Journal of Mathematics 4, 1–9.

Bauschke, H.H., Phan, H.M., Wang, X., 2014. The method of alternating relaxed projections for two nonconvex sets.
Vietnam Journal of Mathematics 42, 421–450.

Beck, A., 2017. First-Order Methods in Optimization, MOS-SIAM Series on Optimization. SIAM, Philadelphia, PA.
Browder, F.E., 1965. Fixed-point theorems for noncompact mappings in Hilbert space. Proceedings of the National

Academy of Sciences of the United States of America 53, 1272–1276.
Byrne, C., 2002. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Problems 18, 441–

453.
Byrne, C., 2004. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse

Problems 20, 103–120.
Byrne, C., Censor, Y., Gibali, A., Reich, S., 2012. The split common null point problem. Journal of Nonlinear and Convex

Analysis 13, 759–775.
Candès, E.J., Wakin, M.B., Boyd, S.P., 2008. Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Anal-

ysis and Applications 14, 877–905.
Cegielski, A., 2012. Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, Vol.

2057. Springer, Heidelberg.
Cegielski, A., 2015. General method for solving the split common fixed point problem. Journal of Optimization Theory

and Applications 165, 385–404.
Cegielski, A., 2016. Landweber-type operator and its properties. In A Panorama of Mathematics: Pure and Applied,

Contemporary Mathematics, Vol. 658. American Mathematical Society, Providence, RI, pp. 139–148.
Censor, Y., Bortfeld, T., Martin, B., Trofimov, A., 2006. A unified approach for inversion problems in intensity-modulated

radiation therapy. Physics in Medicine and Biology 51, 2353–2365.
Censor, Y., Elfving, T., 1994. A multiprojection algorithm using Bregman projections in a product space. Numerical

Algorithms 8, 221–239.
Censor, Y., Elfving, T., Kopf, N., Bortfeld, T., 2005. The multiple-sets split feasibility problem and its applications for

inverse problems. Inverse Problems 21, 2071–2084.
Censor, Y., Gibali, A., Reich, S., 2012. Algorithms for the split variational inequality problem. Numerical Algorithms 59,

301–323.
Censor, Y., Segal, A., 2009. On the string averaging method for sparse common fixed-point problems. International

Transactions in Operational Research 16, 481–494.
Censor, Y., Tom, E., 2003. Convergence of string-averaging projection schemes for inconsistent convex feasibility prob-

lems. Optimization Methods and Software 18, 543–554.
Combettes, P.L., 2001. Quasi-Fejérian analysis of some optimization algorithms. In D. Butnariu, Y. Censor, S. Reich (eds)

Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications. Elsevier Science Publishers,
Amsterdam, pp. 115–152.

Davidi, R., Censor, Y., Schulte, R. W., Geneser, S., Xing, L., 2015. Feasibility-seeking and superiorization algorithms
applied to inverse treatment planning in radiation therapy. Contemporary Mathematics 636, 83–92.

Gibali, A., Liu, L.W., Tang, Y.C., 2018. Note on the modified relaxation CQ algorithm for the split feasibility problem.
Optimization Letters 12, 817–830.

Goebel, K., Reich, S., 1984. Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Text-
books in Pure and Applied Mathematics, Vol. 83. Marcel Dekker, New York.

Goldstein, A.A., 1964. Convex programming in Hilbert space. Bulletin of the American Mathematical Society 70, 709–
710.

Hesse, R., Luke, D. R., Neumann, P., 2014. Alternating projections and Douglas–Rachford for sparse affine feasibility.
IEEE Transactions on Signal Processing 62, 4868–4881.

© 2020 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies



M. Brooke et al. / Intl. Trans. in Op. Res. 0 (2020) 1–25 25

Kim, H., Becker, S., Lee, R., Lee, S., Shin, S., Candes, E., Xing, L., Li, R., 2013. Improving IMRT delivery efficiency with
reweighted L1-minimization for inverse planning. Medical Physics 40, 071719. https://doi.org/10.1118/1.4811100.

Latif, A., Vahidi, J., Eslamian, M., 2016. Strong convergence for generalized multiple-set split feasibility problem. Filomat
30, 459–467.

Li, J., 2019. Split equilibrium problems for related games and applications to economic theory. Optimization 68, 1203–
1222.

Lohawech, P., Kaewcharoen, A., Farajzadeh, A., 2018. Algorithms for the common solution of the split variational
inequality problems and fixed point problems with applications. Journal of Inequalities and Applications 2018, 358.
https://doi.org/10.1186/s13660-018-1942-1.

López, G., Martín-Márquez, V., Wang, F., Xu, H.K., 2012. Solving the split feasibility problem without prior knowledge
of matrix norms. Inverse Problems 28, 085004.

Lu, Z., Zhang, Y., 2012. Sparse approximation via penalty decomposition methods. SIAM Journal on Optimization 23,
2448–2478.

Maass, K., Kim, M., Aravkin, A., 2019. A nonconvex optimization approach to IMRT planning with dose-volume
constraints. Available at https://arxiv.org/abs/1907.10712 (accessed December 17, 2020).

Masad, E., Reich, S., 2007. A note on the multiple-set split convex feasibility problem in Hilbert space. Journal of Non-
linear and Convex Analysis 8, 367–371.

Moudafi, A., 2010. The split common fixed-point problem for demicontractive mappings. Inverse Problems 26, 055007.
Moudafi, A., 2011. Split monotone variational inclusions. Journal of Optimization Theory and Applications 150, 275–283.
Penfold, S., Zalas, R., Casiraghi, M., Brooke, M., Censor, Y., Schulte, R., 2017. Sparsity constrained split feasibility for

dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy. Physics in Medicine
and Biology 62, 3599–3618.

Reich, S., Zalas, R., 2016. A modular string averaging procedure for solving the common fixed point problem for quasi-
nonexpansive mappings in Hilbert space. Numerical Algorithms 72, 297–323.

Schaad, J., 2010. Modeling the 8-queens problem and Sudoku using an algorithm based on projections onto nonconvex
sets. Masters thesis, The University of British Columbia, Vancouver, BC.

Wang, F., Xu, H.K., 2011. Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Analysis 74, 4105–
4111.

Yang, Q., 2004. The relaxed CQ algorithm solving the split feasibility problem. Inverse Problems 20, 1261–1266.

© 2020 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies

https://doi.org/10.1118/1.4811100
https://doi.org/10.1186/s13660-018-1942-1
https://arxiv.org/abs/1907.10712

