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SUMMARY

1. Description of purpose The main challenge for lung cancer radiotherapy is to provide prescribed doses
to the tumor while sparing surrounding normal tissues. This is a challenging task because of organs and tumors
motions. We are involved in a project consisting in immobilizing the organs and tumors by breath-holding (BH).
BH is implemented with Active Breath Control (ABC) device, allowing to automatically hold the patient breath
according to a predetermined instant in the breathing cycle. The goal is to study internal lung residual motion
between several 3D Computerized Tomography (CT) scans acquired on a same patient, at a same level of the
breathing cycle.

2. Material and methods The goal of non rigid registration methods is to find points correspondences
between two or more different images whose mismatched can not be reduced to a simple affine transformation.
In this paper, we compare three regularization approaches (Gaussian, linear elastic and Nagel-Enkelmann) as-
sociated with the same “demons” forces, proposed by Thirion. For these three regularization technics we used
two different iterative implementation schemes. We based our evaluation on clinical data sets of two patients (6
CT scans for each patient) and on a priori clinical knowledge : one patient presents normal lung behavior while
the second has impaired lung behavior due to atelectasis and emphysema which lead to bad BH reproducibility.
3D images are first rigidly aligned. Residual motion, is obtained by subtracting the rigid deformation from
the computed vector field by non-rigid registration. Several vector field operators (symmetry and transitivity
error, Jacobian and volume dilatation) were used for deformation evaluation. For each vector field operator we
computed Student’s t-test to show if the methods provide significant differences.

3. Results Gaussian regularization leads to faster convergence (about 150 iterations) than linear elastic and
Nagel-Enckelmann based regularizations which require a minimum of 800 iterations for patient 1 and even more
iterations for patient 2 (with larger deformations). We noticed that the symmetry and transitivity errors for
each method are relatively larger for patient 2 compared to patient 1. Deformation fields computed with Nagel-
Enckelmann regularization present a larger number of negative Jacobian points than two others methods. We also
noticed that a global lung contraction implies a larger percentage of points with negative Jacobian. Dilatation
operator gives equivalent results for the three methods.

4. New work to be presented We used here clinical data sets of two patients : one with normal lung
behavior and the second with bad BH reproducibility due to atelectasis and emphysema. For each, 3D CT
scans are acquired in BH at a determined level of the breathing cycle (about 70% of the vital capacity). We
compare three regularization approaches (Gaussian, linear elastic and Nagel-Enkelmann) associated with the
same “demons” forces, proposed by Thirion. Several vector field operators (symmetry and transitivity error,
Jacobian and volume dilatation) were used for deformation evaluation.

5. Conclusions Breath holding requires the knowledge of residual motion between two breath-holds. Non-rigid
registration allows to estimate such residual motion and vector field information will be used for dose margins
delivery studies. In this work, we studied three non-rigid registration schemes (Gaussian, linear elastic and Nagel-
Enckelmann based regularizations) and analyzed several operators (transitivity, symmetry, dilatation, Jacobian)
to compare resulting vector fields. Data sets from two patients with normal and impaired lung behavior were
used. None of operators allows to clearly highlight the superiority of a method, except for convergence rapidity
and Jacobian. worse). None of the analysis operators used here considers anatomical structures informations,
only evaluate vector fields. Future works will exploit vector field properties together with local anatomical
structure correspondences.

6. Note We submitted to International Journal of Radiation Oncology Biology Physics a paper with first results
of reproducibility study of breath holding with ABC. Only deformable registration with Gaussian regularization
was presented. Vector field operators have been only mentioned but not studied as we do here.
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ABSTRACT

Breath holding (BH) allows to immobilize organs during radiotherapy treatment of lung cancer. Deformable
registration methods applied on 3D Computerized Tomography (CT) scans acquired in BH can be used to
evaluate the breath holding reproducibility. Resulting 3D vector fields could then be used to adapt internal
margins for each patient. In this work we compare three non-rigid registration schemes with Gaussian, linear-
elastic and Nagel-Enckelmann based regularizations. As we do not dispose of gold standard, we analyze vector
fields by several operators (transitivity, symmetry, volume dilatation, Jacobian). Experiments were based on
clinical data sets of two patients: one with normal lung behavior and second with lung discrepancies which lead
to bad BH reproducibility. Results show that none of operators allows to clearly highlight the superiority of a
method, except for convergence rapidity and Jacobian.
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1. INTRODUCTION

The main challenge for lung cancer radiotherapy is to provide prescribed doses to the tumor while sparing
surrounding normal tissues. This is a challenging task because of organs and tumors motions. Incorporating
organ deformation can be achieved with several approaches1 : adapting internal margins (as defined in ICRU
Report 622), synchronizing radiation delivery with breathing (but it requires invasive internal markers or depend
on an hypothetical correlation between external and internal movements3) or holding patient breath.

We are involved in a project consisting in immobilizing the organs and tumors by breath-holding (BH). BH
is implemented with Active Breath Control (ABC) device,4 allowing to automatically hold the patient breath
according to a predetermined instant in the breathing cycle. The goal is to study internal lung residual motion
between several 3D Computerized Tomography (CT) scans acquired on a same patient, at a same level of the
breathing cycle. In previous work5 we proposed the use of non-rigid registration method in order to evaluate
breath hold reproducibility, quantify residual motion and detect lung functional abnormalities. In this paper,
we compare three regularization approaches (Gaussian, linear elastic and Nagel-Enkelmann) associated with
the same “demons” forces, proposed by Thirion6 and we used several vector field operators for deformation
evaluation. We based our evaluation on clinical data sets of two patients (6 CT scans for each patient) and
on a priori clinical knowledge : one patient presents normal lung behavior while the second has impaired lung
behavior due to atelectasis and emphysema which lead to bad BH reproducibility.

2. DENSE NON-RIGID REGISTRATION

2.1. General framework

The goal of non rigid registration methods is to find points correspondences between two or more different images
whose mismatched can not be reduced to a simple affine transformation. Non rigid registration algorithms were
used for multiple purposes on monomodal and multimodal images registration. At our knowledge there are a
few works for 3D non rigid registration of thorax CT scans.7, 8 Dense non-rigid intensity based registration
algorithm can be expressed as a criterion minimization. The criterion is a trade-off between two energies:
similarity energy (E1) and regularization energy (E2). The similarity energy E1 quantifies the images alignment
quality. The regularization energy E2 constrains the deformation field to have some spacial coherence. Equation 1



summarizes the general formulation. U denotes a deformation field, Ũ denotes the final solution, β (0 ≤ β ≤ 1)
denotes a tradeoff factor between the two energies.

Ũ = arg min
U

(E(U)) ; E(U)) = (1 − β)E1(U) + βE2(U) (1)

2.2. Registration schemes

”Demons” with Gaussian regularization. In previous work,5 we focused on the ”demons” algorithm
proposed by Thirion and modified by Cachier.6, 9 This algorithm can be summarized as follows: at each
iteration step of an iterative procedure a correction field ui (eq 2) is computed and the new global field Ui is
obtained after Gaussian smoothing (Ui = smooth(Ui−1+ui)). I and J denote the images, Id denotes the identity
matrix, the α (α > 0) parameter introduced by Cachier9 limits the displacement vector for small gradients: the
norm is bounded by 1/(2α). x denotes an image point, i the iteration index and ∇ the gradient operator.

ui(x) =
I(x) − J(Id + Ui−1(x))

‖ ∇I ‖2 +α2(I(x) − J(Id + Ui−1(x)))2
∇I (2)

Due to a Gaussian regularization of the vector field, this method can be viewed as an elastic-like algorithm9

or an homogeneous isotropic diffusion. In order to take into account non-homogeneous nature of the thorax, we
implemented two others methods using the ”demons” forces for estimating points correspondence and different
regularization operators of the vector field: linearized elasticity operator10, 11 and Nagel-Enkelmann operator.12

For these two regularization technics we used a different iterative implementation scheme compared to the
Gaussian regularization.

Linear elastic regularization. A solution to the minimization equation 1 can be found by solving the equiva-
lent Euler equations11 : ∇E(Ũ) = 0. We considered the Euler explicit equation 3 for an iterative implementation
of the algorithm. κ (κ > 0) denotes the descent step size.

Ui(x) = Ui−1(x) + κ((1 − β)∇E1(Ui−1(x)) + β∇E2(Ui−1(x))) (3)

Cachier9 demonstrates that the “demons” forces are closed to a second order gradient descent of an SSD
criterion under the hypothesis of small correction field. Under this assumption we used the ”demons” forces as
gradient of the similarity criterion: ∇E1(Ui−1(x)) = ui(x).

Bro-Nielsen13 shows that Gaussian regularization is related (under some assumptions) to linear elastic filter.
Moreover, linear elastic regularization allows to take into account cross-effects while Gaussian smoothing does
not.14 The general form of the linearized elasticity operator is inspired from the equilibrium equation 4 under
the hypothesis of small displacements where λ and µ are the Lamé coefficients and F are the applied volume
forces. F = 0 if deformation is due to surface forces only. ∇·U denotes the divergence of U and 4 the Laplacian
operator. The gradient of the regularization energy is computed with linearized elasticity operator summarized
by the equation 5. Instead of using Lamé coefficients,11 introduces ξ (0 < ξ ≤ 1) to have a diffusion-like method.

(λ + µ)∇(∇ · U) + µ · 4U = −F (4)

∇E2(Ui−1(x)) = (1 − ξ)∇(∇ · Ui−1(x)) + ξ4Ui−1(x) (5)

Nagel-Enckelmann based regularization. Anisotropic regularization guided by the image gradient was
firstly proposed by Nagel-Enkelmann.12 Such regularization technique takes into account local structures of the
image : it smoothes mainly homogeneous structures and preserves vector field discontinuities across structures
boundaries. We used same implementation scheme equation 3 like for linear elastic regularization. The derivative
of regularization energy is computed as follows:



∇E2(Ui−1(x)) =





div(W∇U1
i−1)

div(W∇U2
i−1)

div(W∇U3
i−1)



 (6)
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where γ is a parameter for region distinction (γ > 0). We chose γ according to gradient norm values range of
the reference image scan. This operator has an almost isotropic behavior for homogeneous regions (|∇I|2 ¿ γ)
and an anisotropic behavior along the edges (|∇I|2 À γ).

Differential operators were computed by 3D spatial differences scheme.11

We thus have three different ways to compute vector fields: the first method M1 is the “demons” algorithm
with Gaussian regularization, the second method M2 with linear elastic regularization and the third M3 with
anisotropic regularization.

3. VECTOR FIELD COMPARISON

3D images are first rigidly aligned. We applied a 3D rigid registration algorithm15 by privileging rigid bonny
structures. Residual motion, denoted by U p is obtained by subtracting the rigid deformation RXY from the
computed vector field by non-rigid registration: U p

XY = UXY − RXY .

Here we study four vector field operators : symmetry and transitivity error, Jacobian and volume dilatation.
For each vector field operator we computed Student’s t-test to show if the methods provide significant differences.

3.1. Symmetry and transitivity error

Registration algorithms do not lead necessarily to symmetric deformation fields between reference and object
images.16 Figure 1 illustrates deformation evaluation between a set of three acquisitions (A, B, C) of a same
patient for each method. Each image is alternatively reference and deformed image. Let UXZ denotes the
deformation field estimated between X (reference) and Z (deformed), with X,Z ∈ {A,B,C}. We evaluate the
symmetry of the computed deformation field by computing the mean (σsym) and the standard deviation (µsym)

of U
′

XY X , with U
′

XY X = UXY ◦ UY X , which ideally is the zero vector field.

Pennec17 proposed to perform a first evaluation of the vector field by evaluating its transitivity. Deformation
field from X to Z can be written by transitivity U

′

XY Z = UXY ◦UY Z , with Y the third image. We computed the

mean (σtr) and the standard deviation (µtr) of the norm of the difference between U
′

XY Z and UXZ .

For symmetry and transitivity evaluation we only considered points belonging to the lung (lung volume and
lung surface points are extracted by thresholding and morphological operations5).

3.1.1. Jacobian and volume dilatation

We considered here operators which are related to volume variation in order to compare with lung volume
computed by segmentation.

Jacobian of the deformation function measures the evolution of voxel x
18 : JXY (x) = Jac(Id + Up

XY (x)) =
V1(x)/V0(x). J > 1 corresponds to a local dilatation, J < 1 to a local contraction and J = 1 to no volume
change. We have used this operator to evaluate the coherence of the transformation: negative value of the
Jacobean means that the deformation is locally non-invertible.

Divergence of the deformation function was proposed by Thirion and Calmon19: div(Id + Up
XY ). Divergence

measures the difference between inflow and outflow through an elementary volume element. Negative divergence
value means local contraction while positive value means local dilatation. Divergence is computed with 3D



Figure 1. Deformation field computation scheme : each acquisition (A, B and C) is alternatively reference and object
image.

Gaussian recursive filter. Each image voxel may be viewed as an elementary volume element. To differentiate
contraction from dilatation, we calculated the change of volume per unit volume of each voxel according to
divergence value : abs(V1(x) − V0(x))/V0(x), with V0(x) the initial volume of x and V1(x) volume after defor-
mation. V1(x) is computed as follows. The deformation tensor for each point ∇U p

XY (x) can be decomposed in
a symmetric part, denoted by VXY (x) (local pure deformation) and an asymmetric part, denoted by WXY (x)
(local rotation). We can write ∇Up

XY (x) = VXY (x)+WXY (x), with VXY (x) = 1
2
(∇Up

XY (x)+(∇Up
XY (x))T ) and

WXY (x) = 1
2
(∇Up

XY (x)−(∇Up
XY (x))T ). The local volume change is thus V1(x) = det(VXY (x)). Total variation

of lung volume (V olXY ) between 2 acquisitions X,Y due to residual motion is computed with equation 8.

V olXY =
1

N

∑

x∈ΩX

sgn(div(Id + Up
XY (x)))

abs(V1(x) − V0(x))

V0(x)
(8)

with sgn(div(Id + Up
XY (x))) =

{

1, if div(Id + Up
XY (x)) ≥ 0

−1, if div(Id + Up
XY (x)) < 0

4. EXPERIMENTS

4.1. Materials

We used clinical data sets of two patients : one with normal lung behavior and the second with bad BH
reproducibility due to atelectasis and emphysema. For each, 3D CT scans are acquired in BH at a determined
level of the breathing cycle (about 70% of the vital capacity). The scans have 5mm inter-plane and 0.9mm
intra-plane resolution, leading to 512 × 512 × 65 image resolution. Voxel values are encoded on 16 bits. As
mentioned in our previous work it is important to keep the full range of Hounsfield units∗ related to density
information.

4.2. Non-rigid registration parameters

Vector fields were estimated at a resolution of 256×256×65 which corresponds to 1.9mm in intra-plane and 5mm
inter-plane resolution. For each patient we have performed 18 non-rigid registrations (each of the 3 acquisitions
is alternatively the reference and the floating image, 3 methods) leading to 36 deformation fields. For the three
methods we used α ∈ [0.5, 0.65] which is equivalent to a maximum estimated vector displacement of [0.77, 1] voxel
by iteration. The Gaussian variance was 1.0 for the Gaussian regularization. For M2 and M3 a good empirical
convergence was obtained with κ = 0.1 (smaller values leaded to slower convergence and values larger than 0.3
leaded to divergence). Trade-off parameter β was set empirically to 0.5. ξ was set to 0.6 (close to 1 values of

∗Hounsfield density values for human body are approximatively from -1000 to 4000. 0 corresponds to water and -1000
to air.



ξ lead to a Gaussian like regularization). For each registration procedure using M3 we fixed γ parameter in
order to have a 70% isotropic and 30% anisotropic inside lungs behavior of the Nagel-Enckelmann regularization.
Convergence for the algorithm was obtained empirically with 150 iterations for M1 and at least 800 iterations
for both M2 and M3.

4.3. Results

4.3.1. Algorithm convergence

Figure 2 illustrates the convergence of the three methods for one patient according to the iteration. The conver-
gence criterion is the mean of absolute intensity differences between reference and deformed images.
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Figure 2. Mean of absolute intensity differences between two images with the three registration methods according to
the iteration.

4.3.2. Displacement vectors

Table 1 presents average and standard deviation of residual motion (for lung volume points - first row and surface
lung points - second row) computed on 6 vector fields by patient for each method. Figure 3 depicts a closeup
region of transversal slice with projected vector field computed with Gaussian regularization (a), Linear elastic
regularization (b), Nagel-Enckelmann based regularization (c). It can be noticed the smoothness difference
between vector field computed with M3 and those computed with M1 and M2.

4.3.3. Symmetry and transitivity error

Table 2 shows the symmetry error (µsym and σsym) and table 3 the transitivity error (µtr and σtr) of the
computed vector fields with M1, M2 and M3 for the two patients. Values are given in mm.



Table 1. Mean and standard deviation (in mm) of vector displacements for the 3 methods and 2 patients for lung volume
points and lung surface points.

Displacement Patient 1 Patient 2
vectors M1 - µd(σd) M2 - µd(σd) M3 - µd(σd) M1 - µd(σd) M2 - µd(σd) M3 - µd(σd)

Lung volume 3.35 (2.00) 2.94 (1.95) 2.99 (2.26) 4.32 (3.28) 3.83 (2.77) 4.32 (4.02)
Lung surface 3.21 (2.07) 2.92 (1.96) 2.78 (2.25) 3.96 (3.18) 3.48 (2.71) 3.71 (3.64)

Figure 3. Closeup region of transversal slice with projected vector field computed with (a) Gaussian regularization, (b)
Linear elastic regularization, (c) Nagel-Enckelmann based regularization. The vector field was downsampled to 2mm for
a better visualization.

(a)

(b) (c)

4.3.4. Jacobian and volume dilatation

Left table 4 shows the percentage of points with negative Jacobian for the two patients and the three methods.
For each method, last rows shows for each patient the mean percentage of negative Jacobian points of the six
vector fields.

Right table 4 shows the percentage of lung volume change between acquisitions computed from lung masks



(first column) and computed with previously described local dilatation operators (2 other columns). Positive
values correspond to volume increases and negative values to volume decreases. For each patient, last row shows
for each method the mean of absolute differences (Dilerr) between the volume change computed with dilatation
operator and volume change computed by segmentation.

Table 2. Mean and standard deviation error (in mm) of the deformation for the 3 methods and 2 patients according to
the symmetry property.

M1 M2 M3

Deformation Patient 1 Patient 2 Patient 1 Patient 2 Patient 1 Patient 2
symmetry µsym(σsym) µsym(σsym) µsym(σsym) µsym(σsym) µsym(σsym) µsym(σsym)

U
′

ABA 0.8 (0.5) 2.3 (3.9) 0.7 (0.5) 1.6 (2.4) 1.3 (1.1) 2.0 (2.2)

U
′

BAB 1.0 (0.7) 2.2 (3.3) 0.6 (0.5) 1.6 (2.0) 1.3 (1.1) 2.2 (2.1)

U
′

ACA 1.2 (0.9) 1.2 (1.8) 1.1 (0.8) 0.9 (1.1) 2.1 (1.4) 1.4 (1.4)

U
′

CAC 1.2 (0.9) 1.2 (1.7) 1.1 (0.8) 1.0 (1.1) 2.2 (1.6) 1.5 (1.6)

U
′

BCB 0.8 (0.6) 2.0 (3.2) 0.7 (0.5) 1.4 (2.0) 1.4 (1.5) 1.9 (2.0)

U
′

CBC 0.9 (0.7) 2.6 (3.9) 0.6 (0.4) 1.9 (2.4) 1.2 (1.1) 2.4 (2.5)
Mean 1.0 (0.7) 1.9 (3.0) 0.8 (0.6) 1.4 (1.8) 1.6 (1.3) 1.9 (2.0)

Table 3. Mean and standard deviation error (in mm) of the deformation for the 3 methods and 2 patients according to
the transitivity property.

M1 M2 M3

Deformation Patient 1 Patient 2 Patient 1 Patient 2 Patient 1 Patient 2
transitivity µtr(σtr) µtr(σtr) µtr(σtr) µtr(σtr) µtr(σtr) µtr(σtr)

U
′

ACB 1.6 (0.9) 2.5 (2.3) 1.8 (1.1) 2.1 (1.9) 2.4 (1.5) 2.8 (3.0)

U
′

BCA 1.7 (1.0) 2.5 (2.5) 1.5 (0.8) 2.0 (1.9) 1.9 (1.2) 2.5 (2.7)

U
′

ABC 1.5 (0.9) 2.8 (3.4) 1.8 (1.1) 2.1 (1.9) 2.3 (1.4) 3.4 (4.7)

U
′

CBA 1.5 (0.8) 3.5 (4.7) 3.9 (2.6) 4.3 (2.3) 3.7 (2.8) 4.8 (4.1)

U
′

BAC 1.5 (0.9) 2.5 (2.5) 1.9 (1.1) 2.1 (1.9) 2.6 (1.5) 2.5 (2.7)

U
′

CAB 1.6 (0.9) 2.6 (2.6) 1.5 (0.8) 2.1 (1.9) 1.9 (1.4) 2.8 (3.1)
Mean 1.6 (0.9) 2.7 (3.0) 2.1 (1.3) 2.5 (2.0) 2.5 (1.6) 3.1 (3.4)

Table 4. (Left table) Percentage of points with negative Jacobian computed on each vector field for the 3 methods and
the 2 patients. (Right table) Lung volume dilatation for 3 images comparisons for 2 patients. Each column depicts the
volume change (in %, computed from segmented lung) and the dilatation operator computed with the resulting vector
field of the 3 methods.

Jacob. M1 M2 M3

P1(%) P2(%) P1(%) P2(%) P1(%) P2(%)
JAB 1.3 10.1 0.6 6.5 4.5 18.3
JBA 6.2 6.2 4.0 3.3 12.1 9.8
JAC 2.1 5.5 0.7 2.7 7.5 9.2
JCA 5.7 9.2 3.0 5.9 14.0 15.1
JBC 3.4 5.6 1.7 2.6 6.8 9.5
JCB 1.4 16.7 0.6 12.1 4.7 24.1
Mean 3.4 8.9 1.8 5.5 8.3 14.3

Dilat. Patient 1 (%) Patient 2 (%)
Vseg M1 M2 M3 Vseg M1 M2 M3

V olAB 3.9 3.3 2.8 3.4 -6.6 -6.5 -6.0 -7.1
V olBA -3.9 -4.5 -3.7 -4.5 6.6 4.8 4.4 5.6
V olAC 4.1 3.6 3.3 3.7 5.6 4.4 4.1 4.8
V olCA -4.1 -5.0 -4.6 -5.3 -5.6 -6.2 -5.8 -6.4
V olBC 0.4 -1.2 -1.0 -0.8 13.1 10.5 9.5 12.8
V olCB -0.4 -0.3 -0.4 -0.7 -13.1 -12.2 -11.0 -13.0
Dilerr - 0.7 0.7 0.7 - 1.2 1.7 0.6



4.3.5. Statistical methods comparisons

Table 5 depicts Student’s t-test between the three methods for each vector field operator. “=” denotes that
two methods are not significantly different. If two methods are different, “+” denotes a 95% level for p=0.05
(significant different), “++” denotes a 99% level for p=0.01 (highly significant different) and “+++” denotes a
99.9% level for p=0.001 (very highly significant different).

Table 5. Table depicts Student’s t-test between the three methods for each vector field operator.“=” denotes not sig-
nificantly different,“+” significantly different, “++” highly significantly different and “+++” very highly significantly
different.

Operator M1/M2 M1/M3 M2/M3

Symmetry error = = ++
Transitivity error = + =

Jacobian = + +++
Dilatation = = =

5. DISCUSSION

Gaussian regularization leads to faster convergence (about 150 iterations) than linear elastic and Nagel-Enckelmann
based regularizations which require a minimum of 800 iterations for patient 1 and even more iterations for patient
2 (with larger deformations).

We noticed that the symmetry and transitivity errors for each method are relatively larger for patient 2
compared to patient 1. M3 leads to larger symmetry error than M2 (at 99% level for p=0.01) and larger
transitivity error compare to M1 (at 95% level for p=0.05).

The number of points with negative Jacobian can be a measure of the transformation validity. Deformation
fields computed with M3 present a larger number of negative Jacobian points than two others methods (at 95%
level for p=0.05 compared to M1 and at 99.9% level for p=0.01 compared to M2). We also noticed that a global
lung contraction implies a larger percentage of points with negative Jacobian.

Right table 4 compares a global measure of lung volume difference computed from segmentation with local
lung volume changes computed from the vector fields in order to detect incoherent situations. We first notice
that the two analysis are very close : it suggests that the computed vector fields are coherent according to the
observed volume change. Moreover, the three methods are equivalent. Results are also related with the average
displacements of the two patients : patient 1 presents smaller displacements than patient 2. For V olBC of patient
1, we observed a lung volume dilatation when computed with segmentation although a lung volume contraction
is computed with dilatation operator. It may be due to a difficult lung segmentation and to the final oscillations
of the algorithms when approaching matching solution: the estimated field may be locally greater than the real
deformation needed for perfect matching and thus object image is deformed more than needed. This phenomena
was also observed by.20 In the future, this information may be considered for evaluating the stop criterion of
the registration algorithm.

6. CONCLUSION

Breath holding requires the knowledge of residual motion between two breath-holds. Non-rigid registration allows
to estimate such residual motion and vector field information will be used for dose margins delivery studies.
In this work, we studied three non-rigid registration schemes (Gaussian, linear elastic and Nagel-Enckelmann
based regularizations) and analyzed several operators (transitivity, symmetry, dilatation, Jacobian) to compare
resulting vector fields. Data sets from two patients with normal and impaired lung behavior were used. None of
operators allows to clearly highlight the superiority of a method, except for convergence rapidity (M1 faster) and
Jacobian (M1 worse). Christensen and Johnson21 jointly estimate forward and reverse transformation between
images while constraining these transformations to be inverses of one other. We plan to follow a similar scheme
by estimating the deformation field using the 3 acquisitions and constraining the transformation to be transitive.



None of the analysis operators used here considers anatomical structures informations, only evaluate vector fields.
Future works will exploit vector field properties together with local anatomical structure correspondences.
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