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Summary

Respiratory motion introduces uncertainties in radiation therapy for
lung cancer treatment. The principal aim of this work is to provide
methodological contributions for the quantification, characterization and
representation of lung motion, in order to facilitate its inclusion in the
radiotherapy treatment process.

Recent developments have led to the routine acquisition of four-
dimensional computed tomography (4D CT) and cone-beam computed
tomography (CBCT) for the planning and delivery of certain treatment
strategies. The availability of these images over the course of treatment
make them particularly suited for providing patient-specific motion infor-
mation and deriving motion models. B-splines were chosen for representing
the motion, because of their flexibility and computational e�ciency.

A first part of our contributions concerns the quantification of lung
motion from 4D CT through deformable registration. We describe a
method for automatically extracting a motion mask, which divides the
thorax into moving and less-moving regions. By providing an interface
where sliding motion occurs, the discontinuity in the motion fields is
preserved and registration is facilitated. Stronger smoothness constraints
can be applied for each region separately while maintaining matching
accuracy.

Next, a spatio-temporal registration framework for respiratory-correlated
imaging of the lungs is developed. A spatial transformation based
on B-splines is extended to the temporal domain by coupling it to
a cyclic trajectory model with suitable smoothness constraints. The
obtained deformation model is shown to be capable of accurately rep-
resenting respiratory motion while using a more compact and restrictive
parametrization. By enforcing the temporal coherence of the deformation
across the breathing cycle, robustness to artifacts of subsequent deformable
registration is improved.
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As an application, we investigated the feasibility of performing res-
piratory motion estimation from a cone-beam projection sequence. A
strong prior about the patient’s breathing pattern is introduced in the
form of a patient-specific model built from a previously acquired 4D CT
image. Motion estimation is accomplished by comparing the cone-beam
projection sequence to projection views of the patient model. A semi-
global optimization approach is utilized, considering the entire breathing
cycle and providing smooth motion estimates per cycle.

Finally, we describe our initial e↵orts to provide an intrafractional
estimate of an average lung deformation for monitoring baseline variations
during treatment delivery. The method consists in comparing a prior
patient image to multiple projections acquired in the treatment room.
Similarity is measured in the projection space and an e�cient algorithm
is proposed to integrate the information obtained from the di↵erent
projection views. By introducing physiological priors, the dimensionality
of the deformable registration problem is greatly reduced.
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Sommaire

Cette thèse aborde la problématique du mouvement respiratoire dans
le contexte du traitement du cancer du poumon par radiothérapie.
Notre travail vise à fournir des contributions méthodologiques pour la
quantification, charactérisation et la représentation du mouvement du
poumon par imagerie, afin de faciliter son intégration dans le processus
de traitement.

Les récentes avancées technologiques ont conduit à l’utilisation régulières
d’images tomodensitométriques 4D (4D CT) et issues de tomographes
à géométrie conique (CBCT) pour la planification et la réalisation de
certaines modalités de traitements. La disponibilité de ces images les rends
particulièrement adaptées pour fournir des information de mouvement
spécifique à chaque patient. Nous les avons choisies comme base pour la
construction de modèles de mouvement respiratoire.

Nos premières contributions concernent la quantification du mouve-
ment sur des images 4D CT par recalage déformable. Nous décrivons une
méthode originale permettant l’extraction automatique d’un masque de
mouvement qui sépare le thorax en régions mobiles et moins mobiles.
En fournissant une interface oú des mouvements glissants ont lieux,
notre approche permet de préserver les discontinuités dans les champs de
mouvement, ce qui facilite le recalage. Des contraintes plus fortes peuvent
ainsi être imposées pour chaque région, tout en maintenant la précision de
l’appariement.

Ensuite, nous développons une méthodologie de recalage spatio-temporel
pour l’imagerie corrélée à la respiration. Un modèle de déformation spatiale
basée sur des B-splines est étendu au domaine temporel en le couplant
à une modèle de trajectoire cyclique avec des contraintes de lissage
approprié. Nous montrons que la transformation obtenue est capable de
représenter fidèlement les mouvements du poumon tout en utilisant une
paramétrisation plus compacte. En renfora̧nt la cohérence temporelle de
la déformation à travers le cycle respiration, nous améliorons la robustesse
du recalage aux artéfacts.
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Comme application, nous avons également étudié la possibilité d’ef-
fectuer l’estimation de mouvement respiratoire à partir d’une séquence de
projection CBCT. Un fort a priori sur la respiration du patient est introduit
sous la forme d’un modèle spécifique au patient construit à partir d’une
acquisition 4D CT préalable. L’estimation de mouvement est réalisée en
comparant les projections avec une séquence simulée à l’aide du modèle.
Nous proposons une approche d’optimisation semi-globale, considérant le
cycle respiratoire dans son ensemble et fournissant des estimations lisses
du mouvement.

Enfin, nous décrivons une approche préliminaire permettant de fournir
une estimation per-opératoire d’une déformation moyenne du poumon. La
méthode consiste à comparer une image patient à de multiples images
projectives acquises dans la salle de traitement à partir de points de vue
di↵érents. En utilisant un a priori physiologique, nous montrons comment
réduire fortement la complexité du recalage déformable. La similarité est
ainsi mesurée dans l’espace des projections et un algorithme e�cace est
proposé permettant d’intégrer les informations obtenues des di↵érentes
vues. Les experiences initiales sont prometteuses et illustrent la faisabilité
de cette approche.
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1
Introduction

Abstract We address the issue of breathing motion for radiation therapy
of lung cancer. First an introduction of the topic is given from the medical
point of view and we present the imaging modalities used throughout this
work. Next, the problem that arises from lung motion is illustrated and the
need for motion modelling justified. The basic characteristics of respiratory
motion are introduced starting with the physiology of breathing, followed
by an overview of the most important studies providing respiratory
motion data. The overview continues by discussing the di↵erent motion
modelling approaches reported in literature. Finally, the approach chosen
in this work is presented and choices on motion data and parametrization
are motivated. We conclude by giving a conceptual overview of the
contributions described in the following chapters.
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Medical Context

1.1 Medical Context

1.1.1 Lung Cancer

Lung cancer is the most common cause of cancer death worldwide. It
is the most common cause of cancer-related death for men and the second
most common for women, behind breast cancer (Parkin et al., 2005). It
accounts for an estimated 960 thousand new cases and 850 thousand deaths
each year among men, and 390 thousand cases and 330 thousand deaths
among woman. The survival rate is poor: 5-10% after five years (Boyle
and Levin, 2008).

In most populations, tobacco smoking accounts for 80% or more lung
cancers. Other causes include occupational and environmental exposures
(e.g. asbestos, heavy metals, second-hand smoke). The risk of lung
cancer among smokers relative to the risk among never-smokers is of the
order of tenfold or more and tobacco control is the main tool in lung
cancer prevention (Boyle and Levin, 2008). In the United Kingdom, the
cumulative risk of lung cancer of a continuous smoker is 16%, and is
reduced to 10%, 6%, 3% and 2% among those who stopped smoking at
age 60, 50, 40 and 30, respectively.

In this work we are interested in radiotherapy, which is one of three
currently available treatment modalities for lung cancer, along with
chemotherapy and surgery. More often than not, radiotherapy is given
in combination with either surgery or chemotherapy, or both. A little over
40% of all patients who develop lung cancer will require radiotherapy at
some time during their illness (Boyle and Levin, 2008).

1.1.2 Radiotherapy

Radiotherapy consists of locally exposing target tumour cells to ionizing
radiation with the aim of causing irreparable damage to their DNA. It has
been prescribed since the early days of the X-ray era in medicine, going
back as far as 1900. The 1950s marked a turning point, when major
developments lead to improved e↵ectiveness and reduced morbidity. The
introduction then, of machines capable of delivering high-energy rays was
critical to the further development of modern radiotherapy. From then
on treatment involved Megavoltage (MV) X-rays (rather than kilovoltage
beams, kV) or gamma-rays; the former from linear accelerators (linac for
short) and the latter from high activity radioactive sources such as cobalt.

Here we will focus on external radiotherapy, delivered using a beam of
MV X-rays produced by a linear accelerator. As beam sources are external
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Chapter 1: Introduction

to the patient, all of the tissue along the path of the beam will receive some
radiation dose. Regions of high dose in and around the target are created
by spatially distributing the incidence and angle of treatment beams. In
conformal radiotherapy, the beam is shaped to conform to the shape of
the target, while limiting the dose delivered to organs at risk (OAR, e.g.
the lungs, the heart and the spinal cord). Intensity modulated radiation
therapy (IMRT) goes further by dynamically reshaping the outlines and
intensity of the radiation field during treatment, and improving the fit of
the high dose region to the tumorous region.

The amount of radiation delivered is measured in gray (Gy), and
varies depending on the type and stage of cancer being treated. For
curative cases, the typical dose ranges from 60 to 80 Gy. The total dose
is fractionated (spread out over time), for several reasons. The primary
being that fractionation allows normal cells time to recover, while tumour
cells are generally less e�cient in repair between fractions. Numerous
fractionation schedules exist. Conventional treatments for adults involve
typically delivering about 2 Gy per day, five days a week, for seven weeks.
Hypofractionation schemes (involving fewer fractions with larger dose)
have recently received considerable attention, including for lung cancer
treatment (see section 1.1.5).

Before illustrating the problem that arises from respiratory motion, it is
important to understand how radiotherapy is administered. The radiation
therapy treatment process consists of two steps: treatment planning and
treatment delivery. Planning starts by acquiring a computed tomography
(CT, figure 1.1a) image of the patient onto which a radiation oncologist
will delineate the visible target, called the gross tumour volume (GTV,
figure 1.1b). Usually a margin is added to the latter to account for
microscopic extension, thus obtaining the clinical target volume (CTV).

To account for geometric uncertainties associated with treatment
planning and delivery, the CTV is extended to the planning target volume
(PTV), for which the radiation oncologist prescribes the dose to be
delivered. A medical physicist will then optimize the ballistics of the
treatment ( by influencing the number, angle and shape of the treatment
beams), using a treatment planning system to simulate the dose deposition
(figure 1.1c).

The second step is the treatment delivery. The patient is repositioned
on the table in the treatment room by aligning skin marks to room
lasers, by using a custom fitted body frame, or by using in-room
imaging. In case of the latter, it is common to refer to image guided
radiotherapy (IGRT). In-room imaging can consist of 2D kV or MV X-
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(a) (b) (c)

Figure 1.1: The process of treatment planning: (a) a CT image is acquired
to serve as a reference for the planning, (b) the target is delineated (red line)
and extended to account for biological and geometric uncertainties; (c) the
treatment delivery is planned using a treatment planning system to simulate
the dose deposition.

ray projections, conventional or cone-beam CT acquisition or even optical
surface acquisition.

1.1.3 Imaging and Guidance

Radiotherapy has seen a technological avalanche in the last twenty
years that has o↵ered the same level of exciting prospects that the
quantum leap from kV to MV equipment encouraged sixty years ago.
Rapid advances in treatment delivery technology, imaging devices and
computing capabilities have changed radiotherapy beyond recognition. A
key advancement is the availability of imaging in the treatment room,
allowing to improve accuracy of the treatment delivery. Another concerns
the development of respiratory-correlated imaging, providing patient-
specific respiratory motion for treatment planning.

Four-Dimensional CT Several groups proposed four-dimensional CT
(4D CT) (Ford et al., 2003; Vedam et al., 2003; Low et al., 2003; Pan et al.,
2004; Keall et al., 2004), allowing to image the patient at di↵erent stages of
the breathing cycle. The technique consists of the simultaneous acquisition
of CT data and a respiratory surrogate signal. The surrogate signal is used
to sort the acquired data into bins according to the breathing state, and
defines the fourth dimension of the obtained image. Three-dimensional
(3D) reconstruction on each of the bins separately yields a respiratory-
correlated image sequence, representing one breathing cycle.

Current CT technology does not allow to image the entire region of
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interest (in case of lung cancer treatment, the entire lung) simultaneously.
It is therefore necessary to acquire data from di↵erent parts of the
anatomy at di↵erent times, and then combine this data to form coherent
volumes. Di↵erent methods for acquiring the required data exist, including
ciné and helical acquisition. In ciné mode, the CT scanner acquires
the desired amount of data at each couch (table) position, before
pausing and moving to the next position. In contrast, helical or spiral
acquisition involves a slow, constant table motion during which CT data
is acquired continuously. Popular respiratory surrogates for 4D CT include
spirometry (Low et al., 2003), abdominal height (Vedam et al., 2003) or
internal anatomical match (Pan et al., 2004).

Current 4D CT is based on the assumption that the respiratory cycle
is periodical, and that the respiratory surrogate signal can be used to
uniquely determine the respiratory state of the acquired data. The data
sorting is usually based on the phase of the derived signal, but can also
be the amplitude or combinations of both (Lu et al., 2006; Wink et al.,
2006; Abdelnour et al., 2007; Olsen et al., 2008). However, breathing
is not a periodic process, and the sorted data can contain inconsistent
views of the patient anatomy. As a result, images can be blurred and
motion-induced artifacts have been observed for about 80% of 4D CT
acquisitions (Yamamoto et al., 2008).

Figure 1.2a depicts the CT scanner from which all CT images in
this work were acquired, the Phillips Brilliance CT Big Bore 16-slice
scanner (Phillips Medical Solution, Cleveland, OH). The surrogate signal
required for respiratory-correlated imaging is provided by a pressure belt
placed around the chest, the Pneumo Chest Bellows (Layafette Instrument,
Lafayatte, IN). The scanner is operated in helical mode for the 4D CT
acquisitions.

Cone-Beam CT Cone-beam CT (CBCT) (Ja↵ray and Siewerdsen,
2000; Ja↵ray et al., 2002) uses on-board imaging equipment mounted on
the linear accelerator. This enables the patient to be imaged in position,
just prior to treatment. The acquisition consists of a slowly rotating X-
ray tube acquiring X-ray views of the patient on a large area, rectangular
flat panel. Reconstruction yields a 3D CBCT image, though methods for
respiratory-correlated CBCT have also been proposed (Sonke et al., 2005)
and will soon become commercially available.

Di↵erent types of CBCT imaging systems exist. Some use the high-
energy beam of the linac itself to acquire the the X-ray views (MV
CBCT), while others use a separate kV X-ray source. The latter is
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(a) (b)

Figure 1.2: The imaging devices from which all images in the work originate:
(a) the Phillips Brilliance CT Big Bore Phillips (Medical Solution, Cleveland,
OH) with 4D capabilities ; (b) the Elekta Synergy System (Elekta, Crawley,
UK) with on-board kV Cone-Beam CT imaging.

usually mounted perpendicularly to the linear accelerator (kV CBCT).
Both systems operate in a fairly similar fashion, although the quality of
the images produced and the radiation dose required for the imaging can
di↵er.

Figure 1.2b shows the first commercially available, linac-mounted cone-
beam system, the Elekta Synergy (Elekta, Crawley, UK). The large X-
ray source in the top left corner delivers the treatment beam, while the
perpendicularly mounted kV source and flat panel is used for the image
acquisition. All cone-beam data used in this work, was acquired on this
type of imager.

1.1.4 Respiratory Motion in Radiotherapy

Respiratory motion introduces uncertainties in radiotherapy, influenc-
ing the accuracy of imaging, treatment planning and treatment deliv-
ery (Balter et al., 1996; Shimizu et al., 2000). Respiratory motion causes
significant artifacts during three-dimensional (3D) CT imaging (van Herk,
2004; Chen et al., 2004) due to the interference of the scanning process and
respiration. Treatment planning is essentially assuming a static anatomy,
and organ motion will result in a deviation of the delivered dose from the
treatment plan (Lujan et al., 1999; Guerrero et al., 2005). If not accounted
for, organ motion due to breathing can lead to underdosage of the tumour,
or overdosage of the surrounding tissue (Keall et al., 2006).

Properly accounting for breathing motion in the treatment plan,
involves carefully evaluating the uncertainties of each step of the treatment

7



Chapter 1: Introduction

process, and is thus closely related to the imaging and treatment strat-
egy (Wolthaus et al., 2008a). Imaging in the presence of breathing motion
is preferably done by using slow, breath-hold or respiratory-correlated
imaging. To avoid geographic miss of the target, the safety margins
added to the target volume should reflect the patient-specific tumour
motion. Margin reduction can be obtained by in-room imaging or through
specifically designed treatment methods.

In particular, some treatment strategies aim at reducing the tumour
motion during delivery, thereby limiting the margin required to account
for the motion. For instance, treatment can be performed at breath-
hold, e↵ectively stopping the respiratory motion (although there may still
be some residual motion due to limited reproducibility of the breath-
hold (Sarrut et al., 2005)). Alternatively, the patient can be breathing
freely but treatment is delivered only during certain breathing phases,
in which case we refer to it as gating. The most ambitious method of
treatment is called tracking, and involves following the tumour motion
with the treatment beam during treatment.

1.1.5 Hypofractionated Treatment of the Lung at
CLB

Hypofractionated treatment of the lungs has received considerable
attention in literature recently. Remarkably high tumour control rates
(which can be defined as the local disappearance of tumor cells) have been
reported (Timmerman et al., 2007; Lagerwaard et al., 2008), making this
a very promising treatment strategy for lung tumours. The low number of
fractions and the high dose per fraction require high-precision treatment
delivery, and justify the additional dose induced as a consequence of
extensive image guidance.

We conclude this section by given an example of a particular treatment
planning and delivery strategy, which is the hypofractionated lung cancer
treatment as currently performed at the Léon Bérard Cancer Center, in
Lyon, France. Medical indications to be considered for this treatment
modality include non-small cell lung cancer without metastasis. In
addition, the treatment is reserved for small targets (< 50 mm), which are
not within 20 mm of the primary bronchi and characterized by relatively
small motion under respiration.

Treatment planning is initiated by acquisition of a 4D CT image.
Immobilization and localization is facilitated by placing the patient in
a stereotactic body frame (SBF). Depending on the motion observed on
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4D CT, abdominal compression is applied to reduce tumour motion to
below 10 mm. Treatment margins are defined on a patient-specific basis,
and chosen to encompass the total extent of the tumour motion as observed
on 4D CT.

Treatment commences usually within ten days of the 4D CT acquisition
and consists of four fractions of 12 to 15 Gy. At each treatment fraction,
the patient is repositioned using the SBF and CBCT is performed to allow
imaging the target just before treatment. Based on the CBCT image, the
patient is repositioned by moving the table to align the target with the
treatment plan, and treatment is started. The fractions are delivered twice
a week.

1.2 Respiratory Motion Modelling

1.2.1 The Role of Motion Modelling in Radiotherapy

Modelling is in this work interpreted as

the mathematical description and characterization of a system,
intended to provide an approximation of the physical reality

A respiratory motion model is meant to describe the motion of the anatomy
of interest due to respiration. For some, respiratory motion models predict
the internal organ motion, based on respiratory surrogate signals. We
pursue a more general interpretation, by stating that the motion models
can facilitate motion estimation, in situations where motion is di�cult to
quantify directly.

Besides the area of motion estimation, the mathematical description
of the motion also enables computer simulation, which is a powerful tool
for research. Most importantly, the process of motion modelling itself will
bring about increased knowledge about respiration and improved insight
into its e↵ect on the radiotherapy treatment process. This in turn, can lead
to new imaging and treatment strategies and modify the way breathing is
handled in radiotherapy. Motion modelling is therefore first of all a tool to
reduce the uncertainties introduced by respiratory motion, by improving
its inclusion in the treatment process.

In terms of direct clinical applications, motion models could allow to
reduce motion-induced artifacts and improve image quality by compen-
sating the motion in images acquired for diagnosis (Lamare et al., 2007),
treatment planning (Wolthaus et al., 2008b) or image guidance (Rit et al.,
2009a). Treatment strategies can be evaluated by simulating the e↵ect
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of administering them during free breathing (Guerrero et al., 2005; Ayadi
et al., 2007; Mexner et al., 2009; Seco et al., 2008; Colgan et al., 2008) and
motion models are required for the prediction of tumour motion (Sharp
et al., 2004; Seppenwoolde et al., 2007), required for gating and tracking.

An example is given by means of some of our initial work in this area,
which consisted in making a simple motion model publicly available to
the research community. The POPI-model 1 (Vandemeulebroucke et al.,
2007)–in which POPI stands for point-validated pixel-based–consisted of a
patient 4D CT acquisition for which we estimated the respiratory motion
through deformable registration. The registration results were validated
using anatomical correspondences throughout the image data provided
by experts, resulting in a total of 400 landmarks. Validation data was
also made publicly available. The initiative received good response and
despite its simplicity, the POPI-model has since then been applied in
varying applications including 4D dose simulation, motion compensated
cone-beam reconstruction and validation of deformable registration (Ayadi
et al., 2007; Wolthaus et al., 2008b; Noe et al., 2008; Rit et al., 2009a;
Vaman et al., 2009; Kabus et al., 2009; Su et al., 2009a; Schmidt-Richberg
et al., 2009b; Su et al., 2009b; Ruppertshofen et al., 2009, 2010).

1.2.2 Physiology and Mechanics of Respiration

Breathing is the process that allows to take oxygen in and let carbon
dioxide out of the body. It plays a vital role in delivering oxygen to where
it is needed. The actual process of gas exchange occurs in the lungs by
passive di↵usion of gases between the alveoli and the blood passing by in
the lung capillaries. Once these dissolved gases are in the blood, the heart
powers their flow around the body via the circulatory system.

Inspiration primarily requires contraction of the diaphragm and the
intercostal muscles located between the ribs. Contraction of the diaphragm
causes it to move downward and pushes the abdomen outwards and
anteriorly. It increases the vertical dimension of the thoracic cavity, and
results in an expansion of the lungs. The external intercostals contract
to elevate the lower ribs and push the sternum outward, increasing the
antero-posterior dimension of the thoracic cavity. Expiration is normally
passive because of the elastic recoil. There is hysteresis in the relationship
between pressure and lung volume; the lung volume is di↵erent between
inspiration and expiration at the same pressure (Shirato et al., 2004).

1. http://www.creatis.insa-lyon.fr/rio/popi-model
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Breathing is one of the few bodily functions which, within limits,
can be controlled both consciously and unconsciously. Depending on the
contribution of each of the breathing muscles, we can distinguish between
diaphragmatic or thoracic breathing, though usually both are involved.
For supine posture, diaphragmatic respiration is most common. The
motion caused by the contraction of the respiratory muscles results in
a complex deformation which di↵ers from patient to patient, but also from
cycle to cycle. It is influenced by the specifics of the patient anatomy,
pathology, pose but also by physical condition and state of mind.

1.2.3 Obtaining Respiratory Motion Data

The access to valid motion data is a precondition for motion modelling.
Unfortunately, obtaining accurate measurements is a di�cult, laborious
and time-consuming task for both patient and practitioner. Technical
limitations apply to the accuracy, dimensionality and resolution of the
measured motion. In addition, the measurements often induce an
imaging dose to the patient, limiting the duration and repetition of the
measurements. This explains why, despite the considerable interest in the
topic, accurate motion data is still relatively scarce.

Respiratory motion is di↵erent from individual to individual. It
occurs in three-dimensions, is non-rigid and non-periodic of nature, and
is characterized by variations on short, middle and long term. Ideally, we
would acquire 3D+time (T) signals for a dense spatial grid of tissues, at
a high temporal resolution, for a large patient group and over a clinically
relevant duration (e.g. over the course of a treatment duration). In
practice, a compromise must be found in which one or several of the
previous conditions are relaxed.

Breathing motion has been measured in a number of ways, including
using ultrafast CT (Ross et al., 1990), ultrasound (Davies et al., 1994),
fluoroscopy (Kubo and Hill, 1996), Optical sensors (Vedam et al., 2001),
4D CT (Mageras et al., 2004), 4D MRI (Plathow et al., 2004), CBCT (Pur-
die et al., 2007b), 4D CBCT (Sonke et al., 2008) and CB projections (Rit
et al., 2009a). Studies have focused on the diaphragm (Balter et al., 1998),
implanted markers (Seppenwoolde et al., 2002), abdominal height (George
et al., 2005b) or on the whole thorax (Boldea et al., 2008). The dimen-
sionality and the spatial and temporal resolution of the measurements vary
and depend on the modality on which they were acquired and the method
used to analyze the motion. Table 1.1 list some key studies providing
measurements on respiratory motion. view focusses on lung motion during
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free breathing, though some studies include measurements for the liver and
with use of abdominal compression.

Several studies provided 1D+T measurements at high temporal reso-
lution, but for isolated structures such as markers or the diaphragm. Very
few approaches actually led to 3D+T motion and none of them provide
them for a dense grid of points covering the entire thorax. Dedicated
equipment has been used to provide 3D+T motion over long durations
and at high temporal frequency. Ciné CT imaging can provide 3D images
from which dense motion can be estimated, but cover only about 20 mm
of the thorax. Dense motion estimates for larger regions were mainly
obtained for modalities that rely on a periodicity assumption (indicated
by T�), namely 4D CT and 4D MRI. However, this assumption excludes
studying intercycle variability as the acquired data is binned to similar
breathing stages and reconstruction yields one cycle. In addition, they are
usually characterized with a reduced temporal resolution.

That being said, 4D CT and (4D) CBCT have been the preferred
modality for recent studies on respiratory motion in recent years, mainly
because of the wide availability of this data. Treatment strategies such as
the hypofractionated treatment of the lungs described in section 1.1.5, have
led to the routine acquisition of 4D CT and CB CT for treatment planning
and image guidance, respectively. Finally, we bring the attention to
approaches based on MRI. Fast 3D MRI hasn’t yet allowed to extract dense
spatial estimates (Blackall et al., 2006), due to the reduced image quality.
However, the non-invasive character of the modality allows long acquisition
times, enabling more elaborate binning procedures that produce high
quality respiratory-correlated MRI (von Siebenthal et al., 2007). The
availability of dynamic MRI data is currently limited, because it is not
part of standard clinical protocols. Its properties could cause MRI to play
an increasingly important in respiratory motion modelling in the future.
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Chapter 1: Introduction

1.2.3.1 Characteristics of Respiratory Motion

In the interest of furhter analysis, the high-dimensional motion data
is decomposed and certain aspects of it are reported in an attempt to
characterize the motion due to respiration. Often, this analysis involves
fitting a motion model to the data, and reporting the best matching values
for the model parameters. In other words, analysis of breathing motion
has contributed to motion modelling. The distinction made between
studies mentioned in the current section, said to provide measurements on
respiratory motion, and the work reviewed in the next section on motion
modelling is therefore somewhat arbitrary and arguable for some.

Breathing occurs predominantly in the superior-inferior (SI) direction.
The extent of the motion tends to be larger for the lower lobes and for
structures near the diaphragm where it can easily reach 30 mm (Keall
et al., 2006). Breathing periods range from 2 to 10 s with an average
just below 4 s, though the measure is characterized by large interpatient
variability (George et al., 2005b; Rit et al., 2010). The path followed
by moving structures during inhalation can be di↵erent from exhalation,
leading to hysteresis (Seppenwoolde et al., 2002; Boldea et al., 2008).
Several authors reported variable speed over the cycle, spending more time
near exhale than inhale (Kubo and Hill, 1996; Seppenwoolde et al., 2002;
Rit et al., 2010).

The average motion amplitude is of the order of 15 mm at the
diaphragm, but also varies greatly from patient to patient (Rit et al., 2010).
The amplitude has been reported to be relatively stable between fractions
(about 2 mm standard deviation at the diaphragm), but larger intercycle
variability has been observed intrafractionally (Sonke et al., 2008; Rit et al.,
2010). This variability is mostly attributed to the variability of the end-
inhale position (about 3 mm standard deviation at the diaphragm) which is
about twice as high as the end-exhale position (Seppenwoolde et al., 2002;
Sonke et al., 2008; Rit et al., 2010). The trajectory shape was found to be
stable interfractionally, and its variability is relatively small (Seppenwoolde
et al., 2002; Sonke et al., 2008).

Changes in the mean position of moving structures, generally referred
to as variations of the baseline, have also been observed. They can
occur both intra- and interfractionnally, and in all three dimensions.
The baseline can be subject to progressive trends over time or sudden
shifts, and both have been observed during and between treatment
fractions (Seppenwoolde et al., 2002; Purdie et al., 2007b; Sonke et al.,
2008; Bissonnette et al., 2009)
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Respiratory Motion Modelling

1.2.4 Models For Respiratory Motion

Numerous respiratory motion models have been proposed in literature.
Depending on the application, they aim at describing the average motion,
or tend to characterize the intercycle variability. Some focus on the motion
of single points or structures, while others provide a description for the
whole thorax. Note that most models provide the internal motion based
on a surrogate respiratory signal. In practice, this surrogate is based on a
measurement that can be performed during imaging or treatment delivery,
such that it would allow intrafraction motion estimation, during these
processes. Surrogates range from spirometry, optical abdominal height
tracking, X-ray diaphragm tracking, but can also be derived from fan-
beam or cone-beam projections.

1.2.4.1 Biomechanical Modelling

Biomechanical approaches aim at physically simulating processes using
the laws of physics and based on physiological and anatomical observations.
These can be formulated as a boundary value problem and solved, for
instance, using finite element methods (FEM). Biomechanical modelling
of the lung goes back as far as the 1970’s, with the work of Mead
et al. (1970) and announced the start of an increased interest in lung
mechanics (Fung, 1974; Vawter et al., 1979; Wilde et al., 1981). The first
finite element models of the lungs quickly followed (West and Matthews,
1972; Matthews and West, 1972; Vawter, 1980), initially developed to
determine the macroscopic stress, strain and deformation of the lung
parenchyma.

Related to this, is the work of Segars (2001) in the development of
the dynamic NURBS-based cardiac-torso phantom (NCAT): a geometric
model of the thorax which was attributed realistic respiratory mechanics
and cardiac motion based on CT and MRI observations. The phantom
proved to be a powerful simulation tool and was used in many studies,
including dynamic imaging (Segars and Tsui, 2002; Segars et al., 2003;
Lamare et al., 2007) and 4D dose estimation (Guerrero et al., 2005).

More recent biomechanical studies used CT (Villard et al., 2005) and
MR images (Brock et al., 2005) to obtain a patient-specific topology for
the 3D FEM models, mainly in the interest of motion estimation. Despite
the increasingly detailed models, current biomechanical approaches still
greatly reduce the available image information. The lung parenchyma
is generally assumed to be linear-elastic, homogeneous and isotropic
and inner-organ information like bronchial or vessel trees are dismissed.
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This results in less accurate registration of those structures compared to
intensity-based deformable registration (Sarrut et al., 2007; Werner et al.,
2009b).

Advantages of biomechanical modelling lie in the fact that they
allow to explicitly account for physical properties and physiological
processes. An example is given by the sliding motion of the lung with
respect to the chest wall, known to cause locally reduced matching
accuracy for most deformable registration algorithms (Wu et al., 2008;
Schmidt-Richberg et al., 2009a; Vandemeulebroucke et al., 2010). This
behaviour has previously been successfully modelled as a contact problem
of elasticity theory (Zhang et al., 2004; Villard et al., 2005; Al-Mayah et al.,
2008; Werner et al., 2009a), providing an advantage over conventional
registration approaches.

1.2.4.2 Signal Models

We use the term signal models to refer to models describing the motion
of a single point or structure, or of a respiratory trace or surrogate. This
type of respiratory motion models has received considerable attention in
literature. Their development was mainly motivated by the increasing
interest in gated or tracked treatment delivery, and their development
benefitted from the comparatively easy access to large sets of motion
data. As such, they played an important role in characterizing the di↵erent
aspects of respiratory motion.

Lujan et al. (1999) described organ motion due to breathing using
a modified cosine model

x(t) = x

0

� b cos2n(⇡t/⌧ � �) . (1.1)

In this equation, x

0

is the position at exhale, b is the extent of the
motion and ⌧ is the period of the breathing cycle. The parameter
n controls the shape of the model, allowing to describe asymmetric
trajectories that spend more time at exhale than at inhale, as observed
using fluoroscopy (Kubo and Hill, 1996; Balter et al., 1998). The
model parameters were assumed fixed and meant to represent an average
breathing cycle, allowing to simulate the impact of respiratory motion on
dose distributions using dose-convolution techniques (Lujan et al., 1999;
Chetty et al., 2003). The representation became widely adopted and has
since been applied for a variety of applications (Seppenwoolde et al., 2002;
van Herk et al., 2003).

Neicu et al. (2003) described how to capture a more detailed waveform
model using a concept called the average tumour trajectory. In their work,
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the minima and maxima in the superior-inferior direction are matched,
and the waveform is normalized and averaged to better describe the
characteristic motion.

Wu et al. (2004) proposed a finite state motion model in which
regular breathing cycles are represented by a piecewise linear model, while
abnormal breathing is represented by an irregular breathing state. The
regular cycle consists of line segments for inhale, exhale and end-exhale.
An advantage of the proposed formalism is that it provided a convenient
base for statistical analysis (Wu et al., 2007).

Low et al. (2005) proposed a linear relationship between the position of
a point x and the instantaneous air volume v and air flow f (its derivative),
as measured through spirometry

x(t) = x

0

+ c
1

v(t)ev + c
2

f(t)ef . (1.2)

The constants c
1

and c
2

, and the directions of the unit vectors ev and ef

were obtained by fitting (1.2) to measurements obtained from ciné CT data
and simultaneously acquired spirometry (over 11 seconds, corresponding
to 15 CT volumes and 2-3 cycles). Motion is constrained to a plane and
changes in each of the surrogates resulted in displacements in di↵erent
directions on the plane. The airflow component was accounted for the
hysteresis and di↵erent combinations of volume and flow allowed to model
intercycle variability.

Seppenwoolde et al. (2007) studied the prediction capabilities of a com-
mercially available robotic respiratory tracking system (the Synchrony
Respiratory Tracking System used with the Cyberknife system, Accuray,
Sunnyvale, CA). Internal motion data was obtained from X-ray imaging
of implanted markers, and is correlated to external skin markers during
a pre-treatment training period. Quadratic correspondence models were
found to be superior to linear in the presence of motion hysteresis, but the
use of a single surrogate model (center of mass of the external markers),
limited the capabilities of modelling intercycle variations.

Ruan et al. (2009) described a method for real-time profiling of
respiratory motion, by decomposing it into baseline, frequency and
fundamental pattern variations. The approach was motivated by the fact
that changes to each can have di↵erent clinical consequences, depending
on the application. Each of the motion components was assumed to evolve
smoothly in their own space. This allowed additional filtering of the
decomposed signal which augmented robustness to noise. By decomposing,
filtering and then reassembling the components in the original signal space,
a stable predictor was provided that incorporated most physical priors for
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respiratory motion.
In summary, signal models have benefited from the comparatively easy

access to motion data. This has allowed several authors to propose direct
relationships between the target motion and specific characteristics of
respiration. Whether it concerned establishing a link between the motion
and the breathing state (Wu et al., 2004), external surrogate (Low et al.,
2005) or a certain aspect of breathing (Ruan et al., 2009), the approaches
allowed for a spatial or temporal decomposition of the breathing motion
and simplified motion characterization in subsequent analysis. A drawback
of this modelling approach is that their use is mainly limited to respiratory-
synchronized treatment delivery as they describe the motion of a single
point.

1.2.4.3 Registration-based models

Recently, several models have been proposed that describe the internal
motion of an entire region, in contrast to just considering a specific point.
Their popularity can be explained by the recent developments in imaging
technologies, improving accessibility to rapid or respiratory-correlated CT
images. The method for obtaining dense motion estimates from the motion
data is primarily intensity-based deformable registration, which is why we
refer to these models as registration-based.

McClelland et al. (2006) proposed a method for obtaining an average
breathing cycle from CT data covering multiple cycles. The models
are constructed from small slabs of ciné CT data, acquired during free
breathing over a period of about 20 s. A respiratory surrogate signal was
simultaneously recorded in the form of abdominal height measurements.
Each of the free-breathing ciné volumes was registered to a reference
breath-hold CT scan of the same patient. The actual motion model
was obtained by temporally fitting each of the registration parameters
with respect to the breathing phase derived from the surrogate signal
using a one-dimensional cycle B-spline. As the data covers several
respiratory cycles, the obtained function should model a cycle which can
be considered average in deformation space. By composing the 4D models
obtained at each couch position, a description covering the entire region
of interest was obtained.

Validation included predicting the registration results by using leave-
one-out experiments: the temporal fit was performed using all ciné volumes
except for one, and the obtained model was evaluated by comparing it to
the target left out, at the same phase value. Even though no intercycle
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variability was modelled, the motion models predicted the individual free-
breathing volumes surprisingly well. This illustrates the clinical advantage
of using an average cycle as a motion predictor, compared to conventional
4D CT which e↵ectively represents an arbitrary respiratory cycle at
each table position. Another advantage of the method, lies in the fact
that composing the average models at each couch position reduces the
artifacts with respect to simply composing the free-breathing cinv́olumes
corresponding to the same phase bin. On the downside we should mention
that the acquisition of the ciné CT data generally induces more imaging
dose to the patient, compared to shorter 4D CT acquisition schemes.

Later work included extending the motion models to more respiratory
parameters, with the aim of modelling intercycle variability (McClelland,
2008). The procedure followed was similar with the main di↵erence being
that now a 2D function was fitted to establish the relationship between
two model parameters (a combination of amplitude, phase and gradient
of the surrogate signal) and the registration parameters. A number of
functions were evaluated, for a varying amount of degrees of freedom.
The results however, when evaluated using the leave-one-out experiments,
showed little or no improvement over the single parameter models. Some
of the evaluated functions with high degrees of freedom, clearly resulted
in an over-fitting of the registration results. Although the concept showed
potential for modelling intercycle variability, the limited amount of data
was suspected to limit the potential.

Zhang et al. (2007) proposed a method for obtaining a motion model
from a single 4D CT acquisition. Their approach aimed at predicting
the motion based on two respiratory surrogates, the current height of
the diaphragm and its height 1.5 s earlier. The motion in the 4D CT
was analyzed by non-rigidly registering all the frames to the reference
end-exhale frame. The relation between the deformation and the model
parameters was obtained through principal components analysis (PCA).
Each of the frames of the 4D CT was considered as an independent
breathing state. The first two principal modes were retained, and shown
to account for the majority of the variation of the included patient data.
A fundamental breathing pattern was obtained as a linear combination of
the two principal modes of the PCA. The removal of the remaining modes
was interpreted as a filtering operation for the deformation fields. This
was supported by examples in which the model predictions, consisting
of the transformed reference exhale CT volume, were compared to the
original frames of the 4D CT. A reduction of the image artifacts was
observed, indicating the models were actually more representative of the
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true respiratory motion.

Since more than one surrogate was used, the approach can potentially
also describe intercycle variation. However, the method was based on
only one 4D CT, not providing any data on variation. Nonetheless,
their performance was assessed when used to predict 4D CT data of
the same patient acquired about a week later. The predictions were still
acceptable, even in the presence of a considerable baseline shift between
the two sessions. This robustness is mostly attributed to a good choice
of respiratory surrogate, capable of accounting for such interfractional
di↵erences.

In (Yang et al., 2008), and extension to the signal model described
in (Low et al., 2005) was presented. Motion was analyzed from the ciné
CT volumes using deformable registration with respect to a reference
volume, similar to (McClelland et al., 2006). For each of the voxels,
a model equation similar to (1.2) was fitted to the obtained deformation
vectors. Since the model was now evaluated over the entire lung regions,
3D maps of the obtained parameter values were reported that showed fairly
smooth variations throughout the lungs, as would be expected. Zhao et al.
(2009) performed a similar analysis to a large patient group, to analyze
interpatient motion characteristics.

Several authors have proposed to provide motion estimation based on
X-ray projections taken from rotating views (Blondel et al., 2004; Zeng
et al., 2005, 2007; Li et al., 2007; Rit et al., 2009a; Long et al., 2010). This
highly interesting line of research could provide intrafraction respiratory
motion estimation from cone-beam projections, and enable exploiting
the large amounts of projection data acquired in clinical routine. The
projection images can be seen as a high-dimensional respiratory surrogate
signal, which in combination with some kind of patient model can facilitate
motion estimation.

Zeng et al. (2007) used a general deformation model based on free-
form deformations (Rueckert et al., 1999) to deform a reference patient CT
image to match the respiratory motion in a cone-beam projection sequence.
The procedure comes down to a 2D+T-3D+T registration, driven by
an intensity-based similarity measure calculated between the projection
sequence and the projection views of model. To facilitate the optimization,
temporal regularization was introduced in the form of a pseudo-periodicity
penalty. The method was later applied to motion-compensated CBCT
reconstruction (Li et al., 2006). Long et al. (2010) proposed a similar
approach, to estimate 3D motion from a series of projections. In this
case the patient motion over the duration of the projection sequence was
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considered negligible.
Rit et al. (2009a) proposed to introduce a prior about the patient’s

breathing motion in the process. The prior was obtained from a previously
acquired 4D CT acquisition, and the 2D-3D motion estimation was
reduced to establishing a correspondence between the 4D model and the
projection sequence in phase space. By extracting the breathing phase
from the projection sequence using a fast, feature-based method (Zijp
et al., 2004), on-the-fly motion-compensated CBCT reconstruction was
demonstrated (Rit et al., 2009b), making insertion of the method into
clinic feasible.

In conclusion, registration-based modelling can address a wider range
of applications, as motion is described for a larger region. Compared to
the previously discussed signal models, substantially less patient-specific
data is usually available, limiting the potential of the methods to model
the motion variability. With respect to other respiratory surrogates, 2D
rotational X-ray projections contain detailed (internal) motion information
with the potential of complementing CT data, and e↵orts have been made
towards exploiting this type of data for intrafactional motion estimation.
Without prior knowledge, establishing the relation between the CT images
and X-ray projections sequences is challenging, due to high dimensionality
of the resulting 2D-3D motion estimation problem.

1.2.4.4 Statistical Models

Instead of trying to predict deformation for a specific patient at
a specific time, several studies been dedicated to the statistical analysis of
patient breathing motion. The aim in this case is mainly to report general
characteristics of a patient breathing pattern, or even to extract interpa-
tient breathing generalities, even though some attempts at interpatient
motion estimation have been reported as well.

George et al. (2005b) analyzed a great number of respiratory traces,
obtained from abdominal height measurements. Rather than considering
the modified cosine motion model (1.1) as an average trajectory with
constant parameters, the equation was fitted to individually extracted
cycles. This allowed to quantify average parameter values and their
variations for a statistically important patient sample. The study
also estimated the probability density functions for each of the model
parameters can be used to generate more realistic respiratory traces.

Wu et al. (2007) applied a finite-state (inhale, exhale and end-exhale)
motion model (Wu et al., 2004), to a large data set of tumour trajectories
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described in (Seppenwoolde et al., 2002). They applied statistical analysis
and correlation discovery methods to extract intra- and interpatient
breathing characteristics useful for treatment planning, online tumour
motion prediction and real-time radiation dose delivery. Conclusions of
the analysis included that the most time of the trajectory is spent in the
end-exhale state (1.46 s with respect to 1.33 s for inhale and 0.99 s for
exhale), which is also the state during which the tumour travels the least
distance (2.04 mm with respect 10.42 s for inhale and 8.64 s for exhale).

Ehrhardt et al. (2009) used 4D CT acquisitions obtained from 18
patients to compute a statistical mean interpatient motion model. De-
formable registration was applied to analyze the intrapatient motion, but
also to establish an interpatient anatomical correspondence. Using an
approach inspired from the construction of anatomical atlases (Ehrhardt
et al., 2008), an average shape and intensity reference anatomy was
computed onto which the individual patient breathing motions were
mapped. By normalizing the motion with respect to the change in
air content and spatially averaging the patient motion models, a mean
respiratory motion model was obtained.

The prediction capabilities of the mean model were evaluated by
providing a patient-specific scaling for the mean model (using the required
change in air content), and comparing it to the patient images in a
leave-one-out fashion. Results were surprisingly good, considering the
limited patient-specific information provided. By calculating the di↵erence
between the scaled mean motion model and a patient-specific motion
estimate, deviating respiratory behaviour could be identified, illustrating
a possible application of an interpatient model.

While probably less suitable for patient-specific motion estimation,
statistical and interpatient models have been shown very helpful to
establish general properties about breathing motion. This knowledge is
useful for conducting realistic simulation studies, or to tune treatment
strategies by testing them on an average patient population. In addition,
thorough analysis of motion data, obtained from a large patient group, has
the power to on one hand confirm seemingly obvious aspects of breathing
motion, and on the other hand reveal underlying motion characteristics.
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1.3 Our Approach: Formalization of Breath-
ing Motion and Reduction of the Degrees
of Freedom

The purpose of this section is to motivate the choices made regarding
the modelling approach. This concerns the used motion data and priorities
considered for the di↵erent aspects of breathing motion. A second motive
of this section is to give a conceptual outline of the methodological
contributions described in the chapters to follow.

1.3.1 Objective and Problem Statement

The objective of this work can be stated generally as:

To provide methodological contributions that improve the quantification,
representation and characterization of lung motion and facilitate its
inclusion into radiation therapy treatment planning and delivery

for lung cancer.

In particular, the main treatment strategy in mind concerns stereotactic
hypofractionated radiotherapy of the lungs described in section 1.1.5.
This procedure involves continuous photon radiation during free breathing
(in contrast to using, breath-hold, gated or tracked treatment delivery).
In addition, only patients treated without abdominal compression were
considered. It goes without saying that the use of some of the methods
proposed extends beyond this context. The specifics of the problem
description however, allows to make several assumptions about the motion
modelling problem at hand.

For the aimed application, patients are in supine position. Even
though in-room imaging is performed at each treatment session, it can
be assumed that careful patient setup on the treatment table is performed
before imaging at the beginning of each treatment fraction. About 3 to
4 weeks go by between the beginning of treatment planning to the end of
treatment delivery. Attention should therefore be paid to modelling motion
variability in short as well as longer term. On the other hand, this duration
is short enough to assume a certain stability of the patient anatomy.
Breathing motion is known to change from one patient to another. In
addition, the studied patient group su↵ers from lung pathologies (tumours
in varying places, atelectasis, pleural e↵usions, etc.). For this patient group
even stronger deviating motion behaviour can be expected (Plathow et al.,
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2004; Ehrhardt et al., 2009). The emphasis in this work is on exploring
the individualization of the treatment by modelling the patient-specific
motion.

1.3.2 Motion Data

1.3.2.1 Four-Dimensional CT

4D CT was chosen as the main source of patient-specific motion data.
The advantages are mostly of practical nature. It is routinely acquired
in our institute for the treatment planning of the considered patient
group, thus not requiring additional acquisitions outside the treatment
protocol. Its acquisition is fast, and the patient is carefully set up allowing
assumptions to be made on the geometry. With respect to other modalities
there are also some technical advantages. The obtained images are of
comparatively high resolution and are characterized by excellent contrast
in the lungs, allowing methods such as deformable registration to be
applied. In addition, the modality basically provides an electron density
map of the imaged object, which is required to simulate the treatment
delivery using a treatment planning system.

The main drawbacks of the modality is that its acquisition involves
an imaging radiation dose, which explains the low dose levels per image
compared to diagnostic CT, and limits the number of acquisitions.
Advanced binning algorithms described for 4D MRI (von Siebenthal et al.,
2007), requiring long acquisition times and large quantities of data are
not applicable to 4D CT. Intermediate approaches, based on ciné-CT
images (Low et al., 2005; McClelland et al., 2006) providing limited
statistics and sampling some intercycle variability, were not pursued either.
Instead, little over a cycle is acquired at each table position and data
corresponding to similar breathing phases is combined using the slice
stacking principle and assuming motion periodicity, without any further
selection of the data being applied. A first consequence of this procedure, is
that there is no way of knowing if the reconstructed cycle is representative
of the patient’s breathing pattern, since at each position an arbitrary
cycle was acquired. A second e↵ect is that irregular breathing will lead
to inconsistent projection views that cause artifacts in the reconstructed
images. In addition, by itself 4D CT does not allow to account for
intercycle variability.
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1.3.2.2 Cone-Beam CT

Cone-beam CT acquisitions are also routinely acquired for the patient
group of interest, at the start of each treatment fraction. Their main
advantage from the perspective of motion modelling is that they are
acquired just moments before treatment, with the patient in treatment
position. 3D CT provides little useful motion information, as motion
is averaged over the acquisition time. 4D CBCT (Sonke et al., 2005)
assumes motion periodicity, similar to 4D CT, but has the advantage that
several acquisitions are available over the course of treatment, allowing to
study interfractional variability (Sonke et al., 2008). The image quality is
significantly lower than 4D CT, rendering the analysis using deformable
registration more challenging.

Cone-beam projections consist of large angle X-ray projections, ac-
quired on a planar flat-panel (425 mm length) and covering a large part of
the thorax (276.7 mm at the isocenter). The images are of high resolution
(0.8⇥0.8 mm2, corresponding to 0.52⇥0.52mm2 at the isocenter) and have
good temporal frequency (5.5 frames/s). Motion-induced artifacts are
limited due to the fast acquisition times of the projections (20-40 ms)
and the projection sequences are available over relatively long durations
(2-4 min).

Before being able to benefit from the interesting properties of this type
of data, several challenges have to be faced to enable their exploitation.
The most obvious one being that the modality is inherently a 2D+T
representation of 3D+T motion, making it di�cult to quantify the motion.
Equipment, such as the treatment table or the stereotactic body frame,
overlap with the structures of interest and further compromise respiratory
motion estimation.

Cone-beam projections were used in this work to complement the
4D CT motion data, and served several purposes. To circumvent the
di�culty of extracting the full 3D+T motion, di↵erent strategies were
applied. In some cases the sequence was reduced to a 1D+T motion signal
of a single, clearly identifiable structure, enabling statistical modelling due
to the size of the available data. The projections also served as a high-
dimensional respiratory surrogate, to facilitate 3D+T motion estimation
in the treatment room. Alternatively, particular projections were selected
and combined to provide a 3D update of the patient model.
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1.3.3 Motion Formalization

In brief, lung motion is characterized by variations occurring at di↵er-
ent time-scales, which may occur for di↵erent physical and physiological
reasons. Each of them may have a di↵erent e↵ect on the treatment process.
As such, there may be a clinical advantage in detecting and quantifying
each of them separately. We propose to explicitly decompose respiratory
motion, and to let the model parametrization reflect this, similar to some of
the signal modelling approaches mentioned in section 1.2.4.2. In addition,
we propose to account for each aspect of breathing motion separately,
with the required spatial accuracy and at an adequate temporal frequency.
We use the term formalization to refer to the process of decomposing
the motion, and attributing fixed spatial and temporal representations to
compensate for each of the events.

Figure 1.3 shows a schematic representation of a respiratory trace,
influenced by di↵erent types of motion variability. At the top, a distinction
is made for clinically relevant time spans, ranging from seconds (intracycle)
to weeks (interfraction). At the bottom, the types of motion variability
that can be expected are summarized briefly. In bold, the specific
mechanism considered to account for the type of motion. Each of the latter
corresponds to a model parameter and should be characterized with its
own spatial and temporal parametrization. Note that this decomposition
is a simplification of reality, and reflects an explicit choice that remains to
be validated.

Over the course of a breathing cycle, the breathing muscles contract
causing the chest volume to increase, and air flows in as a consequence of
the disequilibrium in pressure. At the point of maximum inhalation, the
muscles suddenly relax and organs move back to their resting position due
to the elastic recoil. All of this occurs in a time-span of 2-10 s. And the
process is repeated, possibly at a di↵erent speed. Intracycle variability is
mainly accounted for by variations in phase. It encodes the patient-specific
breathing pattern that describes the complex deformations that occur
when passing from one phase to another. It also allows to represent some
variability, by producing changes in breath rate. The phase parameter
associated with it is periodic, implicitly enabling the representation of
hysteresis. The phase to phase deformations will be estimated from
a patient-specific 4D CT acquisition using deformable registration.

The breathing level can change irregularly from one cycle to another,
but it can also vary from a sequence of cycles to another due to change
in metabolism or state of mind. It will mainly cause the final end-inhale
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Figure 1.3: Illustration of the di↵erent aspects of breathing motion (bottom),
occurring at di↵erent time spans (top). For each, the mechanism considered in
the motion model is mentioned in bold.

position of the diaphragm to vary from one cycle to another and potentially
also the path followed during inhale and exhale. Intercycle, intrafraction
and interfraction variability might therefore require a modification of the
breathing pattern and breathing level, which is taken into account in the
motion model through variations in amplitude. A simple mechanism is
provided to allow for limited variation of the patient’s breathing pattern. A
proper value for the amplitude parameter should be selected by fitting the
motion model to timely motion data, for instance a cone-beam projection
sequence.

The baseline of motion has been known to vary as well. Systematic
shifts or progressive time trends between beams and/or fractions can
occur. The time trend could be attributed to gradual patient relaxation
throughout the treatment or to gravity action on compliant lung tissue
shortly after having assumed the supine position (Shirato et al., 2004). A
systematic shift could be caused by changes in muscle tone, stomach filling,
patient position or pose. These longer term intrafraction and interfraction
changes in mean position are accounted for through variations in baseline.
As baseline variations have been reported to occur randomly and in all
three dimensions, no specific prior about their spatial representation can be
deduced from the 4D CT acquisition. They should therefore be monitored
at periodic interval and on a patient-specific basis. This can be done for
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instance by updating the model using (4D) CBCT. We explored a method
providing an update based on selected cone-beam projections.

1.3.4 Model Parametrization

The actual parametrization of the motion plays an important role
because it is directly related to the number of parameters required
to characterize the model and determines the number of degrees of
freedom considered when estimating the model. Ideally, the chosen
parametrization is flexible enough to accurately represent a large variety
of breathing patterns and account for its variability. From the point of
view of optimization however, it is desirable to dispose of a compact and
e�cient representation. In the interest of robustness, explicit parametric
restrictions should limit the representable space to plausible deformations,
from a physical or physiological point of view.

B-splines were selected as the basis for the spatial and temporal
parametrization of the motion model. The main argument in favour of
B-splines is their flexibility to represent a large variety of deformations.
The scale and order of the spline model controls the smoothness of
the displacement field, providing a convenient framework for tuning the
complexity of the model to match the yet unknown physical reality.
B-splines are characterized by implicit smoothness and computational
e�ciency. They also allow an easy extension to higher dimensions, which
was exploited to enforce smoothness in all spatial dimensions and across
time.

Three specific aspects of the representation were investigated more
in depth, to increase the e�ciency of the B-spline parametrization of
breathing motion. The first concerns the conversion of B-spline coe�cients
to the encoded values, required frequently for image registration and
intensity interpolation. We contributed in developing a more e�cient
algorithm for performing these basic steps. A second aspect, concerns the
spatial representation of sliding motion, known to occur during respiration.
The use of uniform B-splines for representing the deformation field in areas
where the field changes discontinuously, is ine�cient because it would
require a high number of parameters, to obtain an acceptable accuracy.
We therefore explore alternative representations. The last aspect involves
exploiting the smoothness of the respiratory movement over time. A
suitable, temporal representation is developed, by enforcing the temporal
smoothness where the breathing motion allows for it.
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1.3.5 Conclusion

The approach chosen for modelling respiratory motion is based on
deformable registration and relies on patient-specific motion data. A
4D CT acquired for treatment planning is used as the basis of the model,
and provides the patient-specific anatomy and breathing pattern. Cone-
beam projections are used to complement the 4D CT data, to take into
account motion variability and provide intrafraction respiratory motion
estimation. The use of cone-beam projection data inherently involves 2D-
3D deformable registration techniques and several measures were taken
to facilitate this challenging motion estimation problem. Respiratory
motion is formalized; that is, motion is decomposed and di↵erent aspects of
respiration are accounted for with adapted spatial and temporal response.
B-splines were used for representing the model, due to their flexibility. The
degrees of freedom of the motion model are further reduced, by tuning the
B-spline representation of respiratory motion.

1.4 Outline of this work

In the following chapters we will provide our contributions to lung
motion modelling for radiotherapy. Chapters 2-6 were the subject of
submitted articles. These submissions have been included unmodified,
but were reformatted to match this work and allow cross-referencing. As
a consequence, each of these chapters can be considered independently.
While their topics are related, each addresses a specific issue and is
accompanied by its own introduction and conclusions. The downside of
this approach is that each of the chapters will introduce its own notation
and abbreviations, of which some may not be consistent across chapters.

The individual contributions were of course conceived to fulfil the
general objectives of this work. We therefore discuss their role in a larger
context and clarify the interaction between them in chapter 7. In addition
we discuss the limitations of the work and outline some potentially
interesting axes of research for the future.

The next chapter describes a contribution of technical nature con-
cerning B-spline interpolation. This computationally expensive process
involves the repetition of a large number of basic arithmetic operations.
An alternative, more e�cient algorithm is presented based on an approx-
imative calculation using a look-up table. Our main contribution to this
work, was to extend the technique to free-form deformations based on B-
splines. The resulting B-LUT transformations were used throughout this

29



Chapter 1: Introduction

work.
In chapter 3, the issue of sliding motion during respiration motion

is addressed, in the context of deformable registration of lung CT
images. The approach presented is a pragmatic one and consists in
extracting a mask, dividing the thorax where sliding occurs. Use of the
resulting motion masks, renders motion estimation and representation
more accurate and e�cient. The method for computing the mask was
designed to be practical and robust, which should allow its inclusion into
clinical practice.

Chapter 4 describes a method for spatio-temporal motion estimation
from respiratory-correlated imaging of the thorax. Our principal aim
is to improve the robustness of deformable registration for 4D CT,
by using a global problem formulation and pursuing a more restrictive
parametrization of the 4D transformation. A spatio-temporal deformation
model is developed using B-splines, capable of accurately representing
breathing motion, and improving robustness to artifacts of subsequent
registration.

Chapter 5 is the subject of intrafraction respiratory motion estimation
from cone-beam projections. To facilitate the problem, we introduce a
patient-specific model built from a previously acquired 4D CT acquisition.
The optimization process is rendered more stable, by extracting individual
respiratory cycles and motion estimation is performed for the subset of the
projections simultaneously. The resulting method comes down to a cycle-
by-cycle 3D+T motion estimation from a 2D+T projection sequence.

A limitation of the method described in chapter 5, concerns the
inability to correct for large baseline variations that may occur during
or between fractions. In response, chapter 6 describes a method for
obtaining a static comparison between a reference image of the patient
and selected cone-beam projections acquired in the treatment room. The
dimensionality of the 2D-3D registration problem is greatly reduced by
introducing physiological priors about the type of motion we aim at
estimating.
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Abstract We propose a fast alternative to B-splines in image processing based

on an approximate calculation using precomputed B-spline weights. During B-

spline indirect transformation, these weights are e�ciently retrieved in a nearest-

neighbour fashion from a look-up table, greatly reducing overall computation

time. Depending on the application, calculating a B-spline using a look-up table,

called B-LUT, will result in an exact or approximate B-spline calculation. In case

of the latter the obtained accuracy can be controlled by the user. The method

is applicable to a wide range of B-spline applications and has very low memory

requirements compared to other proposed accelerations. The performance of the

proposed B-LUTs was compared to conventional B-splines as implemented in

the popular ITK toolkit for the general case of image intensity interpolation.

Experiments illustrated that highly accurate B-spline approximation can be

obtained all while computation time is reduced with a factor of 5 to 6. The

B-LUT source code, compatible with the ITK toolkit, has been made freely

available
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Introduction

2.1 Introduction

B-splines are widely used in image processing for manipulating a
continuous version of a discrete image (Unser, 1999). Using B-splines,
an n-dimensional (nD) image (or signal) can be represented through a set
of nD coe�cients. Obtaining the image value at any continuous coordinate
involves a linear combination of coe�cients and basis function (B-spline)
weights. Thanks to its compact support, this involves only a finite and
usually small number of coe�cients.

Considering the case of B-spline interpolation, two processes can be
distinguished. The first one is referred to as the direct transformation
and consists in computing a set of B-spline coe�cients from the initial
image. Very e�cient digital filtering schemes have been proposed (Unser
et al., 1993a,b) to solve this issue. The second process, called indirect
transformation consists in combining the found coe�cients and weights for
a given position. This latter process remains relatively slow. For example,
performing a rotation of a three dimensional (3D) image with size 512 ⇥
512 ⇥ 200 (⇡ 50 million voxels) using cubic B-spline interpolation takes
about 200s. The computation of coe�cients (the direct transformation)
only takes about 10s (both performed on a 2GHz PC, using the ITK toolkit
(Ibanez et al., 2005), see section 2.3).

To our knowledge, few studies directly address the indirect computa-
tional time issue. Acceleration of processes which include B-spline inter-
polation, such as deformable image registration, are generally addressed
in a parallel framework with hardware based methods: with clusters of
workstations (Inoa et al., 2005,), with multi-processors shared-memory
systems (Aylward et al., 2007), or with graphical processing units or
GPU’s (Sharp et al., 2007; Modat et al., 2009). Some authors (Meijering
et al., 2001) mentioned the use of precomputed weights, but we do not
find any publication describing such work.

The computational cost of the indirect transformation is caused by
the high number of operations performed for each interpolated value. For
simplicity we will assume in the following that the same spline degree was
chosen along all dimensions. Observations can however easily be extended
to the general case.

During the first step of the indirect transformation we compute the
tensor products of the B-spline basis function values according to the
distance between the current position and each contributing control point
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in the support region (Equation 2.1).

Step 1 �

r
i (x) =

dY

j

�r(pij � xj) . (2.1)

�r is the B-spline basis function of degree r, d is the image dimension,
i is the index of a control point with coordinates pij , x is the position at
which we want to evaluate the function and xj are its coordinates. For a
given position x, (r + 1)d di↵erent tensor products are computed, one for
each control point with non-zero weight at x.

The second step required to compute the interpolated value v(x)
involves the linear combination of the tensor products (�r

i ) with the
corresponding coe�cients ci, previously computed during the direct
transformation (Equation 2.2). In the following the term weights will refer
exclusively to the B-spline tensor products �

r
i .

Step 2 v(x) =

(r+1)

d

X

i

ci �
r
i (x) . (2.2)

Evaluating the basis function �r(e) involves the computation of a
polynomial of degree r. The initial definition of the B-spline functions
is obtained recursively by convolving �0 (n + 1) times with itself. An
analytic expression can also be obtained by applying the recursive Cox-de
Boor formula (Equation 2.3).

�

r(e) = uM with

(
u =

⇥
er er�1 ... e 1

⇤

M matrix of size k ⇥ k with k = r + 1
(2.3)

M = [Mij ] =

2

4 1

(k � 1)!
Ck�1,i

k�1X

m=j

(k � (m + 1))i (�1)m�j Ck,m�j

3

5

(2.4)

Ci,j =
i!

j!(i � j)!
= binomial coe�cient (2.5)

Step 1 requires about 2 ⇥ r operations (additions or multiplications)
for computing one �r, thus 2 ⇥ r⇥ d for the tensor product �r. There are
(r + 1)d di↵erent weights. This leads to a total complexity of O(r ⇥ d ⇥
(r + 1)d) operations for step 1, while only O((r + 1)d) for step 2.
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If the interpolation is performed with a regular sampling rate which
is a multiple of the control point spacing, the required weights will
reoccur across the image region due to symmetry. In this case they
can be precomputed, stored and reused, allowing to avoid most of the
computational part of step 1, without any loss of accuracy. However, as
generally this is not the case (e.g. when performing an image rotation or
during image warping), the exact weights cannot be precomputed.

We propose to extend the range of applications for which splines can
be e�ciently calculated using precomputed weights. For applications
where no exact calculation can be achieved the approximation error is
controlled by oversampling the control point grid. Through e�cient design
of the weights look-up table (LUT), memory requirements are kept to a
minimum further extending the use of the method to large scale problems.
As we will show in section 2.4, the proposed B-LUT framework can
obtain high interpolation accuracy while o↵ering considerable reduction
in computation time.

2.2 Method

The method consists in approximating the tensor product (Equa-
tion 2.1) by a precomputed one. At interpolation time, step 1 is replaced
by finding the closest precomputed weights in the LUT. Step 2 can then
be applied in a conventional way by looping over the coe�cients and their
corresponding weights.

2.2.1 LUT Computation

The computation of the weights is made only once before the interpo-
lation. By choosing the (over)sampling rate of the precomputed weights
with respect to the control point grid, it is possible to control the trade-
o↵ between LUT size and approximation accuracy. Note that the whole
image region does not need to be sampled. Since we are assuming uniform
B-splines, it su�ces to sample one n-dimensional B-spline support.

Let �j 2 N be the LUT sampling rate for the dimension j. The size
of the LUT is the size of the B-spline support, (r + 1)d, multiplied by the

sampling rate in each dimension
Qd

j �j . The overall computation time of
interpolating an entire image once can only be reduced if the number of
weights to precompute is less than (r + 1)d times the number of pixels to
interpolate. In practice however, this is often the case. For example, to
interpolate a 2563 3D image having about 1.6 ⇥ 107 pixels, the number
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of weights to precompute for a sampling rate equal to 20 is 5.12 ⇥ 105

(203 ⇥ (3+1)3)), in comparison to 1.024⇥109 (16⇥106 ⇥ (3+1)3) weights
in total. Assuming single precision, the LUT memory size requirement is
4 bytes ⇥ (r + 1)d ⇥

Qd
j �j , which leads to 2MB in this case.

2.2.2 LUT Look-Up

After computing the weights, step 1 in Equation 2.1 is replaced by
finding the optimal precomputed weight in the LUT. The interpolation
position x is then transformed to its corresponding position x0 relative to
the sampled B-spline support region.

For e�ciency, the LUT is indexed such that a single rounding operation,
denoted bae, on each of the coordinates of x0 leads to the index in the LUT
l of the first element of the list of all (r+1)d weights corresponding to the
current position, see Equation 2.6. This implies that for each evaluation
position a single look-up replaces step 1, providing all the weights required
for the calculation in step 2 (Equation 2.2).

l =
dX

j=1

 
kj

jY

i

�i�1

!
with kj = bx0

je and �
0

= 1 (2.6)

2.3 Design Considerations

We implemented the method inside the Insight Segmentation and
Registration Toolkit (ITK 1 (Ibanez et al., 2005)). This toolkit is
widely used in medical image analysis and uses the notion of filters
to represent a process chain. A new filter was created named
BSplineInterpolateImageFunctionWithLUT which inherits from the
original BSplineInterpolateImageFunction. This way, users only have
to change three lines inside their usual code to use B-LUTs instead of B-
splines. The code and procedure are available on the following web page

http://www.creatis.insa-lyon.fr/rio/b-lut

under the CeCILL open source license 2.

1. http://www.itk.org

2. http://www.cecill.info/index.en.html
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Experiments

2.4 Experiments

In this work the performance of the proposed B-LUTs is assessed in the
context of image intensity interpolation. Similar results can be expected
in other application areas (see Section 2.5 for an example on deformable
image registration). In addition to a quantitative accuracy evaluation, we
provide an analysis of the time gain over conventional B-splines. The latter
should be considered as an example as the obtained gain was found to be
highly dependent on the computer architecture.

2.4.1 B-LUT Interpolation Accuracy

In order to illustrate the inherent loss of accuracy caused by the
use of approximated weights, we performed the following tests, inspired
from (Meijering et al., 2001). A 3D image was rotated several times
around an arbitrary axis with a series of 16 di↵erent angles 3, resulting in a
complete rotation of 360�. This procedure provides us with a gold standard
to compare the rotated image with: the original image. Moreover, the
image is used at its intrinsic resolution and the use of di↵erent rotation
angles allows to avoid bias due to precomputed weight positions.

The test images were two CT images, the first of the head and the
second of the lungs and heart. Their respective sizes were 512 ⇥ 512 ⇥
222 and 512 ⇥ 512 ⇥ 403, and their voxel sizes 0.5 ⇥ 0.5 ⇥ 1 and 0.4 ⇥
0.4 ⇥ 0.3. The used images therefore contained about 58 and 105 million
voxels respectively. Experiments were performed for B-spline degrees from
linear (r=1) to quintic (r=5), including the popular cubic B-splines (r=3).
For each degree, we tested di↵erent LUT sampling values (� equal to 1,
2, 4, 5, 10, 20 and 50 for each image dimension). The rotated image
when using B-LUT interpolation was compared to the one obtained with
B-spline interpolation and to the original reference image. Di↵erences
were quantified by computing the Root Mean Squared Error (RMSE) and
the maximum di↵erence (MAX). Pixels that go out of the image support
during the rotation are discarded and thus not counted into the RMSE
final values, by using a binary image mask.

Table 2.1 summarizes the results for the consecutive rotation
experiment described above. In the first two tables we assess the accuracy
of the B-LUT interpolation with respect to the conventional B-spline
method, while in the following two tables a comparison with the original

3. Angles were 0.7, 3.2, 6.5, 9.3, 12.1, 15.2, 18.4, 21.3, 23.7, 26.6, 29.8, 32.9, 35.7,
38.5, 41.8 an 44.3 degrees.
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Figure 2.1: The two images used for the tests : a CT image of a head (top)
and a CT image of heart/thorax (bottom).

reference image is performed. Figure 2.2 displays RMSE between the two
methods (the RMSE axis is logarithmic) for the first image (similar results
were obtained for the second). The figure 2.3 illustrates the resulting
images with the first test image.

A sampling equal to � means that the distance between the position
used to compute the approximated weight and the position of the real
weight is at maximum 1

2� (half the distance between two samples). In order
to illustrate the intrinsic error of the method, we compute RMSE between
an image and the same image displaced by such maximum distance. The
figure 2.5 displays the values for cubic B-splines computed with a 2D slice.

2.4.2 B-LUT Interpolation E�ciency

We performed time measurements for both B-LUT and B-spline
interpolation. Tests were performed on the previously described 3D
images for a rotation transformation. We observed computation time
variations when successive interpolations were performed due to processor
cache e↵ects. Times were thus measured for ten di↵erent transformations
and averaged. The figure 2.6 displays the mean computation time of
image 1 test, for interpolations with di↵erent B-spline degrees (from
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Table 2.1: (Top) RMSE and maximum error (MAX) between fast B-LUT
and conventional B-spline. (Bottom) RMSE between reference image without
rotation and images rotated by 360� with sampled (� from 1 to 50) and
conventional (denoted by ’Ref’) B-spline interpolations.

linear to quintic), for conventional B-spline interpolation and fast B-LUT
interpolation with two sampling rates (� = 10 and � = 20). We also
indicate the time due to coe�cient computation (boxes at the bottom).
The machine was an Intel Core 2 Duo 2.0 GHz. Figure 2.7 illustrates
the loss of e�ciency when increasing the LUT size for cubic B-LUT
interpolation.

2.5 Discussion

Figure 2.2 and table 2.1 show that, with a sampling rate � greater than
10, the di↵erence between images interpolated with conventional B-splines
and B-LUT is very low (visually they are indistinguishable in all tests).
The mean of absolute di↵erences was found to be less than 3 Hounsfield
units for cubic B-splines with � = 10 or 2 with � = 20. For lower sampling
rates, the approximation became insu�cient. For example, cubic B-LUT
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Figure 2.2: RMSE between an image rotated with fast B-LUT and image
rotated with corresponding conventional B-splines, for various degrees and
sampling values. The RMSE axis is logarithmic scaled.

with � = 5 performed worse than conventional quadratic B-spline. We
also observed that the di↵erences increased with spline degree.

Figure 2.6 illustrates the important time gain that can be obtained
using B-LUTs. For equivalent B-spline degrees the time is reduced by
a factor between 5 (quadratic) and 6 (quintic). It can be seen that
quintic B-LUT interpolation was more than twice as fast than conventional
cubic B-spline interpolation. For linear interpolation, computational time
was greater (factor 1.15) than conventional linear interpolation and we
thus do not recommend to use the LUT method for a degree lower than
2. However, it should be mentioned that identical tests performed on
a di↵erent computer architecture (AMD Athlon(tm) 64bits 2GHz) gave
di↵erent results. For degrees 2 up to 5 similar though slightly lower speed-
up factors between 4 to 5 were found. For linear interpolation a speed-up
greater than 3 was in this case also observed. Such di↵erences could be
due to the processor cache size (2MB for Intel and 512kB for AMD), and
specific handling of specific arithmetic operations. Finally we also draw
the reader’s attention to the time required for coe�cients computation
(direct transformation process using recursive filters) which is negligible
compared to the time needed by the interpolation.
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RMSE = 90

Nearest neighbor RMSE = 123.6

Linear

Cubic BSpline RMSE = 17.3

Cubic BLUT RMSE = 17.9

Reference

5 sec.

15 sec.

193 sec.

36 sec.

Figure 2.3: The images show the results of the application of 16 successive
rotations around an arbitrary axis (360�), with di↵erent interpolation methods.
Numbers are RMSE errors and computational time of one rotation in seconds
(PC 2GHz). Initial image is 512⇥ 512⇥ 222 pixels.

The influence of the LUT size on the computational time, controlled by
the sampling factor � is illustrated in Figure 2.7. For � less than or equal
to 20, the time is almost unchanged. For � = 10 a light speed-up compared
to lower � values was observed, but this is probably due to processor cache
e↵ect. Raising � to 100 increased the computational time by 30 %, but
the whole computational time remains largely lower than the conventional
implementation.

An important parameter when choosing an adequate value for the
sampling factor � is the relative density of pixels to be interpolated
with respect to the B-spline control point grid dr. In the presented
experiments, dr was equal to 1. When there are fewer control points
than interpolated values (dr > 1), the sampling rate should be increased
accordingly to maintain the same level of accuracy. The results presented
here should thus be interpreted as guidelines for choosing the relative
sampling factor �r = �

dr
. More explicitly, one can expect to obtain

an accuracy corresponding to the measurements presented in Figure 2.2
for sampling factor �r, when choosing the sampling factor � such that
� = dr�r. The computational e�ciency shown in Figure 2.7, will depend
however on the actual LUT size, and so on the choice of �.

The general application of image intensity interpolation was addressed
in this work. The proposed B-LUT framework is however applicable in
all areas where B-splines are used. A particular example is the case
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Figure 2.4: The images focus on a small area having important grey value
gradients (bone, soft tissues, air) in order to compare the reference image to
the interpolated ones with linear, cubic B-splines and cubic B-LUT (with 20 as
sample rate) interpolations.

of deformable image registration using free form deformations (Rueckert
et al., 1999) (FFD) where B-splines are used to represent the sought spatial
transform. The optimization of the transform is usually done iteratively,
requiring one image to be repeatedly transformed in order to evaluate
the current solution. During each iteration the splines representing the
transform will be evaluated at the same positions (the voxel positions
of the reference image). Their corresponding tensor products can be
computed once and reused in further iterations, providing considerable
acceleration at run-time. Such an approach has been implemented in the
optimized registration framework of the ITK toolkit (Aylward et al., 2007),
available in the ITK Review section. The B-spline weights corresponding
to all considered reference image voxels are precomputed and stored.
The memory requirements of this approach (about (r + 1)d times the
image memory size in double precision) become very quickly prohibitive,
rendering it impossible to run the method for reasonably sized images.
To remedy this, we implemented a B-LUT FFD, in which the B-spline
spatial transform was replaced by a B-LUT spatial transform. Contrary
to the previous approach, the B-LUT deformable registration, requires
only one n-dimensional B-spline support region to be sampled and stored.
By careful choice of the sampling factor, the B-LUT FFD yields an exact
B-spline representation.
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Figure 2.5: RMSE between an image and a translation of the maximum amount
of error ( 1

2� ) for cubic B-spline interpolation.

We compared the optimized ITK B-spline FFD registration method to
the B-LUT FFD registration method. Note however that this comparison
does not just assess the impact of caching all the B-spline weights with
respect to the use of a compact LUT. This because several acceleration
mechanisms are included in the optimized ITK B-spline FFD, also a↵ecting
the calculation of the Jacobian of the transform and the derivative of the
cost function. These mechanisms were di�cult and even in some cases
impossible to reproduce in the case of the B-LUT FFD.

We ran both registration methods on image pairs which have 1283

voxels. We placed 10 control points along each dimension (7 control
points inside the image region placed every 20 voxels, 3 control points for
the required border of the cubic splines), making a total of 1000 control
points and parameters to optimize. In case of the B-LUT FFD, we set the
sampling factor to 20 along each dimension, obtaining an exact B-spline
representation. We ran both methods for 50 iterations on a single thread
and recorded the CPU occupation time and memory consumption. In case
of the B-spline FFD the method required 30 min and occupied more than
2.7 GB, while conventional B-spline FFD, without optimization takes more
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Figure 2.6: Time (in seconds) for di↵erent B-spline interpolations: from linear
(r = 1) to quintic (r = 5) degree, with conventional method and fast methods
(� = 10 and � = 20).

FFD Methods Computation time Memory requirement
Conv. B-Spline 73 min 578 MB

Opt. B-Spline “Opt” 30 min 2721 MB
B-LUT 17 min 597 MB

Table 2.2: Computation time and memory requirement for FFD registration
with conventional B-spline, optimized B-spline and the proposed B-LUT method.

than twice the time and about 578MB. The B-LUT FFD finished in only
17 min and requiring 597MB, only 3% more memory (see table 2.2). Tests
on 2563 image pairs could not be performed as the B-spline FFD memory
requirements exceeded the 8GB of RAM on the host machine. The B-
LUT FFD reported a memory consumption below 2GB. As mentioned
before, these measurements should be interpreted as indicators of relative
performance as the obtained performance may di↵er on other architectures
or for di↵erent parameters.

2.6 Conclusion

We proposed a method to accelerate B-spline interpolation using look-
up tables of precomputed B-spline tensor products. Depending on the
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Figure 2.7: Computation time for one rotation of the 3D test image with cubic
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the LUT for the di↵erent sampling � are indicated in MB.

application, the resulting interpolation will be exact or approximate in
which case the accuracy of the B-spline approximation is fully controllable
by the user, by varying the sampling factor �. We obtained speed-up
factors between 5 to 6 compared to conventional method from quadratic
to quintic interpolation, with a very low error. Attention should be given
to the relative density of interpolated values with respect to the density of
control points when choosing the sampling factor. For applications where
the density of the samples is comparable to the density of control points, we
recommend using � = 20, o↵ering a good compromise. For other relative
densities, � should be changed accordingly to maintain the same accuracy
of approximation. In the future, this method could be used together with
hardware-based acceleration with GPU (Sharp et al., 2007) to speed up
the processing of time critical applications even more.
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Abstract There is an increasing demand for accurate deformable registration in

radiation therapy. These algorithms generally rely on the assumption that the

sought spatial transformation is homogeneously smooth, which can contradict

the physiology of the studied motion. An example is the sliding motion of the

lung with respect to the chest wall during breathing. We propose an original

method for automatically dividing the thorax into moving and less-moving

regions. The method is based on the level set framework, used to track the

evolution of a moving interface, constrained by previously extracted anatomical

features and regularized by a strong geometric prior. We show that the obtained

motion masks can facilitate deformable registration by providing an interface

where sliding motion occurs. Inner and outer thoracic structures are registered

separately using free-form deformations based on B-splines and compared to the

result when considering the entire thorax simultaneously. By looking at the

matching accuracy of a large, well-distributed set of landmarks in the lungs,

we found that the mean target registration error improved for all patients and

that the improvement was statistically significant for five out of six patients. By

preserving the sliding motion, the complexity of the spatial transformation can

be reduced considerably while maintaining matching accuracy.
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Introduction

3.1 Introduction

In radiation therapy, deformable image registration of computed
tomography (CT) images of the thorax has been used extensively for
a variety of tasks (Sarrut, 2006; Kessler, 2006), including automatic
contour propagation (Lu et al., 2006), four dimensional (4D) treatment
planning (Keall, 2004), quantification of residual motion in breathhold
CT scans (Sarrut et al., 2005), 4D dose estimation (Guerrero et al., 2005),
dynamic ventilation imaging (Guerrero et al., 2006), construction of a mid-
position reference planning image (Wolthaus et al., 2008), quantification
of motion and hysteresis (Boldea et al., 2008), building respiratory motion
models (McClelland et al., 2006) and motion-compensated cone-beam
reconstruction (Rit et al., 2009).

Medical image registration aims at finding a suitable spatial
transformation such that a transformed target image becomes similar to
reference image. Deformable image registration is ill-posed making a direct
approach impossible (Modersitzki, 2004). Explicit parametric restrictions
with respect to the spatial transformation and suitable regularization of the
objective function should encode the physical understanding of the desired
deformation properties and drive the optimization to solutions with such
characteristics. In particular, the assumption of spatial smoothness of the
transformation is widely utilized to estimate motion induced deformations.
Depending on the registration method, this is accomplished by expressing
the transformation with smooth basis functions, by building in smoothness
constraints or including regularization in the optimization framework
favouring smooth solutions. While required for solving the inverse
problem, these mechanisms can contradict the physiology of the organ
motion. A particular example is sliding motion, which can be observed
in the case of respiratory induced lung or liver motion. Homogeneous
smoothing of the transformation will in this case blur the estimated
transformation across the sliding interface, resulting in locally reduced
registration accuracy (Wu et al., 2008; Schmidt-Richberg et al., 2009).

The issue of sliding motion in deformable image registration has been
addressed in a number of ways. Recently, preliminary but promising
results have been reported for specifically designed regularization schemes.
Wolthaus et al. (2008) used tissue dependent filtering for the deformation
field, using the density measure from the CT image to di↵erentiate
between regions. Motion estimation improved for the lung region, but
was still prone to error near the diaphragm and upper abdomen where
density is similar to that of the thoracic wall. In (Ruan et al., 2008)
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a class of discontinuity preserving regularization schemes was described.
Unfortunately these may preserve other undesirable flow singularities. In
response, a robust energy functional was proposed (Ruan et al., 2009) to
discriminantly preserve large shear. Similarly, Chun et al. (2009) modified
an invertibility penalty of the cranio-caudal deformation component to
encourage large sliding along that direction.

Alternatively, sliding was addressed by masking the background, based
on segmentations of the lung (Werner et al., 2009b) or liver (von Siebenthal
et al., 2007), to prevent it from a↵ecting the registration of the studied
organ. Rietzel and Chen (2006) described an approach in which the thorax
is manually segmented, into moving (lungs, mediastinum and abdomen)
and less-moving (the remainder) subregions, and each region is registered
separately. Wu et al. (2008) extended the method, introducing a boundary
matching criterion that helps eliminate gaps in the deformation field
between the separately registered subregions. Regions can be processed
simultaneously following Schmidt-Richberg et al. (2009), who modified a
di↵usive regularization by restricting smoothing of the deformation field
to the normal direction with respect to a given segmentation. Their
method allows for discontinuities in the motion field in tangential direction
(required to preserve sliding motion at the interface), while maintaining
continuity in the normal direction (eliminating gaps). Joint segmentation
and registration methods have been proposed in other areas (Yezzi et al.,
2003; Droske and Rumpf, 2007), but the underlying assumption that
motion discontinuity coincides with intensity discontinuity is a limiting
factor.

Finally, the issue of sliding motion has been addressed by finite
element (Werner et al., 2009a; Al-Mayah et al., 2009) and surface based
methods (von Berg et al., 2007; Klinder et al., 2008). These methods
allow to explicitly or implicitly incorporate suitable boundary conditions.
However, internal information like the bronchial or vessel tree is greatly
simplified or discarded which might a↵ect matching accuracy of those
structures.

We propose a practical method for automatically dividing the thorax
into regions with homologous, respiratory-induced motion. Our main
objective is to obtain an accurate interface where strong sliding motion
occurs, and facilitate subsequent deformable registration. The obtained
motion mask, is very similar to the manual segmentations used in (Wu
et al., 2008). Similarly, the found interface is subanatomical, i.e. does not
necessarily coincide with visible organ boundaries, making validation by
comparison with manual delineations by experts di�cult. Alternatively,
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the suitability of the obtained masks is assessed by applying them to
deformable registration of the lungs. Registration using the motion mask
is compared to conventional registration of the end-exhalation and end-
inhalation frames of 4D CT images of six lung cancer patients. The
performance is evaluated by looking at the registration error of a set of
100 landmarks per image pair.

3.2 Method

3.2.1 Motion Mask Extraction

Anatomically (Werner et al., 2009a), each lung is located within a
pleural sac which is made up of two membranes called the pleurae. The
outer parietal pleura is adherent to the internal surface of the thoracic
cavity, the diaphragm, and the mediastinum. The inner visceral pleura
covers the lung and is adherent to its surface. Both inner and outer pleura
join at the root of the lung which is the point of entry of bronchi, vessels,
and nerves into the lung. The space enclosed between the pleurae is called
the pleural cavity, which is filled with liquid.

During lung ventilation the breathing muscles–mainly the diaphragm
and outer intercostal muscles–contract, which forces the thoracic cage
and subsequently the lungs to expand. As the lungs expand inside the
thorax, sliding can occur between the pleurae, causing a discontinuity in
the motion. At the lung-to-mediastinum interface, sliding is limited due
to the entry of the vessels, bronchi and nerves. These, along with the
heart and other structures in the mediastinum tend to move with the lung,
though usually with reduced amplitude. At the interface of the lungs with
the chest wall, the pleurae are free to slide with respect to each other.
During inhalation the diaphragm descends, forcing the abdomen inferiorly
and anteriorly. The inferior, posterior part of the lungs near the diaphragm
tends to exhibit the largest sliding. At the anterior side of the lung-to-
chest interface, sliding tends to be smaller as the diaphragm is attached to
the sternum limiting the extent of motion (Gray, 1918, chapter IV.6.c).

Taking into account these observations, the following considerations
apply regarding the sought motion mask. To preserve sliding, an interface
should separate the lung from the chest wall. At the medial lung interface,
as there is a continuous and smooth transition of motion, the mediastinum
can be considered as part of the same region as the lungs–as proposed
by Rietzel and Chen (2006). Contrary to the manual segmentations as
depicted in Wu et al. (2008, Figure 1), we choose to include the whole
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Figure 3.1: Overview of the proposed method for extracting the motion mask.
Velocity maps are computed from the initial CT image by reducing them to
binary images containing only the relevant features. The obtained maps are
combined (+) and used to constrain (�) the evolving interface, in consecutive
level set propagation steps.

of the abdomen (including the abdomen inferior to the sternum). The
correlation of the motion of this region with the diaphragm and lower
lungs justifies this choice. Another, more practical, argument lies in the
fact that it renders the construction more reproducible.

The core of the method is based on the level set framework (Osher
and Sethian, 1988). We exploit the intrinsic interface smoothing which
allows to include geometric priors to guide the front propagation in regions
with lack of information. The evolution of the interface is fully described
by a partial di↵erential equation in which two terms appear. The first
corresponds to a propagation force, in our case based on a velocity map
representing information on the boundaries of the object to segment. The
other term corresponds to a local interface smoothing force. We can
thus divide the method for obtaining the motion mask into two parts
(figure 3.1). First, velocity maps are computed by reducing the original
CT image to binary label images containing only the relevant features. The
features extracted are the bony anatomy, the patient body, and the lungs.
Next, the velocity maps are combined to guide the evolving interface in
consecutive level set propagation steps. The algorithm is initialized with
the signed distance function of a small ellipsoid, centered with respect to
the patient body. By growing this initial interface, the abdomen is filled.
The result is propagated further to fill the entire thoracic cavity. The
found interface is then contracted to conform to the outer shape of the
lungs in the upper thorax, and continue smoothly in the abdomen.
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3.2.1.1 Velocity map computation

The velocity maps are obtained from the input image by extracting fea-
tures through consecutive thresholding, region growing and mathematical
morphology. The retained features are the outer patient body contour, the
bony anatomy and the lungs. In the following we will detail the procedure
followed for computing the velocity maps.

The patient body The image is binarized by thresholding at -300
Hounsfield units (HU), and the regions with lower intensity values are
labelled using three dimensional (3D) connected component labelling,
using a 26-voxel connectivity. The air surrounding the patient is the
principal component and is removed. The remaining labels are binarized
and connected component labelling will now yield the patient body as a
principal label (figure 3.2, the dark grey mask).

The bony anatomy First, edge preserving smoothing is performed
using anisotropic di↵usion (Perona and Malik, 1990). The largest
component, after binarizing with a lower threshold of 100 HU, corresponds
to the connected bony structure (i.e. column, vertebrae, ribs and sternum).
In some cases, parts of the ribs or sternum may be incomplete, due
to locally reduced bone density. Lowering the initial threshold however
will tend to include dense tissue in the liver or mediastinum, which is
undesirable. Alternatively, the previously found label image is used as
the seed image in a subsequent neighbourhood-controlled region growing
step. The region growing is evolved as long as the visited voxel and its
neighbourhood (composed of 26 voxels) all lie above the threshold of 20
HU. This approach facilitates the inclusion of additional lower density bony
anatomy without leaking to the thoracic cavity. The final feature image is
computed as the union of the initial connected component and the result
of the region growing (figure 3.2, the light grey mask).

The lungs The lung segmentation method adopted was largely inspired
by Hu et al. (2001) and the conventional segmentation method described
by van Rikxoort et al. (2009, Section II.A.). First, all air in the
intestine, stomach and surrounding the patient is removed by modifying
their intensity to 0 HU. These regions are identified by thresholding
at -300 HU and removing the second largest label, corresponding to
the lungs, bronchi and trachea. Seed points in the trachea are then
detected by identifying regions with intensity below -950 HU in the top
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Figure 3.2: Example of an input CT image of the thorax and the corresponding
extracted features: the lungs (white), bony anatomy (light grey) and patient
body (dark grey).

5 axial slices of the scan. The trachea and large airways are extracted
using explosion-controlled region growing (Mori et al., 1996). The lung
region is segmented by thresholding and connected component labelling.
The threshold is obtained automatically by maximizing the separability
between the considered regions (Otsu, 1979). After the lung regions have
been found, the trachea and bronchi are removed from the result. Finally,
3D hole filling and morphological closing using a 4 mm kernel radius is
applied to include vessels and other high-density structures that were
excluded by the threshold (figure 3.2, the white mask).

3.2.1.2 Level set propagation

Level sets, originally proposed by Osher and Sethian (1988), correspond
to a numerical method for tracking the evolution of an interface. Let ⌦
be a bounded open subset of Rd. In the level set formalism, the evolving
interface � ⇢ Rd at time ⌧ is embedded as the zero level of a Lipschitz-
continuous level set function ' : Rd 7! R, that satisfies:

8
<

:

'(x, ⌧) < 0 for x 2 ⌦
in

'(x, ⌧) > 0 for x /2 ⌦
in

'(x, ⌧) = 0 for x 2 � .
(3.1)

where ⌦
in

is a region in ⌦ bounded by � = @⌦
in

. In this work, the
evolution of the level set is governed by the following expression (Osher
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and Fedkiw, 2002):

@'(x, ⌧)

@⌧
= ↵ v(x)kr'(x, ⌧)k + � v(x)kr'(x, ⌧)k . (3.2)

In (3.2),  is the curvature calculated on the zero-level, v is a scalar velocity
map derived from the image, and ↵ and � are scalar constants introduced
to balance the relative influence of each of the terms. The first term
provides a propagation force, favouring an expansion or contraction of the
contour depending on the sign of ↵. The second term will penalize high
curvature and serves as a spatial regularization limiting the complexity of
the shape of the interface.

Note that initially, level set methods were introduced to model the front
propagation of an interface (Osher and Sethian, 1988). Afterwards, they
were applied to medical image segmentation to automatically detect the
boundaries of structures of interest (Malladi et al., 1995; Caselles et al.,
1997)–in this case obtained as the steady state solution @'

@t = 0. We
propose to take benefit of both uses. The level set framework is used as a
high-level tool to propagate a 3D interface with a global regularization of
its shape. The propagation of the interface is controlled through binary
velocity maps v, defining two types of regions in ⌦. One where the interface
evolves with isotropic speed (v(x) = 1), and one where the level set is
confined to its current state (v(x) = 0). For each di↵erent level set
propagation step as discussed next, we will define a stopping criterion
directly linked to anatomical structures.

Following the physiological considerations made in section 3.2, the
sought region ⌦

in

extends beyond the field of view at the inferior end
of the image, making ⌦ unbounded with respect to the original image size.
To remedy this, all velocity maps are mirrored along the cranio-caudal
axis. From the resulting mask, only the part covering the original region
is retained. A strong geometric prior was established during the entire
procedure by means of a high curvature scaling: � = 30.

Filling the abdomen The goal of this step is to include the abdominal
region and reach the anterior patient-to-air interface. The initial contour
is taken from a small ellipsoid (Figure 3.3a) centered at the first image
intensity moment of the binary patient mask, i.e. the image in which
the patient body has intensity 1 and the remainder 0. The level set is
initialized with the signed distance map of the ellipsoid and let to evolve
with v(x) = 1, except at the bony anatomy where v(x) = 0. A positive
propagation (↵ = 1) insures a growing interface. The evolution of the

65



Chapter 3: A Motion Mask for Registration of the Lungs

contour is monitored by verifying every 50 iterations the sign of a single
detection point placed 10 mm anterior to the most inferior patient-to-air
interface and centered in front of the initial ellipsoid. A typical result is
shown in figure 3.3b.

Filling the entire thoracic cavity Next, we wish to cover the entire
thoracic cavity including the lungs and mediastinum. To this end, the
previous result is propagated further (↵ = 1) but the underlying velocity
field is altered so that in addition to the bony anatomy, everything outside
the patient body yields v(x) = 0. The part of the interface which has
evolved outside the patient body is now confined to its current position.
The remainder of the level set is let to propagate with unit velocity inside
the thoracic cavity while the coverage of the extracted lungs is monitored
every 50 iterations. When the contour covers at least 95% of the lungs, the
algorithm is terminated (Figure 3.3c) and the resulting mask is padded to
include the full lung region. The execution is terminated at 95% rather
than a 100% for reasons of e�ciency, the upper part of the lungs requiring
a lot of iterations while modifying very little the aspect of the contour.

Contracting to the lungs Finally, we wish to refine the previous
solution to obtain a smooth contour that assumes the outer shape of
the lungs, but includes the mediastinum. Only the curvature term is
retained during this phase (� = 30,↵ = 0). Note that in practice this
will lead to contraction as curvature is integrated along contour length.
The velocity map employed is a unit field everywhere besides outside the
body, at the bony anatomy and in the lungs. The algorithm is run for
500 iterations, which was empirically found to be su�cient to smoothen
the mask (figure 3.3d). In figure 3.4a the final mask is depicted in overlay
with the edges of the full, mirrored velocity maps used during the level set
propagation steps, while figure 3.4b shows two axial views (one halfway the
lungs, and one corresponding to the inferior slice of the image). Figure 3.4c
shows an anterior and posterior view of a 3D surface rendering of the
motion mask.

3.2.2 Deformable Registration

The suitability of the obtained masks is verified by applying them
to deformable registration of the lungs. The results are compared
to those obtained using the same registration parameters but without
making use of the motion mask. The motion field is represented by
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(a) (b) (c) (d)

Figure 3.3: Illustration of the di↵erent level set propagation steps for obtaining
the lung motion mask. Shown in a sagittal plane is the current mask (white) and
the edges of the extracted features (black): (a) the ellipsoid used to initialize
the level set, (b) the contour after reaching the detection point at the anterior
patient-to-air interface (c) the contour after having covered 95% of the lung
region, (d) the obtained motion mask.

(a) (b) (c)

Figure 3.4: The final motion mask: (a) a coronal view of the final mask shown
on the edges of the used mirrored version of the velocity maps; (b) two axial
views of the mask: the top one taken halfway the lungs and the bottom one
taken from the most inferior plane of the image; (c) 3D surface renderings of the
anterior (top) and posterior (bottom) view of the motion mask.
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a free-form deformation based on B-splines (Rueckert et al., 1999), for
which we use a fast, low-memory B-LUT implementation (Sarrut and
Vandemeulebroucke, 2010). A multiresolution approach with three levels
is applied for the images as well as the B-spline control point grid, the
final level having a 2 mm and 32 mm spacing respectively. Similarity
is measured through the sum of squared di↵erences and optimized by the
limited memory BFGS algorithm (Byrd et al., 1995) starting from an initial
zero deformation vector field.

3.2.2.1 Registration with motion mask

In (Rietzel and Chen, 2006), the mask corresponding to the reference
image was used by excluding voxels outside the considered region from
the calculation of the similarity measure. Wu et al. (2008) proposed a
modified procedure to eliminate potential gaps in the motion field between
the separately processed subregions. A similar procedure was adopted
here for performing registrations with the help of a motion mask. First,
the intensities in the reference image outside the considered region in the
mask are set to -1200 HU. The target image is modified similarly, using
the corresponding mask. A mask is still used to exclude voxels from the
similarity measure. This time however, a slightly larger (morphologically
dilated) version of the reference mask is used, so that a thin border of
voxels of about 10 mm with modified intensity is included in the similarity
measure. The contribution in the similarity measure of the subregion with
modified intensity–and with value otherwise absent in the original image–
penalizes a potential mismatch between the region borders in reference and
target image, but does not constrain the sliding motion. Note however,
that masks on both reference and target image are now required. As
a consequence their construction should be consistent with respect to
anatomical structures.

3.2.2.2 Validation based on anatomical landmarks

The registration performance for the lungs is evaluated by assessing
the matching accuracy of a 100 landmarks per image pair. The landmarks
were identified using a semi-automatic software tool (Murphy et al., 2008).
For each end-exhalation frame, a well-distributed set of 100 landmarks
in the lungs was detected fully automatically (figure 3.5). Using a
custom-designed interface, trained observers identified the corresponding
anatomical locations in the end-inhalation scans. The manual annotations
are initially used to learn the relationship between the scans, by including
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(a) (b) (c)

Figure 3.5: The 100 landmarks, automatically selected (Murphy et al., 2008) on
the reference exhale frame of Patient 1, projected on the (a) coronal, (b) sagittal
and the (c) axial planes to illustrate their location and spatial distribution.

their coordinates in a thin plate spline. The combination of the latter and
local block matching is then used to suggest the positions of the remaining
landmarks in the corresponding scan. Murphy et al. (2008) showed that
the system is capable of automatically matching landmarks given about
20 manual annotations. In this work, all locations were manually verified,
and modified if deemed necessary. The system was thus used as a software
aid, greatly improving the time required for propagating the landmark set.
The average of the annotations provided by two observers was used as the
final landmark position and was compared with the positions estimated
by the registration results.

3.3 Material

The method was applied to the exhale and inhale frames of 4D CT
images of the thorax of six lung cancer patients. The patients were part of a
radiotherapy planning protocol. The images were acquired on a Brilliance
Big Bore 16-slice CT scanner (Philips Medical Systems, Cleveland, OH).
Retrospective respiratory-correlated reconstruction into ten 3D CT images
was made possible by simultaneous recording of a respiratory trace using
the Pneumo Chest bellows (Lafayette Instrument, Lafayette, IN). The
original resolution was approximately 1 x 1 x 2 mm. All images were
resampled to a 2 mm isotropic voxel prior to processing, resulting in a
typical sizes of 256 x 256 x 150 voxels.
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(a) (b) (c)

Figure 3.6: The images used for the registration of (a) the inner structures and
(b) the outer structures. In both, the reference end-exhalation frame is shown
in green-purple colour overlay with the target end-inhalation image. Purple
or green indicate a di↵erence in Hounsfield units, grey values correspond to
an intensity match.(c) The mask used for calculating the similarity during the
registrations. When registering the inner thoracic structures, everything but
the black region is considered in the similarity measure. Inversely, for the outer
structures everything but the white region is considered. The actual interface
found, used for modifying the images, runs between the grey strips.

3.4 Results

The calculation of the velocity maps required less than a minute per
image. The level set steps processing time, even though di↵erent for
all patients, remained under 5 minutes (on a single 2.6 GHz CPU). The
masks were constructed for both the end-exhalation frame and the end-
inhalation frame of each 4D CT. They were then used to modify the
input as described in section 3.2.2.1 , prior to registration of the inner,
respectively outer thoracic regions. The modified images are show in
figure 3.6, along with the mask used for the similarity measure. Very little
di↵erence between inhale and exhale can be observed for the outer thoracic
structures(figure 3.6b) due to the limited motion of the ribs. Inside the
thoracic cavity (figure 3.6a), large displacements can be observed. At the
interface, the images overlap almost everywhere due to the predominantly
diaphragmatic respiration and thanks to the consistent mask extraction.
Figure 3.6c shows the mask used during the registration.

In figure 3.7 a qualitative comparison of the registration results
obtained with and without use of the motion mask is given. Di↵erence
images between the reference and the warped template image are shown
in a sagittal plane for Patient 1 (figure 3.7a). Inside the lung, both
methods produce similar results. Strong di↵erences can be observed near
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(a) (b) (c)

Figure 3.7: Comparison of the registration results for Patient 1 (top) without
and (bottom) with the motion mask: (a) the di↵erence of the reference and the
target images compensated with obtained motion estimate, (b) enlarged view of
the highlighted region near the right pleural interface, (c) deformation vector
field for the same region.

the pleural interface, shown enlarged in figure 3.7b. For the same region
the respective deformation vector fields are shown (figure 3.7c). Contrary
to the conventional registration, a discontinuity in the deformation field
can be observed when using a motion mask, resulting in an improved
matching of the ribs.

The manual annotations of the two independent observers were
used to verify the inter-observer variability of the anatomical landmark
identification. The mean distance over all 600 points, between the
annotations was 0.5 mm ± 0.9 mm. Table 3.1 contains the quantitative
evaluation of the registration results. We compare the distance between
the landmarks before registration, after conventional registration and after
registration using the motion mask. Given are the mean distance and
standard deviation, the signed average along left-right (LR), anterior-
posterior (AP) and cranio-caudal (CC) directions and the maximum error.
The registration results are further compared by computing a paired t-
test for the landmarks distances, and considered statistically di↵erent for
p-values< 0.05, as in (Sarrut et al., 2007).
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Table 3.1: The distance between landmarks before registration (before), after
conventional registration (no mask) and after registration using the motion mask
(mask). Given are the mean distance (µ) and standard deviation (�), the signed
average along all directions (µLR, µAP, µCC), and the maximum distance over
all points (Max). The last row lists the statistical significance of the di↵erence
between registration results, with levels p < 5⇥10�2 (+), p < 1⇥10�2 (++) and
p < 1⇥ 10�3 (+++). p-values � 5⇥ 10�2 (=) were considered not significant.

Patient Landmark distance (mm) Significance
µ ± � µLR µAP µCC Max (p-value)

before 9.36 ± 7.42 -1.71 -1.30 -8.39 32.10
1 no mask 2.39 ± 2.19 -0.22 -0.15 -1.09 11.61 ++

mask 1.83 ± 1.76 -0.29 -0.07 -0.15 12.00 (1.4⇥ 10�3)

before 7.33 ± 4.86 -0.82 -0.68 -6.85 24.10
2 no mask 2.84 ± 3.88 -0.54 -0.07 -1.25 22.60 +

mask 2.57 ± 4.39 -0.43 -0.39 -0.34 19.00 (4.3⇥ 10�2)

before 7.09 ± 5.08 -0.90 -1.52 -5.75 19.80
3 no mask 1.84 ± 1.82 0.05 -0.28 -0.58 12.32 ++

mask 1.58 ± 1.38 0.06 -0.11 -0.11 9.68 (3.9⇥ 10�3)

before 6.68 ± 3.67 0.28 -0.96 -6.19 14.26
4 no mask 1.59 ± 1.50 -0.03 -0.05 -0.49 9.47 =

mask 1.54 ± 1.24 -0.13 0.13 -0.24 8.28 (2.2⇥ 10�1)

before 14.00 ± 7.17 -0.68 2.50 -12.20 32.41
5 no mask 2.84 ± 2.90 -0.28 0.23 -1.45 17.30 +++

mask 1.77 ± 1.33 -0.06 0.10 -0.12 7.32 (8.3⇥ 10�5)

before 6.84 ± 3.18 -1.05 0.93 -6.07 16.00
6 no mask 2.11 ± 1.53 -0.01 -0.47 -1.21 7.78 ++

mask 1.87 ± 1.24 0.06 -0.41 -0.85 6.95 (1.2⇥ 10�3)
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3.5 Discussion

For all patients, the use of the motion mask improved the registration
accuracy in terms of mean target registration error. For five out of six
patients, the improvement was statistically significant. The signed average
along all directions reveals that by far the largest di↵erence between
the registration results can be observed for the CC-component of the
registration error. Both registration methods systematically underestimate
the displacement along this component. The relatively large bias for the
conventional registration, is reduced to below 1 mm when using the motion
mask.

The worst registration results–both with and without using the motion
mask–are obtained for Patient 2. Inspection of the largest landmark
matching errors, revealed they were located near a region containing
artefacts, perturbating the motion field. In fact, registration results were
better using a 64 mm control point grid spacing (2.33 ± 2.42 mm and
2.81 ± 2.87 mm with and without the motion mask,respectively) then
using a 32 mm (2.57 ± 4.39 mm and 2.84 ± 3.88 mm for registration
with and without use of the motion mask, respectively). This observation
raises another issue associated with registration of lung CT image which
concerns the frequent presence of artefacts, especially in 4D CT images.

The mean landmark distance after registration when using the mask
ranged from 1.54 to 2.57 mm. This is in good correspondence with previous
work addressing sliding motion, reported for the lungs and performed
between the inhale and exhale frames of a 4D CT acquisition (i.e. during
normal tidal breathing rather than breath-hold acquisitions). Rietzel and
Chen (2006) reported mean registration errors of 1.6 to 3.0 mm for five
image pairs and Wu et al. (2008) obtained registration errors ranging from
2.12 to 3.48 mm for the lungs for four patients when using a B-spline based
registration. Both used manual segmentations similar to the proposed
motion mask. Schmidt-Richberg et al. (2009) reported between 1.04 and
2.40 mm mean landmark distance (for images with a resolution of 0.98
x 0.98 x 1.5 mm) after a di↵usive registration with direction dependent
regularization based on a lung segmentation. Their method significantly
outperformed the conventional di↵usive approach in 10 out of 12 patients.
The results were similar to those obtained when limiting the regularization
forces to the lungs as described by Werner et al. (2009a).

An important parameter for the used B-spline free-form deformation
transformation is the spacing of the control point grid. As a finer grid
is employed, the deformation space becomes larger and representation of
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Figure 3.8: The mean target registration error with respect to the landmarks
is plotted in function of the B-spline control point spacing. The error bars
correspond to one standard deviation.

discontinuities such as sliding improves. However, the complexity of the
optimization increases rapidly with the number of parameters, along with
the computation time. Additionally, allowing more degrees of freedom
increases sensitivity to noise and artefacts since the parametrization of the
spatial transformation becomes less restrictive. The choice of the control
point spacing is thus a trade-o↵ between matching accuracy on one hand,
and robustness and e�ciency on the other. In table 3.8, the mean target
registration errors (and standard deviation) obtained with and without
motion mask are shown in function of the control point spacing for Patient
5, characterized by large motion amplitudes. We can note that the result
obtained with mask using a control point spacing of 128 mm (2.91 ± 1.38
mm) , is comparable to that obtained without mask using a control point
spacing of 32 mm (2.84 ± 2.90 mm). This indicates that, despite the
large motion, the lung deformation is inherently smooth and the improved
registration accuracy–obtained by increasing the number of control points–
is mainly due to a better representation of the sliding motion. Considering
this, the role of the motion mask can thus be viewed as facilitating the
registration by lowering the complexity for the spatial transform, while
maintaining accuracy. For a control point spacing of 16 mm, the target
registration error for both registrations increases. At this spacing (and for
the quality of images used), the transform seems not restrictive enough
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and the registration fails. Explicit regularization in the form of an extra
term in the cost function, not included here, could improve this behaviour
and further reduce the matching error.

In this work registration accuracy was only evaluated in the lungs. Wu
et al. (2008) reported similar improvements for the registration of the ribs.
It is expected that the proposed motion mask will also result in improved
matching of the ribs, as can be qualitatively assessed in figure 3.7. In the
proposed method, the resulting interface below the diaphragm is the result
of geometric a priori as there are no extracted features to constrain the
evolving interface. Since the pleural interface in this region is generally
not visible in the 4D CT data, the goal is rather to obtain a mask that will
not perturbate registration in the upper thorax. It therefore remains to
be assessed if the method can be extended for use on the liver and lower
abdomen.

Particular attention was paid to making the automatic motion mask
extraction robust and reliable, in order to limit the required user
interaction in a clinical setting. While the described procedure produced
good results for all image pairs tested, due to the large anatomical and
pathological variability, it might still fail for some patients. In particular,
erroneous or incomplete extraction of the lungs and ribs could result in
unsatisfactory results. Often, limited manual intervention will su�ce
to adapt the subprocedure to the situation and produce the desired
intermediate result. Alternatively, more elaborate (but costly) approaches
designed to deal with the pathological lung (van Rikxoort et al., 2009), or
specifically devised to label the complete ribcage (Staal et al., 2007) might
reduce the user interaction even further.

The suitability of the motion mask was assessed by performing
registration using B-splines on the masked images and including a
boundary matching criterion. The use of the mask is however not
limited to this registration method, as was demonstrated for the demons
algorithm (Wu et al., 2008) and di↵usive registration (Werner et al.,
2009a). As discussed in section 3.1, other approaches exist to incorporating
a mask in the registration algorithm. Besides preserving sliding motion,
there are however some additional advantages to processing physiologically
di↵erent regions separately. Most originate from the fact that registration
parameters can be chosen to match each region individually. Di↵erent
types of deformation in each region might lead to a di↵erent choice of
control point spacing or explicit regularization. Specifically designed
compressible optical flow algorithms (Castillo et al., 2009) or costly mass-
preserving similarity measures (Yin et al., 2009) can be applied solely on
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the inner thoracic structures. Some types of analysis, e.g. ventilation
imaging (Guerrero et al., 2006), might simply only concern that region.
Nonetheless, a non-negligible advantage of Schmidt-Richberg et al.’s (2009)
method allowing to process the whole thorax simultaneously, lies in the fact
that only the mask for the reference image is required. The construction
of the mask becomes less critical as the necessity to be reproducible with
respect to anatomical structures is removed.

3.6 Conclusion

We proposed a practical method for automatically dividing the
upper thorax into homologously moving regions and facilitate subsequent
deformable registration. The method relies on the level set framework for
tracking an evolving interface and is constrained by previously extracted
anatomical features and regularized by a strong geometric prior.

The suitability of the extracted motion masks was validated by
applying them to deformable registration based on B-splines between
exhale and inhale frames of 4D CT images. Inner and outer thoracic
structures were registered separately using a boundary matching criterion
and compared to conventional registration considering the whole thorax
simultaneously. The target registration error was estimated from a large,
well distributed set of landmarks in the lungs.

For all six patients, the mean target registration error showed
improvement with respect to conventional registration. For five patients
the improvement was found to be statistically significant. The use of
the mask reduces the relatively large bias on the CC-component of the
deformation field. The resulting target registration errors corresponded
well to results reported using manual segmentations.

Qualitative evaluation showed that the proposed motion masks allow
to capture discontinuities in the motion field, generating a more realistic
registration near the pleural interface. In the particular case of a B-spline
based free form deformation, the use of the motion mask can considerably
reduce the complexity of the spatial transformation with respect to
conventional registration, while maintaining registration accuracy.
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Léon Bérard Cancer Center, University of Lyon, Lyon, France

3
Center for Machine Perception, Czech Technical University in Prague, Czech Republic

Published in Medical Physics in January 2011

Purpose: Four-dimensional computed tomography (4D CT) provides valuable

motion information for radiation therapy planning and delivery. Applying

deformable registration to 4D CT is challenging due to the reduced image

quality and the presence of artifacts. We aim to improve the robustness of

motion estimation for respiratory-correlated imaging of the lungs, by using

a global formulation of the registration problem and pursuing a restrictive

parametrization for the spatio-temporal deformation model.

Methods: A spatial transformation based on free-form deformations was

extended to the temporal domain. We used a cyclic trajectory model based on

B-splines, allowing to consider the entire image sequence simultaneously, and

enforce the temporal coherence of the deformation across the respiratory cycle.

To ensure a parametrization capable of capturing the dynamics of respiratory

motion, a prestudy was performed on the temporal dimension separately. The

model was tuned by fitting it to diaphragm motion data acquired for a large

patient group. Suitable properties were retained and applied to spatio-temporal

registration of 4D CT data. Registration results were validated using large sets

of landmarks and compared to consecutive spatial registrations. To illustrate

the benefit of the spatio-temporal approach, we assessed the performance in the

presence of motion-induced artifacts.
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Results: Cubic B-splines gave better or similar fitting results as lower orders,

and were selected because of their inherently stronger regularization. The fitting

and registration errors increased gradually with the temporal control point

spacing, representing a trade-o↵ between achievable accuracy and sensitivity

to noise and artifacts. A piecewise smooth trajectory model was found most

suitable to account for the sudden changes of motion at end-inhale. Spatio-

temporal modelling allowed a reduction of the number of parameters of up to

45%, while maintaining registration accuracy within 0.1 mm. The approach

visibly reduced the sensitivity to artifacts.

Conclusions: Spatio-temporal registration can provide accurate motion

estimation for 4D CT and improve the robustness to artifacts.
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Introduction

4.1 Introduction

The advent of four-dimensional (4D) computed tomography (CT) has
allowed patient-specific respiratory motion information to be incorporated
into radiation therapy planning and delivery. 4D CT provides multiple
three-dimensional (3D) CT volumes, representing the patient at di↵erent
stages of the breathing cycle (Vedam et al., 2003; Ford et al., 2003; Low
et al., 2003; Pan et al., 2004). The additional patient data, implies
an order of magnitude increase in the workload required to obtain
a 4D treatment plan. Deformable registration is the tool that can
facilitate partial automation of the planning process (Keall, 2004). It
can provide the motion fields which are required for automating tasks
such as re-contouring of anatomic structures (Lu et al., 2006), patient-
specific margin definition (Zhang et al., 2005) or 4D treatment plan
evaluation (Guerrero et al., 2005). Deformable image registration is also
an enabling tool for applications that have emerged from respiratory-
correlated imaging such as ventilation imaging (Guerrero et al., 2006),
motion compensation (Wolthaus et al., 2008; Rit et al., 2009a) or motion
modelling (McClelland et al., 2006; Zhang et al., 2007; Yang et al., 2008).
Although extensive validation is required before extending the clinical use
of deformable image registration, it is expected to become a standard
methodology in radiotherapy (Sarrut, 2006; Kessler, 2006).

Deformable image registration can be described as the task of
finding a suitable geometric transformation between corresponding image
data, such that a transformed image becomes similar to another
one (Modersitzki, 2004). In practice, the exact meaning of similar and
suitable depends on the specifics of the application. Similarity should be
measured appropriately to take into account the nature of the images,
and the suitability condition suggests there exist implicit requirements
with respect to the type and properties of the transformation. While
the concept of image registration is easily described, the underlying
numerical problem is di�cult to solve. Mainly because the registration
problem is ill-posed. Small changes of the input images may lead to
very di↵erent registration results. Moreover, the solution might not be
unique. Salient image information might be sparse or ambiguous, and
the acquisition process might have introduced noise and artifacts. To
facilitate the process, prior knowledge about the deformation should be
incorporated in the registration framework in order to favour solutions
with plausible physical characteristics. Explicit parametric restrictions
can constrain the optimization to transformations that represent suitable
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properties. This approach can o↵er a reduction of the search space by
making the description more problem-specific, and consequently improve
the robustness of the optimization process.

An example are spatio-temporal registration schemes, which consist
in a global formulation of the motion estimation problem for temporal
image sequences. Rather than estimating frame-to-frame displacements
individually, the entire sequence is considered simultaneously, allowing to
enforce the temporal coherence of the deformation across the sequence. By
making assumptions about the temporal variations of the transformation,
these approaches often enable a more compact and restrictive description
of the full motion estimation problem. Spatio-temporal deformable
registration has received considerable attention in literature, mostly in
cardiac image analysis (Nastar and Ayache, 1996; Declerck et al., 1998;
Huang et al., 1999; Clarysse et al., 2000; Ozturk and McVeigh, 2000;
McEachen et al., 2000; Chandrashekara et al., 2004; Perperidis et al.,
2005; Ledesma-Carbayo et al., 2005; Montagnat and Delingette, 2005;
Delhay et al., 2006; Sundar et al., 2009; Peyrat et al., 2010; Schaerer
et al., 2010), but more recently also for respiratory-correlated imaging
of the thorax (Visvikis et al., 2006; Schreibmann et al., 2008; Castillo
et al., 2010). Usually, a 3D-4D formulation is utilized to find a smooth
time-dependent deformation field that aligns all images from a given
input sequence with a reference image, which can be a frame of that
same sequence (Ledesma-Carbayo et al., 2005; Delhay et al., 2006; Sundar
et al., 2009; Castillo et al., 2010). Sometimes, spatial as well as temporal
alignment of multiple image sequences is desirable, leading to a 4D-4D
registration framework (Chandrashekara et al., 2004; Perperidis et al.,
2005; Schreibmann et al., 2008; Peyrat et al., 2010).

In comparison to conventional diagnostic CT, 4D CT images tend
to be acquired at lower spatial resolution and are characterized by
higher noise levels because of the low radiation dose per image. In
addition, an alarmingly high number of acquisitions contains motion-
induced artifacts (Yamamoto et al., 2008), mainly due to irregular
patient breathing during image acquisition. While the underlying image
information might be considered locally invalid in the case of artifacts,
clinical use of the estimated motion fields requires them to be as close
to the unknown reality as possible. A restrictive parametrization of the
deformation model could contribute in reducing sensitivity to local image
irregularities and render the motion estimate more representative of the
patient’s breathing motion under these challenging circumstances.

In this study, we develop a spatio-temporal registration scheme for
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lung motion quantification in respiratory-correlated sequences. Our
primary objective is to obtain a low-dimensional representation of the
4D deformation model, capable of accurately representing the respiratory
motion, while being more robust to artifacts and increased noise levels.
The approach consists of a 3D-4D problem formulation in which temporal
regularization is pursued by explicitly modelling the trajectory of moving
structures. With respect to previous work on spatio-temporal registration,
we specifically focus on respiratory-correlated image sequences, and
develop and evaluate a cyclic trajectory model for representing the motion
over an entire breathing cycle. In addition, the chosen parametrization
reflects our aim of improving registration robustness by rendering the
deformation model more problem-specific.

4.2 Method

The spatio-temporal transformation will be developed incrementally.
We first describe a conventional spatial registration, of which the proposed
method can be seen as an extension. Next, the temporal dimension is
treated and the method for modelling the trajectory is detailed. The
sought spatio-temporal deformation function is obtained by combining
both.

4.2.1 Problem Description

Consider a 4D sequence, represented by an intensity function f(i, k) 2
R with i 2 I ⇢ Z3 and k 2 K ⇢ Z; I and K being the set of spatial
and temporal sample indices, respectively. We wish to analyze the motion
with respect to the 3D reference frame at time index k

r

2 K. The task
of motion estimation throughout the 4D sequence is formulated as the
search for the unknown spatio-temporal transformation T

st

, defined for
I ⇥ K 7! R3, where T

st

(i, k) represents the location of a point at time k
which was at position i at time k

r

.

4.2.2 Spatial Registration

Consider the subproblem of retrieving the transformation T
s

(in which
the s stands for spatial) between the reference volume and the frame at time
k. A continuous representation is employed for the spatial transformation
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using free-form deformations based on B-splines (Rueckert et al., 1999)

T
s

(x) = x +
X

j2J

a

j

�
j

(x) (4.1)

where x 2 X is the continuous spatial coordinate associated with I;
J ⇢ Z3 is the set of spatial parameter indices considered for basis functions
�
j

(x) = �n(x/h � j) with h 2 R the uniform spatial control point
spacing, and �n the tensor product of one-dimensional B-spline kernels
of degree n. We use cubic B-splines for the spatial basis functions (n = 3).
The parameters of T

s

are the B-spline coe�cients a

j

2 R3 (one for each
component of the deformation), i.e. T

s

is fully characterized by specifying
a = {a

j

}
j2J.

We define a similarity criterion J
s

, based on the mean squared intensity
di↵erences with respect to the samples of the reference volume

J
s

(T
s

; k) =
1

NI

X

i2I

⇣
f
�
T
s

(i), k
�

� f
�
i, k

r

�⌘2
(4.2)

with NI the number of spatial samples considered. We choose this criterion
because of its fast computation time and the smoothness of the resulting
search space. For simplicity, no explicit regularization term was included
in the criterion. For now, only the influence of the parametrization of
the deformation function is explored. Evaluating f at non-grid positions,
requires a continuous representation of the intensity function for which we
used cubic B-spline interpolation

f(x, k) =
X

i2I

d

i

�n(x � i) . (4.3)

Coe�cients d

i

are found quickly using recursive filtering (Unser, 1999).
Solving the spatial registration problem for frame k comes down to

estimating the optimal parameters a

⇤ in the sense of the criterion J
s

a

⇤ = arg min
a

J
s

(T
s

; k) . (4.4)

By solving (4.4) consecutively for all k 2 K except k
r

, a solution to the
4D motion estimation problem can be composed. Solutions obtained for
previous k values, can be used to initialize subsequent registrations.

4.2.3 Trajectory Modelling

Temporal sequences enable alternative analysis of the motion, by
modelling the temporal variations of the estimated deformations. Tissue
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trajectories are expected to evolve smoothly and continuously over time
which allows to introduce constraints which enforce the temporal coherence
of the deformation across the sequence. This is similar to the approach
described for the spatial dimensions. Nonetheless, the temporal dimension
is handled separately as it is inherently di↵erent from the other dimensions.
For instance, in the case of respiratory-correlated CT, the sequence is
periodic and the number of temporal samples is low compared to spatial
samples.

Trajectory Model Let t 2 T be the continuous coordinate associated
with K and suppose for simplicity T = [0, t

e

). Let T
t

(x, t) denote the
trajectory of a point at position x at time t

r

. The search for T
t

is limited
to continuous and smooth functions of t, by expressing it using a suitable
set of basis functions { l}l2L

T
t

(x, t) = x +
X

l2L

bl l(t) . (4.5)

L ⇢ Z is the set of temporal parameter indices and b

l

2 R3 the
coe�cients of the basis functions. As in (Declerck et al., 1998; Huang et al.,
1999; Ozturk and McVeigh, 2000; Chandrashekara et al., 2004; Ledesma-
Carbayo et al., 2005), we adopted temporal B-spline basis functions,
 l(t) = �m(t/s � l) with s 2 R the temporal control point spacing,
because of their good approximation properties, computational simplicity
and implicit smoothness. In (Ledesma-Carbayo et al., 2005) temporal B-
splines were found to work at least as well as harmonic functions, used
in (Nastar and Ayache, 1996; Clarysse et al., 2000; McEachen et al., 2000;
Delhay et al., 2006). Figure 4.1a shows a schematic, one-dimensional
representation of a trajectory model based on cubic B-splines (m = 3),
with five control points (s = t

e

/5) placed uniformly along the considered
interval [0, t

e

). Evaluating T
t

near the borders of the interval, requires
taking into account control points with non-zero weight just outside the
interval. It can be seen that a total of eight degrees of freedom is
considered.

Smooth Trajectory Model The trajectory model can be further
constrained by incorporating a priori knowledge of the motion, leading to
a more restrictive parametrization. For instance, 4D CT data is inherently
periodic. In addition, trajectories can be expected to be smooth functions
of time. The trajectory can be made periodic and smooth throughout the
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(a)

(b) (c)

Figure 4.1: (a) Schematic representation of a trajectory model based on cubic
B-splines, with eight control points ( red dots) placed uniformly inside and just
outside [0, te). Each corresponds to a B-spline kernel  l (dotted line) and Tt(x, t)
(red solid curve) is found by combining the scaled kernels (dashed line). (b, c)
Alternative, 2D representation with a cyclic temporal axis wrapped around the
trajectory. Large control points indicate a constraint is applied. (b) The smooth
trajectory model Tt and, (c) the piecewise smooth trajectory model T ⇤

t .
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entire cycle by imposing the same order of smoothness to the endpoints as
the rest of the trajectory, thus obtaining T

t

2 Cm�1(T). This leads to the
set of m conditions

@zT
t

(x, 0)

@tz
=
@zT

t

(x, t
e

)

@tz
for z = [0, . . . ,m � 1 ]. (4.6)

As will be shown, each condition results in a linear equation for the model
parameters, allowing to express one of the parameters in function of the
others. A schematic representation of a 2D trajectory satisfying (4.6) is
shown in figure 4.1b. A cyclic time axis is shown to illustrate the placement
and the influence of the control points. The banded control points indicate
that a constraint is applied.

Piecewise Smooth Trajectory Model Due to the limited temporal
resolution of 4D CT, and depending on the degrees of freedom considered
in (4.5), the smoothness constraint might be too restrictive, leading to
locally reduced representation accuracy in regions where the velocity is
varying rapidly. This can be the case for the end-inhale phase where fast
inversion of the motion takes place. Alternatively, we can locally relax
the smoothness constraints and propose a piecewise smooth trajectory
representation T ⇤

t

. A similar expansion as (4.5) is utilized for T ⇤
t

but,
assuming end-inhale corresponds to t = 0, a single constraint is applied

T ⇤
t

(x, 0) = T ⇤
t

(x, t
e

) . (4.7)

This condition will lead to periodic trajectories, but allows a discontinuity
in the velocity (figure 4.1c). In this case, the sections near end-inhale are
parametrized independently which implies a local increase of control points
and degrees of freedom.

Temporal Constraints Introducing the temporal constraints in the
trajectory model is illustrated for a constraint useful during image
registration. As deformation is estimated with respect to a reference, by
definition

T
t

(x, t
r

) = x . (4.8)

Following (Ledesma-Carbayo et al., 2005), introducing this condition into
(4.5) removes one degree of freedom and the temporal model can be
expressed using a smaller set of constrained basis functions

 c

l (t) =  l(t) �  l(tr) lr(t)

 lr(tr)
, (4.9)

91



Chapter 4: Spatio-Temporal Motion Estimation

where it was assumed that we constrained the parameter blr . The obtained
set of basis functions only generates trajectories that satisfy (4.8).

In the following, we will denote { c

l }l2Lc the set of basis functions to
which constraints (4.6) and (4.8) have been applied.

4.2.4 Spatio-Temporal Registration

Estimating the motion in a 4D CT sequence by performing consecutive
spatial registrations using (4.1) fails to exploit the temporal relation
between the frames. This is remedied by modelling the trajectory as in
(4.5). A combined approach is found by coupling the temporal and the
spatial deformation model

T
st

(x, t) = x +
X

j2J

X

l2Lc

c

j,l �j(x) c

l (t) . (4.10)

The result is a linear, spatio-temporal deformation function, separable in
space and time. A straightforward extension to the temporal dimension of
(4.2), leads to the criterion

J
st

(T
st

) =
1

NK

X

k2K

J
s

(T
st

; k) (4.11)

to be optimized with respect to the parameters c = {c
j,l}j2J,l2Lc . We

will use T
st

and T ⇤
st

in reference to the spatio-temporal deformation models
obtained when using the smooth and piecewise smooth temporal models
T
t

and T ⇤
t

, respectively.

4.2.5 Motion Mask Extraction

Breathing motion is characterized by sliding of the liver and lungs,
resulting in a discontinuity of the motion at the pleural wall (Wu et al.,
2008; Schmidt-Richberg et al., 2009). Accurate matching in these regions
requires a complex spatial transformation, even though the remainder
of the deformation can be considered smooth. We previously addressed
this issue (Vandemeulebroucke et al., 2010) by automatically extracting
a motion mask, dividing the thorax into moving (lungs, mediastinum and
abdomen) and less-moving regions (the remainder).

Motion masks were computed for all frames of f . The result is
the division of the thorax into two subregions I

in

, I
out

⇢ I, roughly
representing the inner and outer thoracic structures. For each of
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the subregions, a separate registration problem can be formulated
following (Wu et al., 2008), with the advantage that the search can be
limited to spatially smooth deformations.

4.2.6 Optimization

The spatio-temporal approach allows a more restrictive parametriza-
tion of the transform and reduces the total number of degrees of freedom
of the 4D motion estimation problem compared to consecutively applying
T
s

. However, directly minimizing (4.11) considers all degrees of freedom
simultaneously, increasing the dimensionality of the optimization problem
with respect to one 3D-3D registration. In response, a multiresolution
approach was employed, allowing to gradually increase the complexity of
the problem. The resolution of the spatial dimensions of both the image
sequence and the transform control point grid was doubled in each of three
consecutive resolution levels. The final image resolution was set to 2 mm.
We previously found that, in combination with a motion mask, a control
point grid spacing h = 32 mm provided a good compromise between
e�ciency and matching accuracy. The temporal dimension, characterized
by low resolution, remained unmodified throughout the optimization.

Each level was handled using a Quasi-Newton approach in the form
of the limited memory BFGS method (Nocedal, 1980), because of its high
precision and improved rate of convergence with respect to simple gradient
descent algorithms (Klein et al., 2007). The procedure started from a
zero deformation, and subsequent levels were initialized by upsampling
the previous solution. The required partial derivatives can be calculated
explicitly, for instance for T

st

@J
st

(T
st

)

@c
j,l

=
2

NKNI

X

k2K

X

i2I

⇣
f
�
T
st

(i, k), k
�
�f
�
i, k

r

�⌘@f
�
T
st

(i, k), k
�

@x

@T
st

(i, k)

@c
j,l

.

(4.12)
@f/@x is found by deriving (4.3), while @T

st

/@c
j,l can be calculated

considering (4.10). For instance, for the qth spatial component

@f(x, k)

@xq
=
X

i2I

di
@�n(xq)

@xq

Y

⇣ 6=q

�n(x⇣ � i⇣) (4.13)

@T
st

(i, k)

@c
j,l,q

= �
j

(x) c

l (t) . (4.14)
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4.2.7 Implementation

The registration algorithms were implemented in C++. Evaluating
T
st

(i, k) was performed using B-LUTs (Sarrut and Vandemeulebroucke,
2010): a fast, low memory B-spline implementation based on a look-up
table of B-spline tensor products �n(x). Registration algorithms were
multi-threaded and executed on an eight-core system. The execution
times depended on the specifics of the 4D CT set. For ten time frames,
consecutively registering all frames of f using T

s

, required between 5 and
10 hours, whereas T

st

and T ⇤
st

required about twice as much time.

In comparison, the most expensive step for the spatio-temporal
approaches is the calculation of @T

st

(i, k)/@c in (4.12). In the current
implementation, this requires multiple table look-ups due to the presence
of the modified basis functions  c in (4.14), compared to only one for
calculating @T

s

/@a.

4.3 Experiments

Three types of experiments were performed to validate the spatio-
temporal deformation model. First, we conducted a prestudy on the
temporal dimension of the model separately. Breathing patterns are
patient-specific and strong interpatient and intercycle variability has been
reported which can a↵ect cycle duration, motion amplitude and speed
of the movement (George et al., 2005; Wu et al., 2007; Rit et al.,
2009b). By fitting the trajectory models to motion data covering many
cycles and measured on a large set of patients, we ensure the temporal
parametrization is flexible enough to capture the dynamics of respiratory
motion.

The most suitable temporal parameter values were retained and used
for the spatio-temporal deformation models. The latter were applied
to the registration of 4D CT images of the thorax. Extensive spatial
validation of the registrations was performed using large sets of landmarks.
The registration accuracy was compared to the conventional frame-to-
frame approach. In a final experiment, the benefit of the spatio-temporal
approach is illustrated, by assessing the performance in the presence of
artifacts.
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4.3.1 Temporal Fit of Diaphragm Motion Data

Data Description We used projection sequences of cone-beam
computed tomography (CBCT) acquired at the Netherlands Cancer
Institute (Amsterdam, the Netherlands) for image-guidance of 33 lung
cancer patients treated by radiotherapy with the protocol described
in (Sonke et al., 2008). Cone-beam projections consist of rectangular X-
ray images, acquired from rotating views around the patient. They were
acquired at 5.5 fps over 200� with a 50�/min gantry rotation speed for
4D CBCT imaging (Sonke et al., 2005). Their resolution was 5122 pixels
of 0.82 mm2 (0.522 mm2 at the isocenter). 257 sequences of cone-beam
projection images (5 to 19 per patient) were analyzed.

The motion was analyzed by extracting the cranio-caudal position
of a diaphragm dome using an adapted version (Rit et al., 2009b) of
the algorithm developed to extract a respiratory signal for 4D CBCT
reconstruction (Zijp et al., 2004; Sonke et al., 2005). The extraction
results in a 2 min 1D+t signal per acquisition with 0.52 mm and 5.5 fps
resolution, i.e. 2 of the 4 dimensions of the sought 4D model at fine
resolution but for only one point of space. In addition to the size of the
dataset, the projection images are advantageous because they have higher
cranio-caudal and temporal resolutions than 4D CT images. As such, the
diaphragm motion data provided a valuable benchmark for tuning the
temporal parametrization of the deformation models.

Experiments Each signal was split in respiratory cycles by detecting the
end-inhale peaks after smoothing out the local minima. Each cycle was
analyzed separately by assuming periodicity, similar to 4D CT images.
The temporal models described in section 4.2.3, were fitted to each cycle
with the optimal solution in the least square sense. The influence of the
trajectory model parameters was evaluated: we varied the B-spline order
m and the control point spacing s, or equivalently the number of control
points. In addition, we verified the suitability of a smoothness constraint
at end-inhale by comparing T

t

and T ⇤
t

.

The similarity between the measured and the fitted signals was
evaluated using the root mean square (RMS) of their di↵erence. Results
for each patient were averaged and the group mean over all patients was
computed. The results were analyzed both globally and per respiratory
phase by dividing each cycle into ten equi-temporal phase bins, as it is
typically done in current 4D CT scanners.
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4.3.2 Spatio-Temporal Registration of 4D CT

Data Description We used 4D CT data sets of six non-small cell lung
cancer patients acquired at the Léon Bérard Cancer Center (Lyon, France)
for the purpose of radiotherapy planning on a Philips 16-slice Brilliance
Big Bore Oncology Configuration (Phillips Medical Systems, Cleveland,
OH). Acquisitions were performed in helical mode using a table pitch of
0.1, 400 mAs e↵ective exposure (80 mA tube current) at 120 kV.

Respiratory-correlated reconstruction was facilitated by simultaneous
acquisition of a respiratory surrogate signal, provided by the Pneumo
Chest pressure belt (Lafayette Instrument, Lafayette, IN). We used the
tags on the end-inhale positions automatically provided by the system,
and each detected cycle was divided into equi-temporal phase bins.
Reconstruction yielded ten 3D CT frames at approximately 1⇥1⇥2 mm3

resolution.

Experiments The spatio-temporal deformable registration approaches
T
st

and T ⇤
st

, as described in section 4.2.4, were applied to all 4D CT
data sets. In addition to the normal set of constraints used for T

t

and T ⇤
t

, constraint (4.8) is enforced for all registrations. Deformable
registration was performed with respect to the middle frame (k = 5),
which corresponded roughly to end-exhale. The position of end-exhale has
been reported to be more reproducible than end-inhale (Seppenwoolde
et al., 2002; Sonke et al., 2008), making it a suitable reference to analyze
breathing motion.

For validation purposes, anatomical landmarks were identified in the
lung region using a semi-automatic software tool (Murphy et al., 2008).
The system automatically provided a set of well-distributed, distinctive
points with index p

r

2 I in the lung region of the exhale frame. Observers
identified the corresponding positions pk 2 I of the points in frame k,
using a custom designed interface and aided by initial estimates provided
by the system. Points coinciding with artifacts were excluded. The system
initially provided 130 distinctive points and the procedure was stopped
after a 100 points were successfully identified in the corresponding frames.

For all six patients, 100 point correspondences were provided between
the exhale and the inhale frame, and the process was repeated by a second
observer. The mean distance between the annotations was 0.5 mm (0.9
mm standard deviation). For Patients 1-3, a single observer provided 100
correspondences for each of the frames of the 4D CT, resulting in a total
of 900 manually identified landmarks for each of the three data sets. The
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manual annotations were compared to the corresponding point positions
estimated through registration to compute the target registration error
(TRE)

TRE = kT
st

(p
r

, k) � pkk . (4.15)

The registration results were also compared to those obtained
when performing consecutive 3D registrations using T

s

, described in
section 4.2.2. The same multiresolution and optimization scheme is applied
as in the spatio-temporal case. Since no temporal regularization is applied
in the case of T

s

, the results are considered as a reference indicating the
achievable registration accuracy when allowing all temporal degrees of
freedom.

4.3.3 Registration of Artifacted 4D CT

Data Description To dispose of a ground truth, we constructed an
artifacted 4D CT acquisition f

a

by introducing a simulated, motion-
induced artifact in the 4D CT of patient 2, characterized by large motion.
A mid-inhalation frame (k=8) was altered by modifying a series of axial
slices halfway the lungs. Ten slices starting from slice index i

a

in the end-
exhale frame (k=5), were copied to the same location in the target frame,
i. e.

f
a

(i, k) =

(
f(i, 5) for k = 8, i

2

2 [i
a

, i
a

+ 10)

f(i, k) otherwise .
(4.16)

The procedure resulted in an axial slab of 20 mm along the cranio-
caudal direction, containing an inconsistent view of the patient anatomy
with respect to the surrounding slices. This resembles the situation of
a frame locally influenced by erroneous tagging of the respiratory phase,
or irregular breathing during image acquisition.

Experiments The simulated sequence f
a

was registered in the same
way as described in the previous experiment. The registration results
were compared to those obtained using consecutive 3D registrations. By
comparing also to the results obtained for the original sequence, the
sensitivity of the method to locally introduced artifacts was evaluated.

The registration accuracy was assessed by using the landmarks
identified in the original, unmodified 4D CT acquisition. The analysis
is performed at two levels. Fist, we computed a global evaluation of the
TRE, taking into account all landmarks. Secondly, a local analysis was
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performed by only considering landmarks located within five slices of the
artifact.

4.4 Results

4.4.1 Temporal Fit of Diaphragm Motion Data

The fitting results are summarized in table 4.1 for a variety of B-
spline functions. Constant B-splines (m = 0) gave much poorer results
than other degrees. This is not surprising, since they produce piecewise
constant functions which can not describe the continuity of the respiratory
motion. Linear B-splines (m = 1) gave residuals of the same order, but
were found significantly worse than quadratic (m = 2) and cubic splines
(m = 3) for all tested models (p < 3⇥ 10�4). Cubic B-splines consistently
gave better results than quadratic splines, although the di↵erence was not
always significant. As they also inherently impose a stronger temporal
regularization, which is the purpose of the study, they were selected for
the rest of the study.

The influence of the number of control points can also be seen from
table 4.1. For both models, the residual of the fit was proportional to the
spacing of the control points s: the Pearson’s product-moment correlation
coe�cient was greater than 0.99. As expected, the number of control
points is a trade-o↵ between the achievable representation accuracy and
the parameters of the fitted function.

We used box and whisker plots to further illustrate the distribution of
fitting errors. The box extends from the lower (p

25%

) to upper quartile
(p

75%

) of the data, with a red horizontal line at the median and a ⇤ symbol
at the mean. The whiskers extend from the box to the most extreme value
below p

25%

+ 0.75 ⇥ (p
75%

� p
25%

), the remaining points are considered
outliers. Outliers were not plotted for clarity.

The top plots in figure 4.2 illustrate the global fitting errors and the
errors per respiratory phase bin for T

t

and T ⇤
t

(using five internal control
points and m = 3). The overall performance of T ⇤

t

was much better than
for T

t

. The largest discrepancies can be observed near inhale (0%). At
this phase, the change of speed was too sudden to be described by the
smooth trajectory model T

t

and the residual was found to be significantly
higher (p < 2 ⇥ 10�3) than at all other phases, for all tested values of m
and s. This was not the case for the piecewise smooth T ⇤

t

model, which
resulted in more homogeneous residuals per phase because the smoothness
constraint is relaxed at end-inhale.
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Spline Internal Control Points
Degree m 4 5 6 7 8 9 10

Group mean RMS (mm) of T
t

0 2.65 2.25 1.95 1.72 1.53 1.39 1.27
1 1.25 0.98 0.83 0.72 0.63 0.57 0.51
2 1.17 0.89 0.77 0.67 0.60 0.54 0.49
3 1.17 0.87 0.76 0.66 0.59 0.53 0.48

Group mean RMS (mm) of T ⇤
t

2 0.70 0.56 0.47 0.40 0.34 0.30 0.27
3 0.67 0.55 0.47 0.40 0.35 0.30 0.27

Table 4.1: Group mean of the RMS of the di↵erence between the measured
motion of the diaphragm dome in the cranio-caudal direction and fitted functions
for the two temporal models with di↵erent number of control points and B-spline
degrees. For degrees 0 and 1, both models are equivalent.

The di↵erence in temporal constraints between T
t

and T ⇤
t

results in
a di↵erent number of degrees of freedom at equal control point spacing.
We therefore also performed a comparison between both models at equal
degrees of freedom (bottom row of figure 4.2, for T

t

and T ⇤
t

using seven
and five internal control points, respectively). In this case, the global
performance of T

t

was still significantly worse (p < 4 ⇥ 10�2) compared to
the corresponding T ⇤

t

model for all tested number of the control points.
This can also be seen from table 4.1, comparing the results for T ⇤

t

with
two control points less than T

t

. Despite the global increase in degrees of
freedom, the high fitting residual at inhale remained for T

t

(figure 4.2b,
bottom right). These results suggest that a local increase in control points
(as is the case for the piecewise smooth model T ⇤

t

) is more e�cient in terms
of number of parameters, to obtain an accurate representation throughout
the respiratory cycle.

4.4.2 Spatio-Temporal Registration of 4D CT

We retained the temporal representations with four and five internal
control points for the spatio-temporal model, which corresponds to s =
2.5 and 2 frames, respectively. Table 4.2 summarizes the temporal
characteristics of the registration methods.

Trajectories obtained for some landmarks with large displacements are
plotted in figure 4.3. The manually identified positions throughout the
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Figure 4.2: Box and whisker plots of the RMS errors per patient after fitting
the models to the diaphragm motion data. (a) The RMS over the entire cycle;
(b) the RMS per phase bin; (top) the RMS per phase bin with five internal
control points for both temporal models and m = 3; (bottom) The RMS per
phase bin with the same number of degrees of freedom for both models: the Tt

model with m = 3 and seven internal control points, and the T ⇤
t model with

m = 3 and five internal control points.
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Properties Representation
T
s

T
st

T ⇤
st

s = 1 s = 2 s = 2.5 s = 2 s = 2.5

Temporal CP 9 8 7 8 7
Continuity at t = 0 � C2 C2 C0 C0

Constraints 0 4 4 2 2
Temporal DOF 9 4 3 6 5

Parameters 63 882 28 392 21 294 42 588 35 490

Table 4.2: Summary of the temporal properties for the registration methods
when using cubic splines for the spatio-temporal methods, and a control point
spacing of either 2 or 2.5 frames. The amount of temporal control points (CP)
includes the internal CP as well as the ones required at the border. The number
of degrees of freedom (DOF) are the number of CP, reduced by the number of
constraints. As an example we list the resulting number of parameters required
to register the inner thoracic region (Iin) for Patient 1.

4D CT are also shown and were linearly interpolated for clarity. The
estimates obtained using T

s

were interpolated using cubic splines. The
trajectories of the spatio-temporal methods were directly obtained from
the continuous 4D transforms. All trajectories were projected on the
sagittal plane, where motion predominantly occurs. Overall, the obtained
trajectories are quite similar. The spatio-temporal trajectories tend to be
smoother than T

s

. The main di↵erence between T
st

and T ⇤
st

is visible at
inhale (bottom of the plot). At this point, T ⇤

st

tends to be pointier and in
some cases visibly closer to the corresponding landmark.

For Patients 1-3, landmarks were available for all frames of the 4D CT.
The global registration accuracy in terms of the mean TRE based on 900
landmarks each, is summarized in table 4.3. For a s = 2 frames, the group
mean TRE of both spatio-temporal methods was within 0.1 mm of T

s

.
When increasing the temporal control point spacing from 2 to 2.5, the
TRE increased gradually (1.27 ± 1.17 mm for T ⇤

st

and 1.18 ± 1.03 mm
for T ⇤

st

), but remained comparable to T
s

. For clarity, only results using
a spacing of 2 frames will be shown in the following.

For Patients 1-3, the registration errors were also analyzed for each
frame separately. Figure 4.4a corresponds to the group mean TRE of
the entire 4D CT and figure 4.4b shows the group mean TRE per frame.
The TRE of the entire 4D CT is comparable for all methods, though
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Figure 4.3: Trajectories projected on the sagittal plane, for some landmarks
with large displacements of Patients 1-3. The trajectories obtained using
the respective registration methods are compared with the manually identified
landmark positions throughout the 4D CT. For all trajectories shown, at least
two landmark positions coincided at exhale, corresponding to position (0,0).

Patient TRE for 4D CT (mm)
Original T

s

T
st

T ⇤
st

1 3.47 ± 2.14 0.96 ± 0.66 1.02 ± 0.71 1.00 ± 0.69
2 6.41 ± 3.99 1.20 ± 0.96 1.37 ± 1.13 1.27 ± 1.09
3 3.65 ± 3.04 1.11 ± 1.14 1.17 ± 1.08 1.16 ± 1.15

GM 4.51 ± 3.15 1.09 ± 0.94 1.19 ± 0.99 1.14 ± 1.00

Table 4.3: The mean TRE obtained over the nine frames for Patients 1-3
based on 900 landmarks each, and its group mean (GM). The registration error
(± 1 SD) of the 3D registration is compared to the accuracy obtained for the
spatio-temporal algorithms with m = 3 and s = 2 frames. The original landmark
distance (Original) is given to illustrate illustrate the magnitude of the motion.
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Figure 4.4: Box and whisker plots of the group mean TRE for Patients 1-3 for
which landmarks were available in all frames, using m = 3 and s = 2 frames.
(a) The combined registration errors for the entire 4D registration. Each box
is drawn based on 2700 landmarks. (b) TRE per phase bin. For each frame,
the registration error is estimated from 300 landmarks. The 50% phase bin
corresponds to the reference frame.

T
st

performs slightly worse. The analysis per phase reveals that most
discrepancies in TRE are found for phases near inhale (0%, 10% and 90
%). T ⇤

st

generally obtains an accuracy closer to T
s

for these phases.

A separate, more extensive evaluation of the accuracy of the end-
exhale to end-inhale registration is listed in table 4.4 for Patients 1-6.
T ⇤
st

consistently outperforms T
st

in terms of mean TRE. The performance
of T ⇤

st

is comparable to T
s

, the di↵erence in group mean TRE was below
0.1 mm. In contrast, the di↵erence in mean TRE between T

s

and T
st

was above 0.1 mm for five out of six patients, and the group mean TRE
was almost 0.2 mm higher. This confirms the results reported for fitting
the diaphragm motion data in section 4.4.1, where it was found that the
smooth temporal model resulted in larger errors near end-inhale.

Table 4.3 shows relatively small di↵erences in group mean TRE over
the entire 4D CT, suggesting comparable performance for all registration
methods. This measure was found misleading, as it tends to average out
the di↵erences due to the large numbers of measurements (2700 landmarks
for each method). Further analysis showed that the performance of T

st

varied considerably from patient to patient. While for Patient 1, all
methods obtained very similar results, di↵erences in mean TRE of the
order of 0.5 mm were found at certain breathing phases for Patient 2
(figure 4.5, note the change in scale with respect to figure 4.4).
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Patient TRE for End-Inhale (mm)
Original T

s

T
st

T ⇤
st

1 6.34 ± 2.94 0.94 ± 0.51 0.98 ± 0.56 0.96 ± 0.57
2 14.00 ± 7.17 1.44 ± 1.04 1.95 ± 1.88 1.56 ± 1.34
3 7.67 ± 5.03 1.51 ± 1.66 1.63 ± 1.66 1.53 ± 1.70
4 7.33 ± 4.86 1.79 ± 2.71 1.97 ± 3.00 1.96 ± 2.92
5 7.09 ± 5.08 1.43 ± 1.39 1.54 ± 1.49 1.48 ± 1.39
6 6.68 ± 3.67 1.18 ± 0.80 1.32 ± 1.13 1.25 ± 0.95

GM 8.19 ± 4.97 1.38 ± 1.53 1.57 ± 1.78 1.46 ± 1.65

Table 4.4: The mean TRE (± 1 SD) obtained by evaluating the registration
only at the end-inhale for Patients 1-6 based on 100 landmarks each, and its
group mean (GM). The registration error of the 3D registration (Ts) is compared
to the accuracy obtained for the spatio-temporal algorithms (Tst and T ⇤

st) using
m = 3 and s = 2 frames. The original landmark distance (Original) is given to
illustrate illustrate the magnitude of the motion.
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Figure 4.5: Box and whisker plots of TRE for Patients 2 for which landmarks
were available in all frames, using m = 3 and s = 2 frames. (a) The combined
registration errors for the entire 4D registration. Each box is drawn based on
900 landmarks. (b) TRE per phase bin. For each frame, the registration error is
estimated from 100 landmarks. The 50% phase bin corresponds to the reference
frame.
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Measure Data TRE (mm)
Original T

s

T ⇤
st

global
f

9.00 ± 3.93
1.42 ± 1.30 1.44 ± 1.16

f
a

3.17 ± 3.47 1.57 ± 1.20

local
f

11.40 ± 3.74
1.38 ± 1.44 1.46 ± 1.05

f
a

6.82 ± 4.38 1.90 ± 1.22

Table 4.5: The mean TRE for the 4D CT sequence with simulated artifacts
(fa) and for the original, unmodified 4D CT (f) corresponding to Patient 2. The
evaluation is limited to the frame where the artifact is introduced. The global
TRE is based on 100 landmarks. The local TRE is based on 24 landmarks,
all within 5 slices of the inserted artifact. The registration error of the 3D
registration (Ts) is compared to the accuracy obtained for the spatio-temporal
algorithm (T ⇤

st using m = 3 and s = 2 frames). The original landmark distance
(Original) is given to illustrate the magnitude of the motion.

4.4.3 Spatio-Temporal Registration of Artifacted
4D CT

The registration accuracy obtained for the artifacted sequence f
a

is
summarized in table 4.5. We only report results using the piecewise smooth
spatio-temporal model T ⇤

st

. We also list the TRE obtained for the original
4D CT, corresponding to Patient 2. With respect to the original 4D CT,
the local and global TRE is within 0.1 mm for T

s

and T ⇤
st

. After inserting
the artifact, the global TRE more than doubles for T

s

, while the TRE
of the spatio-temporal method, increases only marginally. Locally, the
influence of the artifact is even more noticeable for T

s

. For the spatio-
temporal approach however, the local TRE remains below 2 mm for T ⇤

st

.

Figure 4.6 shows the motion fields obtained using T
s

and T ⇤
st

for the
inner thoracic region. The top row corresponds to the original 4D CT
acquisition of Patient 2. Both methods produce very similar motion
fields. The main di↵erences can be observed near the diaphragm. The
bottom row corresponds to the artifacted sequence f

a

. In this case, strong
perturbations can be observed in the motion field obtained using T

s

. The
influence of the introduced artifact is also noticeable for T ⇤

st

, but the
changes in the motion field are less dramatic.

In figure 4.7, three examples are given of motion fields in the presence
of real artifacts. The artifacts are shown in the first column and are
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(a) (b) (c)

Figure 4.6: Motion fields in the presence of simulated artifacts: the top row
corresponds to the original 4D CT acquisition of Patient 2, the bottom row
corresponds to the modified sequence fa in which an artifact was inserted. (a)
Coronal view of images, ia indicates the position of the artifact. Motion fields
obtained for (b) Ts and (c) T ⇤

st using m = 3 and s = 2 frames.
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generally most visible near the diaphragm. The second column shows the
motion fields obtained using T

s

. Strong perturbations can be seen, mainly
in the part of the motion field that maps to artifacted region; that is,
slightly above the location of the artifacts. The spatio-temporal approach
tends to be less influenced by the artifacts. The resulting motion fields
are noticeably smoother making them more plausible from a physiological
point of view.

4.5 Discussion

Spatio-Temporal Registration The principal aim of this study was to
develop a low-dimensional spatio-temporal deformation model, to improve
robustness of the subsequent registration. We pursued a restrictive
parametrization and strong temporal regularization, as these were
expected to reduce sensitivity to noise and artifacts. The parametrization
was thoroughly investigated, both spatially and temporally, to ensure
an accurate representation of breathing motion was maintained.

Based on the fitting experiments of the diaphragm motion data, cubic
temporal splines were found to perform best and selected for the temporal
parametrization. The value of the temporal control point spacing s was
found to represent a trade-o↵ between achievable accuracy on one hand
and an increase of parameters on the other, the latter likely to increase
sensitivity to noise and artifacts. In practice its value should reflect the
needs of the application and the quality of the images. Using s = 2, the
spatio-temporal models obtained results comparable to the reference T

s

method, and was considered a suitable compromise for the 4D CT images
dealt with in this study.

From a parametrization point of view, the T
st

model represents
interesting characteristics. Minimal curvature is enforced throughout the
entire cycle, and about a third less parameters are required with respect to
T ⇤
st

. Unfortunately, detailed analysis revealed larger TRE near end-inhale
for T

st

, indicating the smooth model fails to capture the full extent of the
motion. Even though trajectories are expected to be smooth functions of
time, a temporally smooth parametrization was found to be less e�cient
in terms of parameter reduction, due to the low temporal resolution of
respiratory-correlated imaging. Using T

st

⇤ a uniform performance over the
breathing cycle was obtained for all patients, and the group mean TRE
was within 0.1 mm of the reference T

s

, for both s = 2 and 2.5 frames.
The improved matching of T

st

⇤ at inhale comes at a price of two
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(a) (b) (c)

Figure 4.7: Three examples of motion fields in the presence of real artifacts
(a) Coronal view of the images. Motion fields obtained for (b) Ts and (c) T ⇤

st

using m = 3 and s = 2 frames.
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additional temporal degrees of freedom with respect to the smooth
model. Nonetheless, with respect to T

s

, this model reduces the number
of parameters to be estimated during registration by 33% and 45% for
s = 2 and 2.5 frames, respectively. The impact of the spatio-temporal
parametrization was illustrated in the experiment in which a simulated
motion-induced artifact was introduced in a 4D CT sequence. The
motion field obtained using spatio-temporal registration was found to be
considerably less influenced by the artifact, in comparison to the result
obtained using T

s

.

Temporal parametrization The experiments presented here, indicate
that the piecewise smooth representation was best suited to obtain
a uniform matching accuracy across the breathing cycle. It should not
be excluded that other piecewise models can be found, requiring less
degrees of freedom, while obtaining a similar accuracy. These could consist
in making sensible assumptions on the trajectory near inhale that can
be translated into constraints, eliminating one or both of the additional
degrees of freedom locally introduced.

From a constraints point of view, T ⇤
t

is related to the trajectory model
developed in (Castillo et al., 2010), where a compressible flow algorithm is
extended with local trajectory modelling to perform 4D motion estimation
for 4D CT. In this case however, one-way (and not cyclic) trajectories were
sought between inhale and exhale, thus not requiring further attention at
inhale. Cubic polynomials (equivalent to four degrees of freedom) were
found to provide su�cient flexibility to parametrize the sought trajectories
spanning six frames of the 4D CT. This corresponds well to the six degrees
of freedom (T ⇤

st

with a temporal control point spacing of 2) describing the
trajectory over 10 frames.

The inhale phase, though also characterized with inversion of the
motion, did not require further investigation of the constraints. It has been
reported that respiratory motion tends to be asymmetrical (Kubo and Hill,
1996; Lujan et al., 1999; Seppenwoolde et al., 2002), spending more time
near exhale then inhale. Phase bins near exhale, will represent relatively
small deformation with respect to each other. Uniformly spacing control
points with respect to these bins, will lead to a spatially higher control
point density near exhale, allowing a more accurate representation, even in
the presence of the smoothness constraints. This observation is confirmed
by the trajectories depicted in figure 4.3, where two to three manually
identified landmarks coincided with the exhale position.
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Validity of the Spatio-Temporal Models In section 4.2, we made
the assumption that the fourth image dimension was time. This allowed
us to interpret T

t

as a trajectory in function of time, and its derivatives
as velocity and acceleration. In the case of 4D CT imaging, each frame is
composed of data acquired at di↵erent times and di↵erent table positions.
The interpretation of the fourth image dimension is closely related to the
binning of acquired data, which is usually based on a surrogate signal.

The 4D CT data presented here was obtained from retrospective phase-
based binning. The procedure consisted of detecting individual cycles by
tagging the end-inhale position (local maximum) of the respiratory trace.
For each cycle, a phase function linear with time was defined between
consecutive tags from which the remainder of the phase tags are deduced.
The reconstruction of each frame is performed by considering a fixed
number of views around each relevant tag. Ignoring the non-periodic
nature of breathing motion, and assuming a one-to-one relation between
respiratory surrogate and motion, the images obtained in this fashion can
be considered equivalent to a temporal sequence.

In practice, breathing motion is not periodic and the previously
described approach leads to artifacts in presence of irregular breathing. In
response, alternative criteria for binning (Lu et al., 2005; Abdelnour et al.,
2007; Olsen et al., 2008; Zeng et al., 2008) or post-processing (Ehrhardt
et al., 2007; Schreibmann et al., 2006; McClelland et al., 2006) of
the acquired data have been proposed. While the framework remains
applicable to the obtained sequences, the interpretation of the deformation
model becomes less trivial. In addition, should the criteria become very
di↵erent, the findings concerning the geometric constraints might no longer
be valid. In practice, most criteria tend to be closely related to the
breathing phase or processing is explicitly designed to be compatible with
it (McClelland et al., 2006; Ehrhardt et al., 2007).

Influence of tagging and binning For both types of data presented,
individual cycles were detected by tagging at inhale. This conveniently
ensures that the end-inhale is accurately identified in the 4D CT, which
is where the smoothness constraint needs to be relaxed during spatio-
temporal registration. The diaphragm motion data was artificially made
periodic at inhale, to allow fitting the cyclic trajectory models. This
procedure can be held partly responsible for the rapid changes at inhale,
and contributes to the fitting residuals. To quantify the e↵ect, we repeated
the experiments when tagging at exhale. Comparatively larger residuals
were observed at exhale, indicating the influence of the tagging position.
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The highest residuals were however still observed at inhale, confirming
they are indeed caused by the sudden change in motion.

The experiments performed on the 4D CT sets and the diaphragm
motion data, showed the same trends for the relative performances of the
smooth and the piecewise smooth trajectory models. Comparatively larger
discrepancies between the models were observed at inhale when fitting the
diaphragm data. One reason is given by rendering the cycles periodic
at inhale. Another explanation might lay in the fact that the diaphragm
motion data has a considerably higher temporal resolution suggesting that,
by binning the data into ten equi-temporal phase bins, the dynamics of
the motion are partly averaged out over the 4D CT data.

Robustness to Artifacts Thoroughly evaluating the performance in
the presence of artifacts is di�cult due to the absence of a ground truth
for the underlying image. The improved robustness of the spatio-temporal
approach was therefore illustrated using a simple experiment based on
simulated data, and through examples of motion fields for real artifacts.
Further analysis of the behaviour of the spatio-temporal model in the
presence of artifacts or noise is required. In particular the influence of
aspects such as the temporal size and location of artifacts merits attention.

In the 3D (4.2) and 4D criterion (4.11), regularization terms penalizing
undesirable properties of the deformation field were not included. The
present study was limited to investigating the impact of explicit parametric
restrictions. Regularization penalties will provide additional robustness
and are expected to be complementary to parametric contributions. In
addition, the spatio-temporal framework allows regularization schemes to
be extended to the temporal dimension, as in (Brox et al., 2004).

Applications of Spatio-temporal Motion Analysis The spatio-
temporal deformation model (4.10) was applied to 4D CT of the thorax in
a 3D-4D registration framework. The model can also be applied to spatio-
temporal motion analysis between sequences. By relaxing the condition
(4.8) constraining the deformation at the reference frame, the model can be
applied to a 4D-4D, frame-to-frame registration framework. By replacing
criterion (4.11) with a suitable similarity measure, other modalities and
even multi-modal problems can be studied.

This is similar to the 4D-4D registration method for respiratory-
correlated images described in (Schreibmann et al., 2008) or the spatio-
temporal alignment of cardiac sequences treated in (Perperidis et al.,
2005). In comparison, our method assumes only frame-to-frame spatial
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deformations without temporal shifts, and constrains deformations to
a cyclic trajectory. These assumptions limit the degrees of freedom, and
should be well suited to analyse motion patterns between for instance
respiratory-correlated 4D CT, 4D cone-beam CT (Sonke et al., 2005) or
4D magnetic resonance (von Siebenthal et al., 2007).

4.6 Conclusion

We developed a spatio-temporal deformation model for deformable
registration of respiratory-correlated images of the thorax. The model
consists of an extension of spatial free-form deformations to the temporal
domain, using a cyclic trajectory model based on cubic B-splines. A
piecewise smooth temporal parametrization was found most suitable to
account for the rapid changes in velocity at end-inhale. Spatio-temporal
modelling resulted in a considerably more compact description of the
deformation model. Spatio-temporal registration lead to comparable
registration results and improved the robustness to artifacts.
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Abstract Respiratory motion introduces uncertainties when planning and

delivering radiotherapy for lung cancer patients. Cone-beam projections

acquired in the treatment room could provide valuable information for building

motion models, useful for gated treatment delivery or motion compensated

reconstruction. We propose a method for estimating 3D+T respiratory motion

from the 2D+T cone-beam projection sequence by including prior knowledge

about the patient’s breathing motion. Motion estimation is accomplished by

maximizing the similarity of the projected view of a patient specific model to

observed projections of the cone-beam sequence. This is done semi-globally,

considering entire breathing cycles. Using realistic patient data, we show that the

method is capable of good prediction of the internal patient motion from cone-

beam data, even when confronted with interfractional changes in the breathing

motion
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Introduction

5.1 Introduction

In radiotherapy, breathing motion causes uncertainties in the dose
delivered to the tumour. The existing approaches to take respiratory
motion into account include adding safety margins to ensure target
coverage, breath-hold, gating, or tracking of the target (Keall et al., 2006).
An important prerequisite to plan and evaluate treatment when using
these techniques is a detailed knowledge of the motion. Four-dimensional
(4D) computed tomography imaging (Ford et al., 2003) or cone-beam (CB)
CT (Sonke et al., 2005), consisting of three dimensional (3D) frames each
representing a breathing phase, can provide additional motion information.
However, no intercycle variability can be measured as they represent a
single respiratory cycle.

Breathing motion occurs predominantly in cranio-caudal direction and
tends to be larger for the lower lobes (Keall et al., 2006). Trajectories
of tumours and organs can be subject to hysteresis (Seppenwoolde et al.,
2002), i.e. a di↵erent path is followed during inhalation and exhalation.
Cycles can di↵er from one another in breathing rate and level (George
et al., 2005); the latter influencing the amplitude of the motion. Variations
in the mean tumour position (baseline) between and during fractions have
also been reported (Seppenwoolde et al., 2002; Sonke et al., 2008).

Previously, 4D CT (Zhang et al., 2007) and cine CT volume segments
covering multiple cycles (McClelland et al., 2006) have been used to model
breathing motion. The small amount of acquired breathing cycles limits
their ability to model intercycle variability. 4D MRI (von Siebenthal
et al., 2007) covering more cycles could o↵er a solution to this problem.
Regardless of the chosen approach, one should be able to detect and correct
for interfractional changes in breathing motion that occur frequently
between treatment sessions (Seppenwoolde et al., 2002; Sonke et al., 2008).

A CB projection sequence consists of a series of wide angle X-ray
projections taken from rotating views around the patient. CBCT is
routinely acquired for patient setup in many institutions, immediately
before treatment, with the patient in the treatment position. Zijp et al.
(2004) have a fast and robust method for extracting a respiratory phase
signal from a CB projection sequence. By establishing a relation to a prior
4D CT, Rit et al. (2008) obtained a motion model that proved suitable
for motion compensated CB reconstruction. Zeng et al. (2007) estimated
motion from a projection sequence by deforming a reference CT image
so that its projection views match the CB sequence. Optimization of
the large number of parameters of a B-spline based deformation model
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required adding aperiodicity penalties to the cost function to regularize
the problem.

This article deals with in situ motion estimation from CB projection
data for radiotherapy of lung cancer. With respect to (Zeng et al., 2007)
we incorporate prior knowledge in the form of a patient-specific model,
significantly reducing the number of parameters to be identified. No
intercycle regularization is required and we obtain improvement in speed
and robustness. Within-cycle smoothness is guaranteed automatically,
through the use of a B-spline temporal model.

5.2 Method

First, a parametric patient-specific motion model with a small number
of degrees of freedom is built from a 4D CT image routinely acquired
preoperatively for the irradiation treatment planning of the considered
patient group. The model is able to represent changes in the breathing
phase in addition to small variations in breathing pattern. The model
is then fitted to the CB projection sequence by optimizing the model
parameters to maximize the similarity between the acquired 2D CB
projections and simulated projection views of the model. Individual
cycles are processed separately and a smooth motion estimate is found
by simultaneously considering the whole cycle with suitable boundary
conditions.

5.2.1 Motion Model

Using the demons algorithm (Thirion, 1998), which was available and
well-understood in our group at the time of this study, we deformably
register a manually chosen reference frame f⇤ to all other frames f# of the
4D CT, where # 2 [0; 1) is the breathing phase. f⇤ should be chosen as to
contain as little artifacts as possible. End-exhale is usually a good choice.
Let g#(x) be the resulting deformation vector field, mapping f⇤ to f#. All
deformation fields are averaged and a mean position image f̄ is created by
backward warping of f⇤ (Wolberg, 1990) (Figure 5.1a).

f̄(x) = f⇤
�
ḡ�1(x)

�
with ḡ(x) =

1

b

bX

✓=1

g✓(x) (5.1)

All structures appear at their time-weighted mean position in the image
f̄ (Wolthaus et al., 2008). Next, f̄ is registered to the original frames f#.
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The resulting deformation fields are represented using B-splines as

T#,↵(x) = x + ↵
X

i

X

j

a
ij �

n
x

✓
x � x

i

�
x

◆
�n#

✓
#� #j

�#

◆

= x + ↵D#(x) (5.2)

where �n(.) are B-splines placed at positions x

i

, #j with uniform spacing
�

x

, �#; a
ij are the B-spline coe�cients. As # varies from 0 to 1,

the deformation model produces a motion corresponding to an entire
breathing cycle starting from end-exhalation. Note that this allows to
model hysteresis. The second parameter ↵ is an instantaneous amplitude
(it can vary with #) and helps to model variations of the trajectory shape
and breathing level. We chose cubic spline interpolation for phase space
(n#=3). For the spatial dimension however, since dense deformation
fields are available, a fast nearest neighbour (n

x

= 0) is employed. The
coe�cients a

ij are found quickly using digital filtering (Unser, 1999).
Image s#,↵ for a particular breathing state described by #,↵ (Figure 5.1b)
is obtained through forward warping (Wolberg, 1990) (where the subscript
for T was omitted)

s#,↵
�
T (x)

�
= f̄(x) . (5.3)

5.2.2 Cost Function and Optimization Strategy

We propose to optimize the parameters of the model together for each
breathing cycle. This renders the method more robust with respect to
simply considering each projection separately (see Section 5.3), but is
computationally more tractable than a truly global optimization (over
many breathing cycles). Since breathing cycle extrema can usually be
identified well, the accuracy is not compromised.

Given a CT volume f , an ideal cone-beam projection image p can be
calculated using a linear projection operator P� where the parameter �
fully describes the (known) camera position and orientation:

p = P� f (5.4)

Figure 5.2a and 5.2b show a CB projection view of a mean position image f̄
compared with a CB projection of the same patient. We measure similarity
between an observed CB projection p̂ and a modelled breathing state
s#,↵ by calculating the normalized correlation coe�cient (NCC) in the
2D projection space:

J(#,↵;�) = NCC(p̂,P�s#,↵) . (5.5)
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(a) (b)

Figure 5.1: (a) The procedure for obtaining a mean position image f̄ . (b)
A schematic representation of the representable space for the proposed model.
Consider a point with position in f̄ (middle red oval). Its position in all frames
of the 4D CT (white ovals) is interpolated yielding the estimated breathing
trajectory (bold curve). The amplitude parameter ↵ allows to reach breathing
states s#,↵ o↵ the trajectory.

(a) (b) (c)

Figure 5.2: (a) A simulated CB projection view calculated from the mean
position image f̄ and (b) a true CB projection of the same patient from the
same viewpoint. Note that the images are very similar except for a horizontal
reinforcement of the treatment table visible in the true CB projection. (c) Colour
overlay of preregistered end-inhalation frames from the two 4D CT acquisitions
of Patient 1.
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In a first step, we detect the approximate time positions (projection
indexes) te corresponding to extreme breathing phases (Zijp et al., 2004).
The method is based on taking image derivatives and analyzing 1D
projections of the obtained image. Second, we refine the parameters #(te)
and ↵(te) by minimizing

J (#(te),↵(te);�) + w (#(te) � #e) with w(y) =

⇢
0 for|y|  h
�|y|2 otherwise .

(5.6)
Note we are favouring solutions near the expected phase value #e. Powell-
Brent (Press et al., 1992) multidimensional search was used with h = 0.1
and � = 20 with initial values ↵(te) = 1 and #(te) = #e = #ee or #ei for
end-exhalation and end-inhalation, respectively. The values for both #ee
and #ei were determined by applying the extrema detection method (Zijp
et al., 2004) to simulated projections of the model with slowly varying
phase.

Let te and te0 be the two end-exhalation positions, the beginning and
end of a breathing cycle. We have just shown how to get # and ↵ at te,
te0 , what remains is to obtain the estimates also for frames te+1

, . . . , te0�1

.
Assuming temporal smoothness, we propose to represent # as

#(t) =
kX

i=0

ci �
n#t

✓
t � ti
�#t

◆
for te < t < te0 , (5.7)

where k is the number of control points, ti are the temporal position of the
knots, �#t is the knot spacing and ci are the B-spline coe�cients. Fixing
the value for #(te) we can express the boundary coe�cient c

0

as

c
0

=
#(te) �

Pk
i=1

ci�
n#t

⇣
te�ti
�#t

⌘

�n#t

⇣
te�t0
�#t

⌘ , (5.8)

and similarly for ck. A B-spline expansion with coe�cients dj is used
to represent ↵(t). By summing the contributions for m di↵erent time
instances within the cycle and using equations (5.5),(5.7–5.8), we obtain
the following similarity measure:

J t(c,d) =
1

m

mX

t=1

J (#(te + t),↵(te + t);�(te + t)) . (5.9)

We find the coe�cients c = [c
1

, . . . , ck],d = [d
1

, . . . , dl] by minimizing
J t, using a Nelder-Nead downhill simplex algorithm (Press et al., 1992),
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Figure 5.3: Results of sequential motion estimation for Patient 1: the recovered
phase (a) and amplitude (b) (dashed line) together with the parameters used to
generate the CB sequence (full line). The reference amplitude is a constant,
↵ = 1.

which performed well in this high dimensional search space, requiring less
iterations than Powell-Brent and yielding comparable results. A linear
progression is used as a starting point. We use a quadratic B-spline
representation (n#t = n↵t = 2) with k = l = 4.

5.3 Experiments and Results

Accurately evaluating the 2D-3D motion estimation is very di�cult, as
no ground truth is available. In this work we use pairs of 4D CT sequences
acquired for three lung cancer patients using a Philips Brilliance BigBore
16-slice CT scanner (Philips Medical Systems, Cleveland, OH). The time
between acquisitions ranged from 20 minutes (Patient 1 and 2) to 3 days
(Patient 3). Patients 1 and 2 were asked to stand up from the acquisition
table and walk around for 10 minutes before repositioning and acquisition
of the second 4D CT. In spite of the small time between the acquisitions,
substantial di↵erences can be observed between the two subsequent 4D
CT acquisitions due to interfractional changes in breathing motion (see
Figure 5.2c). We used the first 4D CT sequence to construct a patient
model as described in Section 5.2.1. The second acquisition was first rigidly
registered to the first 4D CT to align the bony structures. In order to
have a ground truth available, we took the mean position image from the
first sequence and the deformation fields from the second sequence to get
a simulated reference 4D CT sequence. A respiratory trace was randomly
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(mm) original residual

µ � max µ � Max
Patient 1 3.8 2.1 17.1 1.1 0.6 8.3
Patient 2 2.8 1.7 16.1 1.6 0.8 11.0
Patient 3 3.7 1.6 13.8 1.3 0.7 5.8

Table 5.1: Results of the semi-global motion estimation. The residual
misalignment (residual) between the found and the true motion: the mean (µ),
standard deviation (�) and maximum (max ) is compared to the original motion
with respect to f̄ (original).

generated (George et al., 2005) and a piecewise linear phase signal #(t)
with variable breathing rate was derived. We simulated the first 90� of a
CB acquisition protocol in our institute by calculating 150 projections for
evenly spaced angles from the reference 4D CT with varying phase value
over a period of 30 s.

When optimizing separately for each projection the criterion (5.5)
with respect to # and ↵, we obtained bad results when confronted
to interfractional changes in breathing motion (see Figure 5.3, results
for other patients were similar). Note that an optimal result doesn’t
necessarily mean recovering identical parameter values as they correspond
to di↵erent deformation fields. In this case however, we can observe how
intermediate phases during inhalation (# ⇡ 0.2) and exhalation (# ⇡ 0.8)
are confused, due to limited hysteresis and unfavourable projection angle
and are accompanied with strong variations in amplitude.

The phase and amplitude found for Patient 3 using our semi-global
criterion (5.9) are shown in Figure 5.4a and 5.4b, together with the
parameters used to generate the CB sequence. To evaluate the accuracy
we calculate the residual geometric misalignment (i.e. the norm of
the di↵erence between deformation vector fields) between the estimated
motion and the true motion. This measure is averaged over the lower
lung, where the largest motion tends to occur. For comparison, the original
misalignment, i.e. the motion with respect to the mean position image,
is also given. Table 5.1 contains the average over all projections for each
patient. Figure 5.4c shows this mean misalignment as a function of the
projection index for Patient 3. Note that while displacement might locally
attain 3cm, the average motion as seen from the mean position does not
exceed 1cm.
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Figure 5.4: Results of the semi-global motion estimation for Patient 3: the
recovered phase (a) and amplitude (b) (dashed line) are shown together with
the parameters used to generate the CB sequence (full line). The reference
amplitude is a constant, ↵ = 1. (c) The resulting residual misalignment (dashed
line) is shown in comparison with the original misalignment with respect to the
mean position image (full line).
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5.4 Discussion and Conclusion

We achieved a smooth motion estimation from a CB projection
sequence using B-splines and by considering the complete movement in
a respiratory cycle and obtained a considerable reduction of the original
misalignment for all patients.

To our knowledge this is the first time a respiratory motion model
is tested against clinical data containing real interfractional changes in
breathing motion. Some additional challenges presented by real CB data
will include dealing with scatter (Zeng et al., 2007) and detecting and
correcting for rigid misalignment (setup errors).

As a consequence of generating the ground truth, baseline shifts were
not present in our patient data. Changes in breath rate, breathing level
or trajectory shape were however present. It is expected that the method
will be able to cope with small shifts (< 20% of the motion amplitude).
For larger shifts, a prior shift estimation can be performed, e.g. from a 4D
CBCT (Sonke et al., 2005).

In this work we exploited only acquisitions already acquired for
treatment purposes. More preoperative data, such as breath hold CT
scans (McClelland et al., 2006; Zeng et al., 2007) or MRI data (von
Siebenthal et al., 2007), could further improve the prior model, rendering
it’s construction more robust to artifacts and providing prior information
on the intercycle variation.
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6
2D-3D Deformable Registration for

Monitoring Baseline Variations

Abstract The advent of cone-beam computed tomography and arc therapy

has made it technically feasible to acquire cone-beam projections between and

during treatment beams. Baseline variations of the tumour have been reported

to occur frequently, between and during treatment fractions. This type of lung

motion has a potentially large dosimetric impact if not properly accounted

for. We describe a method for monitoring baseline variations with respect to

a reference image, from a selection of cone-beam projections acquired over a

limited arc. The sought deformation is represented as a B-spline deformable

transform whose dimensionality is reduced by including physiological priors.The

method consists of measuring the similarity between the projections and the

projection views of the reference image. An e�cient computation is obtained

by integrating the projection information over the image space. We perform

a feasibility study using repeat CT acquisitions of the same patient, allowing

to simulate a projection sequence representing real interfractional changes with

respect to the reference image. Results were promising, showing a considerable

reduction of initial misalignment. Further research is required to assess the

utility of the method.
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Introduction

6.1 Introduction

Cone-beam computed tomography (CBCT) (Ja↵ray et al., 1999, 2002)
has become widely adopted for soft tissue imaging before treatment
delivery of highly conformal radiotherapy. Intensity modulated arc therapy
(IMAT) (Yu, 1995; Duthoy et al., 2004) recently became commercially
available, and improves conformity of the high-dose region with the
target while o↵ering a considerable speed-up of treatment delivery. These
advancements have made it technically feasible to acquire projections
just before treatment, between treatment beams or during arc therapy
delivery. The availability of large amounts of patient data, in addition to
possible future applications involving imaging during treatment delivery,
has increased the interest in optimizing the use of CBCT. Research is
focussed on one hand on optimizing reconstruction and use of CBCT. For
many clinical applications, a full 3D image is not required. An alternative,
but highly interesting path of investigation is therefore similarly being
pursued in directly exploiting projections or subsets of projections from
a rotational projection series. Dose methods could potentially reduce the
imaging dose to the patient, or extend the use of rotational projections.

Several authors have explored the utility of cone-beam projections for
tumour tracking using implanted, radiopaque markers. The markers can
be detected quickly and reliably in the X-ray projection views and their
motion is used as a surrogate for tumour motion. The tracking results
in valuable motion data, useful for characterizing intra- and interfactional
tumour motion (Marchant et al., 2008; Poulsen et al., 2008). Alternatively
these approaches could enable strategies for simultaneous tracking and
arc treatment delivery (Poulsen et al., 2010). Two significant drawbacks
of implanted marker tracking are risks of clinical complications such as
pneumothorax (Geraghty et al., 2003), and the possibility of marker
migration (Nelson et al., 2007). Markerless tumour tracking from cone-
beam projections has therefore also been explored, but is challenging
because the tumour is hard to identify in the X-ray images. Fluoroscopic
tracking generally relies on patient-specific training data to be acquired
for the considered projection angle (Lin et al., 2009), which is unpractical
for the 3D cone-beam geometry. Alternatively, template matching using
templates previously calculated from 4D CT has been investigated (Lewis
et al., 2010; Hugo et al., 2010).

A di↵erent type of studies has focussed on reconstructing volumetric
images from subsets of projections acquired over short rotational arcs
(typically 45-90�), termed tomosynthesis. This image modality has mostly
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been applied to breast cancer screening (Niklason et al., 1997), but
its utility has been illustrated for image guidance in radiotherapy as
well (Tutar et al., 2003; Godfrey et al., 2006). Related to this is the work
of Tomazevic et al. (2006) on reconstruction based 3D-2D registration.
The problem is approached by reconstructing a 3D image from a limited
number of 2D views (though generally over a larger arc than 90�). The
registration is subsequently performed in 3D space by estimating the
optimal spatial correspondence between the reconstructed image and the
reference 3D image, and by using specific similarity measures to account
for the reduced image quality (Skerl et al., 2006).

A last line of research lies in directly relating cone-beam projections to
a reference CT or 4D CT. Such methods have been used for some time,
mostly for rigid alignment. More recently, projections acquired during arc
rotations have been used to estimate breathing motion and deformation
parameters (Blondel et al., 2004; Zeng et al., 2005; Li et al., 2006; Zeng
et al., 2007; Vandemeulebroucke et al., 2009; Long et al., 2010) (see also
section 1.2.4.3). The potential of these methods becomes clear, when
considering the low amount of information needed to estimate the position,
pose or motion of a patient. Lung motion quantification from cone-beam
projections, would make a large amount of patient data available for
motion characterization, which is currently unexploited for these purposes.
The reduced amount of data required for motion estimation, also o↵ers
a potential increase in the temporal updates of the patient state during
treatment delivery. The latter is our main ambition in this study.

In this study, we explore the feasibility of updating a patient state,
represented by a reference CT image, by relating it to a limited amount
of cone-beam projections. More specifically we aim at estimating the 3D
deformation, that is present between the reference image and the in-room
projection views of the patient. The reference image could be a previous
acquisition representing the patient at exhale, at its time-weighted mean
position (Wolthaus et al., 2008) or could simply be the image used during
treatment planning. Similarly, the set of projection sequences could be a
continuous series of rotational X-ray projections, or a subset representative
of the breathing state of interest. Several methods for extracting breathing
phases for cone-beam projection sequences are available (Zijp et al., 2004;
Rit et al., 2005), and their performance and influence on the resulting
motion estimate will not be considered here. The set of projections is
simply assumed to represent the patient state of interest.

Our main application is the detection of baseline variations, known
to occur during and between treatment fractions (Seppenwoolde et al.,
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2002; Purdie et al., 2007; Sonke et al., 2008). This type of lung motion
causes a shift in mean target position, which is di↵erent from the pseudo-
periodic motion of thoracic structures due to breathing motion. If not
properly accounted for, the dosimetric impact of baseline variations can
be substantial (Sonke et al., 2008). In the following we are assuming
that periodic imaging is available during treatment, either between beams
(for instance, over the arc length required to reposition the high-energy
source for the next beam) or during delivery of arc treatment. The
provided patient update can thus be seen as intrafraction monitoring of
the patient state. Alternatively, the method could be useful to provide an
initial estimate of potential baseline shifts, enabling subsequent respiratory
motion estimation from the cone-beam projection sequence as described
in chapter 5.

While the method presented in the following sections was fully
implemented, the study was not fully completed due to time restrictions.
The experiments performed were therefore inconclusive on the potential of
the approach, in particular with respect to other approaches reported in
literature. The full description of the method is given, mainly for future
reference, and is completed by a simple feasibility study.

6.2 Method

6.2.1 Problem Description

Suppose we dispose of a 3D CT reference image of the patient f
r

(i) 2 R
with i 2 I ⇢ Z3 the 3D index space. Consider now a projection sequence
p, composed of NK 2D X-ray projection views pk(u) 2 R with u 2 U ⇢ Z2

the 2D index space of the projection and k 2 K 2 Z the set of temporal
indices. For each of the projection views, the projection geometry is
assumed to be fully known, providing us with the relation between the
indices i and u.

The goal is to estimate the 3D non-rigid transformation T�(x) 2 R3

with x 2 X ⇢ R3 the continuous 3D coordinate, that is required to align
f
r

with the projection sequence p.

6.2.2 Spatial Transformation

We express the sought transformation as the combination of the
identity transform and a shift � which is a function of x

T�(x) = x + �(x) . (6.1)
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Little is known about the spatial representation of baseline variations.
Studies have mainly focussed on the tumour, and reported shifts in all
three dimensions (Seppenwoolde et al., 2002; Sonke et al., 2008). To
ensure a flexible representation, we retain a deformable transformation
based on B-splines (Rueckert et al., 1999). However, baseline variations
are suspected to be mainly caused unintentionally, as a result of gradual
patient relaxation, changes in stomach filling or muscle tone (Shirato et al.,
2004). Based on these physiological considerations we make the following
two assumptions. The first is that � is limited to spatially (very) smooth
deformations. The second assumption is that this passive phenomenon
does not a↵ect the intercostal muscles and thoracic cage, but only the
inner thoracic structures.

Making use of the method described in chapter 3, we first extract
the subregion I

in

⇢ I from f
r

, corresponding to the lungs, mediastinum
and abdomen. This allows us to propose the following piecewise smooth
definition for �, based on free-form deformations

�(x) =

(P
j2J aj

�n(x/h � j) for bxc 2 I
in

0 elsewhere .
(6.2)

In this equation, bxc represents the operation of rounding x to the nearest
index, j 2 J is the set of spatial indices, �n(x) is tensor product of centered
B-spline kernels of degree n (we used cubic B-splines, n = 3), h 2 R is the
uniform B-spline control point spacing, and the a

j

2 R3 are the B-spline
coe�cients characterizing the transformation. T� can be used to transform
the reference image f

r

, obtaining the deformed image f�

f�(i) = f
r

�
T�(i)

�
, (6.3)

in which it was assumed that we can evaluate the intensity function f
r

at non-grid positions. We used cubic B-splines to provide the required
intensity interpolation.

6.2.3 Similarity Measure

What remains to be defined is the method for measuring similarity
between the 3D image f�, and the set of 2D projections p. We make use
of the known projection geometries to define the projection operator Ak

associated to the projection pk. Using the CT imaging principle (Macovski,
1983), this allows us to calculate the 2D projection view, g�,k(u) 2 R, of
the deformed volume f�

g�,k = Akf� . (6.4)
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We propose to measure similarity between measured projection p, and
a simulated projection view g by calculating the normalized correlation
coe�cient J in the 2D projection space U

J (p, g) = �1 ⇥
P

u2U

�
(p(u) � p̄)(g(u) � ḡ)

�
q�P

u2U(p(u) � p̄)2
��P

u2U(g(u) � ḡ)2
� , (6.5)

in which p̄ is the mean intensity, calculated over the NU samples of the
projection space U, i.e.

p̄ =
1

NU

X

u2U

p(u) . (6.6)

The criterion (6.5) is negated to obtain a minimization problem. Extending
this principle to take into account all measured projections, similarity
between the deformed image f� and the NK projections of p is computed
as follows

J
m

(p, f�) =
1

NK

X

k2K

J (pk, g�,k) . (6.7)

6.2.4 Optimization

Using the definitions of the previous sections, the problem of estimating
the deformation between the reference image f

r

and the set of measured
projections p comes down to estimating the set of parameters a⇤, optimal
in the sense of the defined criterion J

m

a

⇤ = arg min
a

J
m

(p, f�) . (6.8)

A coarse to fine multiresolution approach is employed to solve
problem (6.8), in which the resolution of the 2D and 3D images and of the
B-spline control point grid �, is double in each resolution level. The final
image resolution for the projection images was 1⇥1 mm2 and 2⇥2⇥2 mm3

for the 3D image.
Each level was handled by limited memory implementation of the

BFSG (Nocedal, 1980) optimization strategy. The partial derivatives to
the parameters can be found as follows

@J
m

(p, f�)

@a
=

1

NK

X

k2K

X

u2U

@J (pk, g�,k)

@g�,k(u)

@g�,k(u)

@a
(6.9)
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with

@J (p, g)

@g(u)
= �1r�P

v2U(p(v)�p̄)2
��P

v2U(g(u)�ḡ)2
�

⇣
(p(u) � p̄) � (g(u) � ḡ)

P
v2U(p(v)�p̄)(g(v)�ḡ)P

v2U(g(v)�ḡ)2

⌘
(6.10)

and
@g�,k
@a

= Ak
@f�
@x

@T�

@a
. (6.11)

From (6.9), it can be seen that calculating the partial derivatives initially
involves NK projections for computing g�,k, required for the calculation
of (6.10). The second factor in the multiplication in (6.9) is less trivial.
From (6.11) it can be seen that integrating its contribution over the 2D
projection space requires the projection of @f�

@x
@T�
@a which is a vectorial

image with 3NJ components (i.e. the number of parameters of the
transformation T�). Even when limiting � to smooth deformations by
considering only a couple of control points along each dimension, 3NJ

quickly amounts to hundreds of parameters, rendering the computational
cost of this calculation prohibitive.

Alternatively, we can infer the contributions of both factors in (6.9), by
integrating over the 3D image index space. By rearranging the summation
over U and the projection operator Ak, we obtain

@J
m

(p, f�)

@a
=

1

NK

X

k2K

X

i2I

⇠�,k(i)
@f�(i)

@x

@T�(i)

@a
, (6.12)

in which

⇠�,k = A0
k
J (pk, g�,k)

@g�,k
(6.13)

and A0
k corresponds to the backprojection operator. Using this alternative

procedure, computing the partial derivatives still requires the NK

projections of f�. However, the 3NJNK projections of the second part of
the calculation corresponding to (6.11), are now replaced by backprojecting
(6.10) for each of the NK projection views.

An additional advantage of this calculation procedure comes from the
fact that the contributions of each of the projections can be summed more
e�ciently. @T�

@a is 3D tensor image (with 3 ⇥ 3NJ tensor size), which
cannot be stored on disk. Its pixel values have to be recalculated for
each evaluation. By inverting the summations over the projection views
and the pixel space in (6.12), each @T�(i)

@a is calculated only once.
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Example to illustrate the 2D-3D registration approach using a
simple geometry: (a) axial slice of colour overlay of two images, misaligned by
translation; (b) colour overlay of the cone-beam projection views from the lateral
right side, (c) image corresponding to the partial derivative of the similarity
between the projection views, @J /@g�,k in (6.10); backprojection ⇠�,k of this
image for the same axial slice as in (a); the sum of multiple backprojections
1/NK

P
k2K ⇠�,k for NK = 5 (e) and 30 (f ).

The procedure is illustrated with an example using a simple geometry.
Consider figure 6.1a in which an axial slice is shown of two images in colour
overlay. The green one was obtained by translating the purple one in all
three directions. Suppose that one corresponds to f

r

, while the other is
used to generate a projection sequence obtained from rotating views every
12�. Figure 6.1b shows the colour overlay of the projection views from
the lateral right side of both images (i.e. g�,k and pk). Figure 6.1c is the
image that corresponds to the partial derivative @J /@g�,k in (6.10), and
figure 6.1d the backprojection ⇠�,k of this image for the same axial slice as
figure 6.1a. Similarly, figure 6.1e and f show 1/NK

P
k2K ⇠�,k for NK = 5

and 30, respectively.
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(a) (b)

Figure 6.2: (a) Images used for the feasibility study: coronal slice of colour
overlay of the exhale frames of two 4D CT acquisitions of the same patient.
Interfractional changes are visible such as changes in stomach filling, setup errors
and baseline variations. One is used to generate the projection sequence p,
and the other will serve as reference image fr. (b) Coronal slice of the colour
overlay between the image used to generate the projection sequence p, and the
transformed reference image f� found as a result of the registration method. The
resulting deformation field is shown in overlay.

6.3 Feasibility Study

We performed a simple experiment to illustrate the feasibility of the
approach. We used the end-exhale frames of repeat 4D CT acquisitions
of the same patient. The time between acquisitions was two days. The
images are shown in colour overlay in figure 6.2a. Interfractional changes
are noticeable between both acquisitions such as changes in stomach filling
and gas in the intestine. Also visible are changes in the patient positioning
due to small setup errors with respect to the ribs and apex of the lung.
The inner thoracic structures seem a↵ected by a comparatively larger
misalignment, due to variations in baseline. All of these changes can be
expected between planning and treatment, and the simulation setup can
therefore be considered realistic from a motion point of view.

The first acquisition was used as the reference image f
r

. The motion
mask was computed for this image, following the method described in
chapter 3. From the second acquisition, the projection sequence p was
simulated, by calculating ten projection views from evenly spaced angles
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ranging from 0� (lateral right) to 90� (anterior). These parameters roughly
correspond to selecting the projections corresponding to end-exhale for a
quarter of a standard CBCT acquisition. T� was configured using a large
control point spacing, we used h = 100 mm. The resulting rectangular
control point grid required 540 parameters to cover the motion mask and
the borders just outside of I

in

.
Execution of the algorithm required about 10 min on an eight-core

system. The result of the registration, in the form of the transformed
reference image f� and the found motion field, are shown in overlay
in figure 6.2b. The initial misalignment has been visibly reduced for
diaphragm and target. The found motion field is overall very smooth.
The magnitude of the displacement ranges from 4 mm near the apex of
the lung, to 7.5 mm near the diaphragm

Limited quantitative evaluation was also performed to asses the
alignment of the treatment target. We manually identified the position of
a vessel near the tumour in both images before registration. The original
misalignment in all three directions was -1.1 mm (LR), -2.1 mm (AP)
and -6.1 mm (CC). The vessel was reidentified in the transformed image.
The residual misalignment was found to be -0.8 mm (LR), -2.6 mm (AP)
and -0.6 mm (CC). The largest misalignment was present CC-direction,
and was well compensated after registration. The comparatively smaller
misalignments in LR and AP directions, were however hardly reduced or
were even slightly larger after registration.

6.4 Discussion and Perspectives

The experiment illustrates the feasibility of the approach. Much more
experiments are required however to thoroughly assess the performance
of the method. In particular, the influence of the number of projections
and arc length should be investigated. The use of smaller arcs would
considerably extent the utility of the method. Another aspect that requires
attention is the influence of the direction of the deformation with respect to
the projection angle. Misalignments in the axial plane, were less e↵ectively
estimated in comparison to the CC component. Due to the 90� arc length,
projections were available that allowed to estimate all components. The
projection geometry however allows to estimate CC misalignment from all
projections, making the method potentially more sensitive to shifts in this
direction.

Baseline variations were represented using a B-spline transform, to
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maintain flexibility. The dimensionality in terms of parameters, was
reduced by including priors about the physiology of baseline variations.
Deformation was assumed to be smooth and not to a↵ect the outer thoracic
structures defined by a motion mask. The latter allowed to parametrize
the transform using a limited amount of control points. Based on the
results of the feasibility study, it seems desirable to further constrain the
transformation. In particular, we could demand that deformation near
the edges of the motion mask be parallel to the surface of the mask. This
would avoid displacement of the thoracic cage, in correspondence with the
demand that deformation is zero for the outer thoracic structures. By
integrating such a penalty in a small region near the surface of the motion
mask, sliding motion would be favoured while other types of deformations
are not excluded for the inner structures.

Assuming, the baseline can be estimated with su�cient accuracy using
the method described in this chapter, we can extend the patient model
proposed in chapter 5. Recall that the patient model was composed of a
reference image f̄ and a deformation model T#,↵. The deformation model
was initially obtained by estimating the phase to phase deformations in a
4D CT acquisition, with respect to the time-weighted mean position. To
allow some variability in the model, the deformation component D# was
scaled by an amplitude ↵

T#,↵(x) = x + ↵D#(x) . (6.14)

Modelled patient images for model parameter values # and ↵ can be
obtained by forward warping the reference image with the deformation
model (figure 6.3a)

s#,↵
�
T#,↵(x)

�
= f̄(x) (6.15)

Variations in the mean position might be too large to be accounted
for adequately by varying # and ↵. With baseline monitoring in the
treatment room, a third mechanism to compensate for motion variations
can be introduced, allowing to locally compensate for baseline variations
using the shift �. Assuming the shift was measured with respect to the
mean position image, the full deformation model taking into account the
breathing phase, amplitude and potential shifts can be denoted as

T#,↵,�(x) = x + �(x) + ↵D#(x) , (6.16)

and patient images at the corresponding modelled state can be obtained
in a similar way to (6.15), by forward warping f̄ using T#,↵,� (figure 6.3b).
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(a) (b)

Figure 6.3: Schematic representation of the model parametrization. (a) Two-
parameter model which is able to describe the intracycle variations that occur
between breathing phases, and allows to globally modify the breathing pattern to
account for intercycle variability (b) Three-parameter model, which in addition
allows for a local periodic update to account for intra- and interfractional baseline
variations.
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6.5 Conclusion

We described a method for estimating a 3D deformation between a
set of projections and a reference image. The approach consisted of
measuring the correlation between the projections and the projection views
of the reference image in 2D projection space. A computation scheme was
presented in which the 2D information is integrated over 3D space, allowing
to estimate non-rigid transformations requiring many parameters.

The method was applied to the case of estimating baseline variations
from a selection of cone-beam projections. The transformation
dimensionality was reduced by assuming the deformation was spatially
smooth, and only a↵ected the inner thoracic structures defined by a motion
mask.

A preliminary feasibility study was performed in which the cone-beam
projections were simulated from a second CT acquisition of the same
patient. The method showed potential, compensating the majority of the
misalignment. Further work is however required to assess the accuracy
and utility of the approach.
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7
Conclusions and Perspectives

Abstract This chapter is dedicated to conclusions with respect to the

contributions described in previous chapters. Though the chapters might not

easily fit into one class, the work presented can be seen as serving three

basic purposes. A first part of the contributions was conceived to facilitate

establishing a prior about the patient’s breathing pattern from 4D CT, and

attention was given to the B-spline representation of the deformation model.

In a second instance, we made e↵orts towards respiratory motion modelling.

A registration-based modelling approach was described, in which respiratory

motion was decomposed and each aspect was accounted for with adapted spatial

and temporal responses. The last part concerned applying the proposed patient

model to intrafraction motion estimation from cone-beam projections. We will

a give brief overview of each of these parts, and detail some perspectives that were

identified in retrospect, or that concern uncompleted work. Finally, a broader

look on the topic is presented along with some closing remarks.
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Deformable Registration of the Lungs

7.1 Deformable Registration of the Lungs

7.1.1 Fast B-spline Interpolation using B-LUTs

In chapter 2, we described a fast alternative to B-spline interpolation
based on an approximate calculation using precomputed B-spline weights.
During B-spline indirect transformation, these weights are e�ciently
retrieved in a nearest-neighbour fashion from a look-up table, greatly
reducing overall computation time. Free-form deformations using B-LUTs
were also implemented, providing a considerable speed-up compared to
conventional B-splines and requiring less memory than other proposed
software accelerations. In addition, for the case of deformable registration
using a free-form deformations, the use based on B-LUTs results in an
exact B-spline calculation. The B-LUT source code, compatible with the
ITK toolkit, was made freely available.

A LUT for the Spatial Derivatives of B-Splines An interesting
extension of the current B-LUT framework would consist in also
providing an accelerated calculation of the spatial derivatives of B-
splines. This would involve calculating additional LUTs for each of the
spatial derivatives. These would be useful during image registration,
for interpolating the gradient of the target image, required when using
gradient-based optimizers. In addition, some regularization penalties such
as bending energy (Wahba, 1990) also require evaluation of the spatial
derivatives of the motion field. Extension of the B-LUTs would therefore
be useful for the calculation of such penalties as well.

7.1.2 Motion Mask Extraction

In chapter 3, a method for automatically extracting a motion mask from
CT images was proposed. The method provided a division between inner
and outer thoracic structures, corresponding to moving and less-moving
regions in the case of respiratory motion. The interface was explicitly
confined between the lungs and the rib cage, and designed to coincide with
the pleurae where sliding motion occurs. The suitability of the extracted
masks was illustrated by performing subsequent registrations on each of
obtained subregions separately, and by including a boundary matching
mechanism (Wu et al., 2008). It was found that registration accuracy was
improved with respect to registration performed on the original images,
and using the same control point spacing. Inversely, using the motion mask
should allow to obtain comparable accuracy, using a larger control point
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spacing. This results in a faster, more e�cient algorithm and improves
robustness to noise and artifacts.

The approach of computing a mask to preserve sliding is a pragmatic
one, but it has been proven e↵ective. The proposed method is practical
and particular attention was given to its robustness, with the aim of
limiting user interaction and allowing an insertion into clinical practice.
Nonetheless, the described procedure might still give unsatisfactory results
in particular cases and require manual adaptation. Two potential
improvements were identified, which could further increase the robustness
of the method. The first concerns the extraction method itself, while the
second is related to the way the motion mask is incorporated into the
registration framework.

Spatio-Temporal Mask Extraction The proposed method comprises
of two parts. The first one consists of extracting anatomical features to
produce the velocity maps, while in the second part the mask is defined
using level sets. The level set processing was found to be stable and
reproducible. Mainly because it is applied to binary velocity maps and the
progressing contours are monitored closely. However, erroneous extraction
of the velocity maps will surely compromise the motion mask extraction.
The described segmentation of the rib cage was found to be a di�cult
processing step, due to locally reduced density of the ribs for some patients.
An accurate retrieval of the shape of these structures is not critical, since
the bony anatomy is mainly used as a stopping structure, to constrain the
growing level set from propagating outside the thoracic cage. It is desirable
however, that a complete skeleton of the rib cage is obtained; that is, that
partly missing segments are avoided as much as possible.

Faulty rib segmentation may influence the obtained shape of the mask,
but not necessarily the obtained accuracy of the registration. In areas
where the found interface does not exactly coincide with the pleurae, but
no strong sliding occurs (as is the case at the anterior interface, near the
sternum), registration accuracies should not be compromised as long as the
motion mask extraction was consistent with respect to the anatomy for the
considered image pair. To improve the stability and the consistency of rib
segmentation, the extraction procedure described can be extended to the
4D image domain (using the 4D image obtained from composing the image
pair, or based on the entire 4D CT data set). This approach increases the
connectivity of the voxels by adding the corresponding voxels of temporally
neighbouring images, and was found to give more reproducible results for
the respective rib segmentations.
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Taking into account the Motion Mask The easiest way of
introducing the motion masks in the B-spline registration algorithm, is to
only consider one of the subregions in the reference mask when calculating
the registration criterion (Rietzel et al., 2005). It was found this approach
occasionally led to misalignment of the edges of the masked structures, and
we therefore introduced a mechanism for penalizing the misalignment of
the boundary (Wu et al., 2008). The images were both modified using
the respective motion masks and a slightly larger region was used to
compute the similarity. As a consequence, masks were required on both
the reference and target image, and motion mask extraction was required
to be reproducible with respect to patient anatomy. Especially in the case
of registration across 4D CT, this constitutes a considerable increase in
workload and raises the requirements for the extraction method.

Schmidt-Richberg et al. (2009a) proposed a method for incorporating
a segmentation into a non-parametric registration framework using a
di↵usive regularization scheme. The method only relies on a segmentation
defined on the reference image, with respect to which the regularization of
the motion field is locally modified. Regularization for the perpendicular
component with respect to mask interface is maintained, avoiding gaps
in the motion field. The regularization for the tangential field is relaxed,
allowing discontinuities in the motion field and preserving sliding motion.
This elegant approach requires only one mask, and allows to process the
whole region simultaneously. A possible extension to the parametric B-
spline registration could consist in lowering the B-spline control point
spacing, and locally introducing explicit anisotropic regularization (Chun
et al., 2009) in the objective function. Unfortunately, this would
compromise the e�ciency of the algorithm.

7.1.3 Spatio-Temporal Registration

In chapter 4 we investigated the feasibility of a spatio-temporal
registration scheme for respiratory-correlated images of the thorax. We
aimed at improving the robustness of deformable registration by using a
global formulation of the 4D motion estimation problem and by pursuing
an accurate, but low-dimensional and problem-specific deformation model.
A spatial transformation was extended to the temporal domain by
explicitly modelling the temporal variations of the deformation throughout
the breathing cycle. The spatio-temporal modelling resulted in piecewise
smooth temporal models based on cubic splines and allowed considerable
reduction of the numbers of registration parameters with respect to
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sequential spatial registration, while maintaining the registration accuracy
within 0.1 mm. The approach showed an improved robustness in the
presence of artifacts.

The methodological contributions we made to registration of the lung
images described in chapter 3 and 4 both focussed on the parametrization
of the transformation. A more e�cient, compact parametrization was
pursued requiring less parameters, while maintaining comparable accuracy.
The principal assumption was that robustness to noise and artifacts could
be improved, by augmenting the inherent smoothness of the motion field.
Ironically, we found that a more e�cient reduction of parameters could
be found, by locally relaxing the smoothness constraints where needed.
Using a motion mask allowed for a local discontinuity in the motion field,
permitting to impose stronger spatial smoothness elsewhere. Similarly,
we found that the spatio-temporal registration benefited from a piecewise
smooth trajectory model to account for the sudden change in velocity at
end-inhale.

Regularization Schemes The B-spline transformation model imposes
smoothness upon the sought geometric transformation it encodes. Indeed,
the continuity properties of the B-spline basis functions are adopted in the
motion field. However, these parametric restrictions sometimes provide
insu�cient control over the properties of the transformation. Each B-spline
control point is adjusted independently of all others based on local image
information. In regions where salient registration features are lacking or
ambiguous, this approach might provide insu�cient regularization and can
lead to physically or physiologically improbable solutions. In addition to
providing a measure of similarity, the objective function should therefore
be complemented with an explicit regularization term. The latter should
penalize undesirable properties of the deformation field, therefore favouring
physically plausible solutions.

Regularization in the form of explicit penalties in the objective function
was not included in this work. The B-spline deformable transformation
grid was limited to the control point spacing of 32 mm which was
empirically found to be su�ciently large to result in a smooth deformation
field for the lung region. It is however fully recognized, that including
explicit regularization is required for extending the use of the developed
registration framework. In addition, it constitutes an essential mechanism
for improving the robustness to artifacts and noise.

Explicit regularization is expected to be complementary to the
contributions concerning the parametric B-spline representations of the
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transformations described in this work. In fact, the latter should allow
for a customization of the regularization schemes. The use of the motion
mask allows for stronger regularization terms to be imposed, since sliding
is preserved explicitly. In addition, specific schemes can be selected for
each of the subregions separately. For instance, it would seem sensible
to assume that the outer thoracic structures (not containing any lung
tissue), would deform incompressibly (Rohlfing et al., 2003), while for
the inner structures (made out of lungs, mediastinum and abdomen) a
more permissive bending energy could be more appropriate. Similarly, the
spatio-temporal framework allows for the inclusion of specific penalties,
which could provide additional temporal smoothing.

Robustness to Artifacts The benefit of the spatio-temporal approach
was illustrated by means of a simulated experiment, in which a single
artifact was inserted in a 4D CT sequence (in chapter 4, section 4.4.3).
More elaborate experiments are required to quantitatively assess the
potential of the registration approach, involving realistic data and a larger
variety of artifacts. An obvious aspect that should be looked into is the
influence of the temporal duration of the artifact. The additional temporal
smoothing constitutes a clear advantage when confronted to an artifact in
a single frame. This advantage might quickly disappear, as the artifacts
a↵ect several frames of the 4D CT, as is usually the case.

The influence of the temporal location of artifacts also deserves some
attention. Near end-inhale, the deformation model is characterized by
a local increase in degrees of freedom compared to other frames. This
could render end-inhale more prone to perturbations in the intensity space
near that frame. The proposed registration framework consisted of a
single reference frame (end-exhale in this work) which was compared to
all other frames. An artifact in the reference might have larger impact
than elsewhere. Alternative schemes can be imagined, using multiple
references (Boldea et al., 2008), which result in smaller deformations to
be estimated and remove the bias caused by the choice of the reference.
Alternatively, an iterative approach can be devised in which the result of
an initial registration is used to construct a new image combining the
intensities of all frames (e.g. a mid-position image (Wolthaus et al.,
2008b)). In the next step, this new image could serve as a reference
to estimate the deformations to all frames of the 4D CT (and so on),
e↵ectively reducing the influence of the initial reference image.
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Validation of Deformable Registration Validation is a complicated
but essential step to facilitate the translation of deformable registration
research into clinical applications for image-guided therapy (Sarrut, 2006).
Currently there is no standard methodology for validation of deformable
registration. Synthetic images and phantoms can provide high precision
and easy validation, useful for qualitative evaluation of registration
performance (Kashani et al., 2008). However, they generally lack realism
to provide credible validation for use in a clinical setting. The preferred
method remains to derive the reference standard from the actual patient
image data, by establishing expert landmark correspondences (Brock et al.,
2005; Sarrut et al., 2006; Rietzel and Chen, 2006; Sarrut et al., 2007;
Vandemeulebroucke et al., 2007; Wolthaus et al., 2008b; Wu et al., 2008;
Boldea et al., 2008; Al-Mayah et al., 2008; Werner et al., 2009a; Schmidt-
Richberg et al., 2009a; Yin et al., 2009; Castillo et al., 2010; Brock and
Consortium, 2010).

There are however several drawbacks to this method. The accuracy of
the established reference is limited, and influenced by the image quality.
The task of establishing the reference is time consuming. In addition, the
obtained landmarks are located near clearly identifiable image features
where they locally establish a su�cient condition for the motion field to
satisfy. The condition is however merely necessary for the entire field,
and several authors have warned that the size and distribution of the set
of landmarks might influence the estimated registration accuracy (Kabus
et al., 2009; Castillo et al., 2009; Zhong et al., 2010). Several groups have
proposed semi-automatic methods to establish the reference standard from
image data (Murphy et al., 2008; Castillo et al., 2009), in order to deal
with some of the mentioned drawbacks, and standardize the process of
establishing a reference.

The drawbacks mentioned also stress the importance of sharing large,
well-established references with the community, in order to save time and
allow algorithms to be tested on the same data. We participated in
the process by making publicly available a 4D CT data set, registration
results and the validation data in the form of over 400 manually identified
landmarks throughout the 4D sequence (Vandemeulebroucke et al., 2007).
The initiative received good response and references to it were found in
several studies (Ayadi et al., 2007; Wolthaus et al., 2008b; Noe et al., 2008;
Rit et al., 2009; Vaman et al., 2009; Kabus et al., 2009; Su et al., 2009a;
Schmidt-Richberg et al., 2009b; Su et al., 2009b; Ruppertshofen et al.,
2009, 2010). We intend to extend the current available data, with the
images and the 3000 landmarks described in chapter 4. We should also
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mention the initiative of Castillo et al. (2009), to put at the disposal large
sets of landmark correspondences between the inhale and exhale frames of
4D CT images.

Even when disposing of large set of landmarks, analysis of the
registration performance is not straightforward. We found in chapter 4,
that analysis should be performed locally as the global measures do not
allow to distinguish between closely related registration results. Even
then, we found that motion fields leading to similar TRE values, can still
have quite di↵erent properties, which confirms the observations of (Kabus
et al., 2009). The previous emphasizes the need for additional measures
for evaluating deformable registration. In fact, it is our opinion that for
the specific case of 4D CT of the lungs, landmark-based validation is no
longer suitable to e�ciently discriminate between most current registration
algorithms. It is our believe that priority should be given to devising
measures that can quantify clinically relevant characteristics of the motion
field. Research on registration of 4D CT should focus on making methods
more robust and plausible from a physiological point of view, rather than
developing novel algorithms that can reduce the target registration error
with another 0.1 mm.

Alternative (necessary) conditions can be found which the motion fields
should satisfy, and by increasing the number of these measures we might be
able to improve the evaluation of deformable registration. In addition to
measures derived from image information (such as landmarks, contours,
similarity measures and so on), evaluation should take into account the
properties of the motion field itself, by verifying aspects such as the
consistency and invertibility of the motion field. Related to this is the work
of Zhong et al. (2007), who proposed using computational modelling and
finite element methods, to identify regions in which deformable registration
is mis-performing. The described method is fully automatic, and can be
seen as a complementary evaluation as it can provide a measure of quality
of the motion field, in regions where salient image is missing (Zhong et al.,
2007, 2010). In the case of CT of the lungs, an additional measure becomes
available by assessing the lung function. The change in lung volume as
measured by segmentation of the lungs, can be compared to the ventilation
predicted by the deformation field (Guerrero et al., 2006; Kabus, 2008;
Yamamoto et al., 2009), providing another necessary condition for the
registration results to satisfy.
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7.2 Respiratory Motion Modelling

In chapter 5 we proposed a patient-specific model which consisted of
a reference image and a deformation model. The reference image served
as a density map of the patient anatomy, and allowed to generate patient
images at modelled breathing states by warping it using the deformation
model, for certain values of the model parameters. The deformation model
was initially obtained from a 4D CT acquisition. Deformable registration
was performed to provide a dense motion estimate that described the
complex deformations that occur during a breathing cycle. From then on,
abstraction was made of that complexity, and one model parameter was
required to characterize an arbitrary breathing phase. In chapters 5 and 6
we provided motion estimates in the treatment room by fitting the model
to cone-beam projections. Additional model parameters were introduced
to account for intercycle and intra- and interfraction variability. These
aspects of lung motion were represented with a scalar amplitude and a
low-dimensional vector field baseline, to account for potential shifts of the
inner thoracic structures.

B-splines were used to represent the motion model, providing a
continuous representation over space and time. They were also found
convenient for their flexibility, as they allowed to represent di↵erent levels
of complexity using the same framework, and enabled straightforward
extension to the temporal domain. Evolution of the model parameters over
time was also represented using splines, providing temporal regularization
and parameter reduction during motion estimation.

7.2.1 Reference Image

Following the initial procedure described in chapter 5, the model
reference image was obtained by transforming one frame of the 4D CT
to the time-weighted mean position. The deformation field used for
the transformation, was obtained by averaging several deformation fields,
which should reduce the influence of local irregularities. However, a single
frame provides the intensity map of the reference image, rendering the
model sensitive to artifacts in that frame. We previously mentioned
alternative procedures for computing a reference image, which exploit all
the frames of the 4D CT. These procedures were initially not adopted, as
it was found they resulted in reduced spatial resolution (Wolthaus et al.,
2008b).

The advantages of obtaining an improved image quality deserve to
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be investigated further, as this line of research is considered highly
promising for future use of 4D CT and respiratory-correlated imaging in
general. Indeed, many clinical applications in essence require a high quality
representation of the patient anatomy, and an estimate of the motion
with respect to that representation. High image quality for all frames
of the sequence is often not explicitly required. Developing registration
algorithms capable of providing accurate motion estimates on low-quality
images, would allow to lower the dose of 4D CT acquisitions. This in
turn, would enable a more extensive use of 4D CT and even allow other
pathologies to benefit from the modality, currently almost exclusively used
in radiation therapy.

Several authors have proposed to obtain the high quality reference
directly from the 4D CT, by compensating the motion using the deformable
registration results and processing the corresponding intensities. Li
et al. (2005) extended a penalized weighted least squares smoothing
method (Fessler, 1994) to 4D, to account for potential registration errors.
Wolthaus et al. (2008b) found that arithmetic averaging or median
averaging of the corresponding intensities reduced noise and artifacts and
rendered the filtered image more representative in terms of tumour shape
than any other frame of the 4D CT. Alternatively, a high quality reference
can be obtained by establishing the spatial correspondence with a breath-
hold CT (McClelland et al., 2006), or even a contrast enhanced breath-hold
CT (Nijkamp et al., 2010).

7.2.2 Deformation Model

Intracycle Variation A prior model of the intracycle variation was
obtained from 4D CT. In chapter 5, we used the demons algorithm for
performing deformable registration. While the concept remains identical,
alternative ways of computing the deformation model were explored in
chapter 4. The main goal of this approach is to reduce the influence
of artifacts in the 4D CT acquisition on the motion model. Indeed,
these irregularities occur randomly across the image acquisition. If not
accounted for, they will result in a systematic deviation of the model from
the reality, making the model less representative of the patient’s breathing.

From this perspective, we pursued the same goal as the methods
described in (McClelland et al., 2006; Zhang et al., 2007); that is, to
capture the underlying breathing pattern while filtering out the random
variations. In (Zhang et al., 2007), this is done on a single 4D CT
acquisition by performing principal component analysis. The method
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described by McClelland et al. (2006) goes even further. Several breathing
cycles are sampled, providing limited statistics to compute an average
respiratory cycle, expected to be most representative for the patient’s
breathing than just any (filtered) cycle. No statistics whatsoever were
applied to the represented cycle in the 4D CT acquisition, increasing
the uncertainty that the model provides a good patient representation.
Alternatively, we explored mechanisms to adapt and update the model
using intrafraction patient data.

Intercycle Variation In the proposed motion model, intercycle
variability was represented by a linear inter- or extrapolation of the
deformations with respect to the mean position. The amplitude parameter
↵, controlling the scaling of the linear model, was not a function of x. It
was defined as a constant for the entire thorax, for which the most suitable
value should be selected, for instance based on the global similarity with
cone-beam projection as in chapter 5. The reason for this simple linear
model, is closely related to the limitations of the motion data used to
construct the model. 4D CT does not sample any intercycle variability
and does not justify proposing more complicated relationships.

Deformations were expressed and scaled with respect to the time-
weighted mean position. The end-exhale position, would also have been
a reasonable choice. By using the mean position, it was possible to
represent variability in all directions and breathing phases. Even for the
end-exhale position, which has been reported to be more reproducible than
at inhale, but prone to variation nonetheless (Seppenwoolde et al., 2002;
Sonke et al., 2008; Rit et al., 2010). In addition, motion estimation with
respect to the mean position will produce smaller deformations. Scaling
these deformations will tend to be more conservative, with respect to
scaling the full exhale-inhale deformation. Motion estimation with respect
to the mean position, is less likely to produce a bias (for instance, in
case of a systematic underestimation of the deformation as observed in
chapter 3). If motion is compensated correctly, what is obtained is the
clinically relevant time-weighted mean position (Wolthaus et al., 2008a).

In (Vandemeulebroucke et al., 2008) we found that allowing for
intercycle variation through the amplitude parameter of the model,
rendered the motion estimation from cone-beam projections as described
in chapter 5 more stable, as otherwise all variations are attributed to the
breathing phase. In addition, the experiments performed on repeat 4D CT
acquisitions in chapter 5, confirmed that this parametrization allows to
compensate for some of the breathing variation. For some applications,

162



Respiratory Motion Modelling

the structures of interest might only concern the tumour. In this case,
describing the tumour motion based on its baseline (3 parameters fixed at
the beginning of the session), a phase and amplitude (2 parameters at each
instant, continuously evolving over time) constitutes a flexible model in
terms of degrees of freedom. For other applications, the model might lack
realism and flexibility, and more advanced methods have been proposed
that provide spatially varying intercycle variability by fitting local model
parameters to observed breathing states (McClelland, 2008; Yang et al.,
2008).

Nonetheless, there are several arguments in favour of our approach.
The first and most important one is the simplicity of the resulting model.
The representation allows limited intercycle variability to be estimated
under challenging circumstances, e.g. from a cone-beam projection
sequence as in chapter 5. It should also be noted, that it remains to
be assessed how much additional motion compensation can be obtained,
for instance from locally establishing an intercycle relationship based on
15-25 s of motion data, when confronted with interfractional changes in
breathing motion. A non-negligible advantage is that the model results
from only exploiting acquisitions already acquired for treatment delivery
and planning. By respecting these limitations, it would be feasible to insert
the procedures requiring the motion model into clinical practice.

Intercycle variability is the aspect of respiratory motion that has
arguably received the most attention in literature. Further research on
intercycle variation is needed, and could provide insight on the physiology
of respiratory motion. However, when considering potential clinical
applications of motion modelling, intercycle variation often constitutes the
aspect of lung motion that is not likely to have most impact. For motion
compensated cone-beam reconstruction, compensation using a phase-based
model has been shown to provide considerable improvement of the image
quality (Rit et al., 2009), indicating that accounting for the phase to phase
deformations compensated most of the motion. For treatment delivery
during free breathing, baseline variations have been reported to have the
greatest impact on target coverage if not corrected for (Sonke et al., 2008).
The tumour motion will influence the required safety margins, but the
variations of this motion only has a marginal influence on the definition of
these margins (Rit et al., 2010).

Baseline Variations In chapter 6 we described our initial attempts
to estimate or monitor baseline variations, from cone-beam projections.
Baseline variations were represented using a smooth motion field and
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assumed to only a↵ect the inner thoracic structures, corresponding to the
inner structures of the motion mask. Using the mask allowed to consider
a relatively low number of parameters for the spatial transformation based
on B-splines.

More data is required to characterize the spatial representation of
baseline variations. Additional insight in this phenomenon might result
in lower dimensional transformations for the representation, potentially of
a di↵erent type. Also, the way to take into account baseline variations in
the motion model, requires further attention. The most straightforward
procedure is to simply add the shift to the current deformation. This
implies the assumption that, although structures have moved inside the
thorax, they are still characterized with the same breathing pattern; that
is, they still move with the same trajectory as before, which should be
verified.

7.2.3 The Benefit of Biomechanical Approaches

Biomechanical approaches have been successfully applied to the field
of lung motion estimation. Usually only the initial and final outer
lung geometry is extracted from the images and introduced as boundary
conditions for solving a contact surface problem using finite element
methods (Villard et al., 2005; Al-Mayah et al., 2008; Werner et al.,
2009a). When applied to high quality images, intensity-based registration
remains superior in terms of accuracy (Werner et al., 2009b). This is
understandable considering that the latter considers all inner-organ image
information about fissures, bronchi and vessel tree, enabling a better
matching of these structures. The potential of biomechanical methods
becomes clear, when considering how little information is required to
obtain acceptable results. In challenging conditions, in which motion
estimates should be provided based on sparse image information (such
as 2D-3D motion estimation), biomechanical models may very well have
the advantage as they fully exploit the physical prior knowledge of the
problem.

It is our believe that deformable registration modelling, could benefit
from further inspiration of the biomechanical modelling approaches. An
example is given by the motion mask described in chapter 3, which
facilitated registration by explicitly accounting for the physiology of
respiratory motion. From this point of view, it could be viewed as
the deformable registration analogue of the contact surface formulation
utilized in biomechanical models. Other authors have also reported that
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improvement in registration accuracy can be obtained by introducing
similar biophysically inspired mechanisms (Werner et al., 2009b; Schmidt-
Richberg et al., 2009a).

Further augmenting biophysical priors could consist in further
di↵erentiating the processing of the thoracic structures, and employing
di↵erent regularization schemes to reflect the physical and mechanical
properties of the tissue. As a consequence of the motion mask construction,
approximate segmentations of the lungs and bony structures bones are
available. During motion estimation, the bony structures could be
constrained to rigid deformations (Loeckx et al., 2004; Ruan et al.,
2006; Staring et al., 2007). For the remaining structures of the outer
region, a volume preserving deformation can be favoured (Tanner et al.,
2002; Rohlfing et al., 2003). For the extremely elastic lung tissue, a
di↵eomorphism (Vercauteren et al., 2007; Chun and Fessler, 2009) is
probably the only assumption that should be made about the deformation,
while a slightly more restrictive bending energy (Wahba, 1990) might be
more suitable for the remaining inner thoracic structures.

Inversely, biomechanical modelling might benefit from rendering their
models more patient-specific, as is commonly the case in registration-based
modelling. Several authors reported deviation of the respiratory motion
due to large sized lung tumours (Plathow et al., 2004; Ehrhardt et al., 2009;
Werner et al., 2009a). For these cases, modelling of the lung parenchyma
as a homogeneous linear-elastic medium no longer corresponds to reality.
The influence of tumour (position and size) should therefore either be
included in the modelling, or learned from the available patient data.

7.3 Intrafraction motion estimation

In chapter 5, we presented a method for respiratory motion estimation
from a cone-beam projection sequence. A strong prior about the patient’s
breathing pattern was introduced in the form of a motion model built
from a previously acquired 4D CT image. Motion estimation proved
to be a challenging task, and a semi-global optimization approach was
implemented to achieve stable estimates. Initially, end-exhale and end-
inhale was detected using a feature-based method tracking the cranio-
caudal displacement of the diaphragm. For each cycle, a smooth temporal
parameter model was fitted to describe the evolution of the considered
model parameters. Motion continuity was guaranteed by imposing suitable
boundary conditions at the endpoints. Considerable motion compensation
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was obtained, even when confronted with interfractional variations in
breathing motion. Baseline variations were not present in the experiment
data, and should be considered separately.

In chapter 6, we described our initial attempts to estimate and
potentially monitor baseline variations from cone-beam projections.
The method consisted of estimating the 3D deformation, that was
present between a 3D reference image and a 2D projection sequence.
The dimensionality of the sought spatial transformation was limited,
by introducing physiological priors. Similarity was measured in 2D
projection space, and an e�cient calculation was found by integrating
the contribution of the di↵erent projection views in the 3D image space.
Initial results were promising, illustrating the feasibility of the method.
More research is required to assess the advantage of the proposed method
over other image guided approaches. In particular, the potential of the
method will be determined by the amount of projection data and the
projection arc length required to obtain acceptable motion estimations.

7.3.1 Relation to Previous Work

When using the findings described in chapter 5 to construct the
prior model used in chapter 6, a modification of the optimization
procedure could be made to improve the compatibility between both
contributions. In the semi-global optimization strategy individual cycles
were considered between consecutive end-exhale breathing stages. This
choice was arbitrary, and there is no reason cycles could not be identified
by extracting the end-inhale positions. The advantage of the latter is
that, the method will then result in a piecewise smooth motion estimation
between two end-inhale phases, which better reflects the observations made
on 4D CT.

In both chapter 5 and 6, intrafraction motion estimation from cone-
beam projections was illustrated by performing motion estimation for the
entire field of view of the cone-beam projection, with the aim of providing a
motion estimate for a large part of the thorax. Selecting a smaller region of
interest could make the method more flexible and certainly more e�cient.
An obvious choice, is to limit the motion estimation to the immediate
neighbourhood of the tumour. The result is a 2D-3D tracking method,
based on a prior model very similar to the methods described in (Hugo
et al., 2010; Lewis et al., 2010).
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7.3.2 Clinical Applications

By combining chapters 6 and 5, we hope to achieve motion estimation
from cone-beam projections, robust to interfractional motion variability.
The motion estimated from a cone-beam acquisition could serve for motion
compensated reconstruction (Li et al., 2007; Rit et al., 2009). Note that
in this case all motion with respect to the reference image is estimated,
instead of only the periodic component. Correct estimation of baseline,
phase and amplitude variations should therefore make the motion-
compensated cone-beam reconstruction fully align with the reference. This
feature could be very convenient for clinical verification of the motion
compensation. The reconstruction must then be modified to correspond
to the treatment strategy. For instance, if the treatment was planned at the
time-weighted mean position (Wolthaus et al., 2008a), the reconstruction
should be deformed using time-weighted average of the motion estimation.

An alternative use of the motion estimate can be gated treatment
delivery. If a gating surrogate was simultaneously recorded during
cone-beam acquisition, the motion data could serve as training data to
establish to relation with variation in tumour position and surrogate. This
procedure would avoid the acquisition of fluoroscopic sequences specifically
for this purpose and take advantage of the 2-4 min of motion data obtained
from the cone-beam acquisition.

7.3.3 2D-3D Similarity Measures

In the studies performed in chapters 5 and 6, experiments were
performed on simulated projection data, obtained from repeat 4D CT
acquisitions. The simulations can therefore be considered realistic from
a breathing motion point of view. The physics of X-ray imaging process
was however not modelled in detail and modifications of the described
procedures might be required when applying the methods on real cone-
beam projections. Our main concern is the influence of noise and
scatter which are expected to be present when acquiring real cone-beam
projections. Additionally, projection views might contain the treatment
table (see figure 5.2a and b) or interventional instruments, not accounted
for in the prior patient model, and known to have an e↵ect on the
performance (Penney et al., 1998).

Several authors reported pattern intensity to be a good alternative
under these circumstances (Weese et al., 1997; Penney et al., 1998; Loeckx
et al., 2003; Kim et al., 2007). Others observed good performance for
the currently used normalized correlation coe�cient (Wu et al., 2009),
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even though combination with other measures might improve robustness
and accuracy (Kim et al., 2007). Alternatively, preprocessing of the
projections, such as unsharp masking (Sorenson et al., 1981) followed
by histogram equalization, have been shown to drastically improve the
performance of a wide range of similarity measures (Dekker et al., 2003)
for 2D-3D registration.

7.4 Looking Ahead

Methods developed in registration and lung motion modelling have
recently been applied to assess lung function. Several have shown that by
estimating the local deformation, an estimate of the local lung ventilation
can be provided to the physician. This could be useful for assessing the
influence of radiation on the lung tissue, by comparing ventilation before
and after radiotherapy. Locally evaluating lung function would however
be useful outside radiation therapy as well, and this line of research is
considered highly interesting for the potential clinical applications, as well
as for rendering the motion fields obtained from deformable registration
physiologically consistent.

Intercycle variability is expected to receive increased attention in
the future, mainly for two reasons. Dynamic MRI image quality is
bound to improve. In addition, MRI data might become more available
in radiotherapy (for instance if linear accelerators integrated in MRI
scanners (Lagendijk et al., 2008) were to become commercially available).
The absence of an imaging dose to the patient, would allow increased and
longer acquisition times, allowing more elaborate approaches for modelling
this type of variation.

Particle therapy is rapidly emerging as an alternative treatment
modality, due to increased conformality of the treatment dose and better
biological response. In brief, the depth of the deposited dose along the
particle beam direction, depends on the material encountered along its
path. Geometric uncertainties, including those introduced by breathing
motion, are therefore expected to have an increased dosimetric impact
in comparison to photon beams. Respiratory-synchronized treatment
methods might become standard for this treatment modality and motion
models will have to provide the required predictions of tumour and organ
motion to ensure target coverage.

One of the key advancements in radiotherapy of the last decade
concerned the development and availability of 3D in-room imaging,
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allowing to guide the treatment based on soft-tissue imaging. It is expected
that this type of image guidance will further develop. In particular,
the repeated use of imaging over the course of a treatment fraction for
monitoring of the patient state seems an interesting feature for future
treatment delivery machines. To reduce the imaging dose to patient,
creative use of previously acquired planning images and e�cient motion
estimation algorithms requiring little image information will become
increasingly important.
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