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Purpose: To assess the accuracy, reproducibility, and computational performance of deformable image registra-
tion algorithms under development at multiple institutions on common datasets.
Methods and Materials: Datasets from a lung patient (four-dimensional computed tomography [4D-CT]), a liver
patient (4D-CT and magnetic resonance imaging [MRI] at exhale), and a prostate patient (repeat MRI) were ob-
tained. Radiation oncologists localized anatomic structures for accuracy assessment. Algorithm accuracy was de-
termined by comparing the computer-predicted displacement at each bifurcation point with the displacement
computed from the oncologists’ annotations. Thirty-seven academic institutions and medical device manufac-
turers with published evidence of active deformable image registration capabilities were invited to participate.
Results: Twenty-seven groups agreed to participate; 6 did not return results. Sixteen completed the liver 4D-CT, 12
the lung 4D-CT, 3 the prostate MRI, and 3 the liver MRI-CT. The range of average absolute error for the lung 4D-
CT was 0.6–1.2 mm (left–right [LR]), 0.5–1.8 mm (anterior–posterior [AP]), and 0.7–2.0 mm (superior–inferior
[SI]); the liver 4D-CT was 0.8–1.5 mm (LR), 1.0–5.2 mm (AP), and 1.0–5.9 mm (SI); the liver MRI-CT was 1.1–
2.6 mm (LR), 2.0–5.0 mm (AP), and 2.2–2.6 mm (SI); and the repeat prostate MRI prostate datasets was
0.5–6.2 mm (LR), 3.1–3.7 mm (AP), and 0.4–2.0 mm (SI).
Conclusions: An infrastructure was developed to assess multi-institution deformable registration accuracy. The
results indicate large discrepancies in reported shifts, although the majority of deformable registration algorithms
performed at an accuracy equivalent to the voxel size, promising to improve treatment planning, delivery, and
assessment. � 2010 Elsevier Inc.
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INTRODUCTION

In recent years, the incorporation of multimodality, multi-

instance imaging in treatment planning for external beam radio-

therapy and three-dimensional soft tissue imaging for daily

image guidance has significantly increased. These advances

have indicated the potential to reduce treatment margins

accommodating uncertainties in tumor extent, motion, and

position at time of treatment relative to planning position by

increasing the geometric consistency and understanding of

the patient throughout the treatment process. Reduced treat-

ment margins lead to less volume of normal tissues irradiated,

resulting in a reduced risk of normal tissue toxicity after radia-

tion and the potential to deliver higher doses safely to the tumor,

potentially leading to increased tumor control probability.

Sequential three-dimensional and four-dimensional (4D) imag-

ing highlights the obvious nonrigid nature of the motion of the

human body. Short-term motion, characterized using dynamic

or ciné imaging and long-term motion, identified using multi-

instance imaging, both identify the need for deformable regis-

tration to accommodate the complex physiologic motion and

changes in anatomy caused by treatment interventions.
Fig. 1. Inhale, 0% phase (left) and exhale, 50% phase (right) rec
raphy images obtained for the example lung patient. The lungs (
inhale image and overlaid onto the exhale image for reference.
Several methods of image registration are currently avail-

able, both commercially and in research environments. The

majority of commercially available registration methods in-

clude only rigid body motion. Although sufficient for some

anatomic sites, such as the brain, rigid body registration fails

in the registration of temporal imaging of physiologic motion

and tumor and normal tissue response (1–7). Several deform-

able image registration algorithms are currently under inves-

tigation and have been developed and reported on in the

literature However, algorithmic accuracy has been tested in-

consistently, test cases are usually limited to a narrow range

of clinical situations (e.g., imaging modality, disease site),

and reported errors vary widely for similar methods. This

confounds the ability to objectively benchmark algorithms

and will hinder the widespread adoption of such algorithms

into clinical practice (1, 5, 6, 8–20). Each algorithm has its

benefits and limitations, and it is likely that the variations

in clinical scenarios will benefit from the differences in algo-

rithms. Recently, a multi-institution study was conducted on

a 4D phantom, showing acceptable overall results but the po-

tential for large errors in regions with large deformations

(21). In addition, a 4D computed tomography (CT) image
onstructions from the four-dimensional computed tomog-
purple and aqua) and tumor (yellow) are contoured on the



Fig. 2. Example of the corresponding bronchial bifurcations identi-
fied in the inhale (top) and exhale (bottom) images.
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set with point-validated motion models and also expert-based

validation data has been made available by Vandemeule-

broucke et al. (22).

The objective of this research is to provide a consistent

quantitative metric of accuracy, allowing direct comparison

of the various algorithms, and to provide an indication of per-

formance by applying and analyzing algorithms for a selected

number of test cases. Once these objectives are reached, the

limitations of the currently developed algorithms can be as-

sessed and baseline accuracy can be established to aid in

the integration of deformable registration algorithms when

they become available clinically, either commercially or

through research collaborations.
Table 1. Motion of the bifurcations in t

LR

Right lung �0.5 (1.0) �2.0 to 1.0
Left lung �1.1 (1.6) �2.9 to 1.0
Heart calcification 1 �3.9
Heart calcification 2 �3.9
Aorta calcification 1 �1.0
Aorta calcification 2 �5.9

Abbreviations: LR = left–right; AP = anterior–posterior; SI = superior
METHODS AND MATERIALS

Data
Patient images were retrospectively obtained under a research

ethics board—approved study. Three anatomic sites were studied:

lung, liver, and prostate. The data are described below.

Lung. Respiration-correlated 4D-CT, data were obtained for

1 lung patient using a Varian RPM system on a GE Medical Systems

CT scanner. A coronal and axial reconstruction is shown in Fig. 1.

The image set was 512 x 512 x 152 with an in-plane pixel size of

0.98 x 0.98 mm and a slice thickness of 2.5 mm. The datasets at

0% and 50% breathing phases were imported into a treatment plan-

ning system (Pinnacle v 7.6c, Philips Healthcare) for contouring.

The external of the patient, right and left lungs and tumor were de-

lineated on the inhale, 0%, dataset. The external and right and left

lungs were delineated on the exhale, 50%, dataset. The contours

were exported from the planning system as a DICOM-RT structure.

The DICOM images and the DICOM RT structure set were sent to

each participant.

To perform quantitative analysis of the deformable registration

accuracy, a radiation oncologist experienced in treating lung cancer

identified corresponding naturally occurring fiducial markers in

each image. Seventeen bronchial bifurcations were identified in

the right lung, 17 bronchial bifurcations in the left lung, 2 calcifica-

tions in the heart, and 2 calcifications in the aorta. An example of the

bronchial bifurcations identified is shown in Fig. 2. The motion of

the bifurcations in the thorax are shown in Table 1.

Liver. Respiration correlated, 4D-CT, data were obtained for

1 liver patient using a Varian RPM system (Varian Medical Sys-

tems, Palo Alto, CA) on a GE LightSpeed plus 16-slice scanner

(General Electric, Milwaukee, WI). A coronal and axial recon-

struction is shown in Fig. 3. Intravenous contrast medium (Visipa-

que 270, Amershamhealth) was delivered before image

acquisition. The image set was 512 � 512 � 120 with an in-plane

pixel size of 0.98 � 0.98 mm and a slice thickness of 2.5 mm. The

0% and 50% datasets were imported into a treatment planning sys-

tem (Pinnacle v7.6c, Philips Healthcare) for contouring. The exter-

nal of the patient, liver, kidneys, bowel, duodenum, esophagus,

and tumor were contoured on the exhale dataset per clinical prac-

tice. The external and liver were also contoured on the inhale data.

The contours were exported from the planning system as DICOM-

RT structures.

In addition, corresponding naturally occurring fiducial markers

were identified on each image by a radiation oncologist experienced

in treating liver cancer to perform quantitative analysis of the accu-

racy. Twenty-five vessel bifurcations were identified in the liver,

five vessel bifurcations were identified in the left kidney, and six

vessel bifurcations were identified in the right kidney. An example
he thorax, mean (SD), range (mm)

AP SI

1.6 (1.2) 0 to 4.9 2.1 (4.0) 0 to 15.0
�1.0 (2.1) �2.9 to 4.9 4.1 (4.8) 0 to 15.0

2.9 5.0
0 5.0
�1.0 0

0 2.5

–inferior.



Fig. 3. Exhale, 50% phase (left) and inhale, 0% phase (right) reconstructions from the four-dimensional computed tomog-
raphy images obtained for the example liver patient. The liver (pink), tumor (red), and kidneys (green and purple) con-
toured on the exhale images are overlaid onto the inhale images for reference.
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of the vessel bifurcation in the liver is shown in Fig. 4. The motion of

the bifurcations in the liver and kidneys is shown in Table 2.

Additionally, voluntary exhale breath-hold magnetic resonance

imaging (MRI) was performed on the same patient on a GE 1.5 Tesla

TwinSpeed MRI simulator platform (General Electric) using

a spoiled gradient echo imaging sequence. A coronal and axial re-

construction is shown in Fig. 5. The image set was 256 � 256 �
24 with an in-plane pixel size of 1.7� 1.7 mm and a slice thickness

of 7.0 mm. The external of the patient and the liver was contoured,

and the contours were exported from the planning system as

DICOM RT structures.

Seven pairs of vessel bifurcations were identified in the liver be-

tween the exhale sorted 4D-CT and the exhale breath-hold MRI, and

an example is shown in Fig. 6. The average motion of the bifurca-

tions was 15.4 mm (SD, 2.5 mm; range, 12.7–19.6 mm) in the

left–right (LR) direction, 10.9 mm (SD, 1.6 mm; range, 9.0–13.0

mm) in the anterior–posterior (AP) direction, and 71.3 mm (SD,

2.7; range, 68.8–76.3 mm) in the superior–inferior (SI) direction.

These motions are larger because they include a large rigid transla-

tion component caused by patient positioning.

Prostate. Repeat prostate MRIs were obtained on a GE 1.5

Tesla TwinSpeed MRI simulator platform using a gradient

recalled echo sequence. An axial reconstruction of both images

is shown in Fig. 7. The image set was 256 � 256 � 29 with

an in-plane resolution of 0.70 � .70 mm and a slice thickness

of 2 mm. Before image acquisition, the patient had 3 gold seeds

(1 � 5 mm) implanted in the prostate. Both images were imported
into the treatment planning system. A radiation oncologist, expe-

rienced in treating prostate cancer, contoured the prostate, rectum,

and bladder on each image and also the three gold seeds. A point

was automatically placed at the center of mass of each contoured

seed. The average motion of the seeds was 9.8 mm (SD, 0.7 mm;

range, 9.0–10.3 mm) in the LR direction, 18.3 mm (SD 3.6;

range, 14.4–21.5 mm) in the AP direction, and 48.3 mm (SD,

2.0 mm; range, 47.7–50.5 mm) in the SI direction. The large dis-

placements represent the global rigid registration required between

the two imaging sessions; however, note the substantial range in

the AP direction, which indicates deformation between the two

imaging sessions.
Deformable registration instructions
Each institution participating in the study was asked to perform

deformable registration between primary and the secondary datasets

for 4D-CT liver (exhale to inhale), 4D-CT lung (inhale to exhale),

MR prostate (two repeat scans), and MR liver to CT liver. Partici-

pants were asked to summarize the method used to deform the im-

ages and to record their processing times.

To evaluate the success of the image registration, participants

generated a set of deformation matrices in the same coordinate

system as the primary dataset. The value in each voxel in the defor-

mation matrix is the displacement required at the center of that voxel

to deform the primary dataset to the secondary. Three deformation

matrices were generated, one for each cardinal direction.



Fig. 4. Example of the corresponding vessel bifurcations identified
in the exhale (top) and inhale (bottom) images. The liver (purple)
contoured on the exhale image is overlaid onto the inhale image.

Table 2. Motion of the bifurcations in the liver and kidneys,
mean (SD), range (mm)

LR AP SI

Liver �0.7 (1.4) �3.9
to 2.0

�4.1 (2.2) �8.8
to 2.9

�11.9 (1.9)
�7.5 to
�15.0

Kidneys �0.8 (1.4) �2.9
to 1.0

�3.2 (2.9) �6.8
to 1.0

�7.3 (3.8) �2.5
to �12.5

Abbreviations: LR = left–right; AP = anterior–posterior; SI = su-
perior–inferior.
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Registration validation
Validation was performed by identifying corresponding fiducials

in the primary organ of interests on the primary and secondary data-

sets. These included bronchial bifurcations in the lung, vessel bifur-

cations in the liver, and implanted gold marks in the prostate.

Fiducials were also identified in secondary organs of interest (i.e.,
heart, aortas, and kidneys) as visible on the images. The displace-

ment of these fiducials was taken to be the true displacement of

the organs to which the participant’s results were compared.

The location of the fiducial points was interpolated onto the defor-

mation grid using bilinear interpolation. The value of the voxel in

the deformation matrix at that location was compared with the actual

displacement at that point as described by the fiducial points and the

error calculated. Participants received a summary of their results,

which included a list of the fiducial points, the actual displacement

at each point, the displacement that their algorithm reported based

on the returned deformation maps, the difference between their re-

sult at each point and the actual displacement (error), and the abso-

lute value of the differences (absolute error). The mean and standard

deviation of the errors over all points was calculated. Each institu-

tion also received a blind summary of the results showing the

mean error and standard deviation for each institution so they could

compare the results of their algorithm with others.
Registration algorithms
The participants were required to return their data by August 31,

2007, if they wanted to participate in the study. A summary of the

primary investigators, institution or company, and key registration

parameters is shown in Table 3, along with references.
RESULTS

Data collection
Twenty-two participants returned data for the lung 4D-CT

study, 17 participants returned data for the liver 4D-CT study,

four participants returned data for the liver MR-CT study, and

four participants returned data for the prostate study.
Lung 4D-CT
Lung. All algorithms had a mean absolute error of less

than 2.5 mm, which is equal to the slice thickness of the im-

age set. Twenty of the algorithms also had a standard devia-

tion of less than 2.5 mm. The largest mean absolute error

was 2.0 mm. Nine algorithms had a maximum error of less

than 5.0 mm in each direction. Seventeen algorithms had

maximum errors of less than 7.5 mm in each direction. The

maximum error across all algorithms was 1.2 cm. Summaries

of the results are shown in Table 4.

Heart and aorta. Seventeen algorithms had an absolute

mean error of less than 2.5 mm in each direction; the remain-

ing four had absolute errors of less than 5.0 mm. Thirteen al-

gorithms had an absolute standard deviation of less than 2.5

mm in each direction; the remaining eight had a standard de-

viation of less than 5.0 mm. Eighteen algorithms had a max-

imum error in the heart and aorta of greater than 5.0 mm; the

maximum error was 6.7 mm. Summaries of the results are

shown in Table 4.
Liver 4D-CT
Liver. Seven algorithms had a mean absolute error in the

liver of less than 2.5 mm in each direction (equal to the

slice thickness). Twelve algorithms had an absolute standard

deviation of less than 2.5 mm in each direction. Eight algo-

rithms had a mean absolute error of less than 5.0 mm in

each direction, and one algorithm had a mean absolute error

of less than 7.5 mm in each direction. All algorithms had

a maximum error of greater than 5.0 mm in at least 1 direc-

tion. Three algorithms had a maximum error of greater than

1 cm, occurring in the SI direction. Summaries of the results

are shown in Table 5.

Left kidney. Sixteen algorithms had a mean absolute error

and absolute standard deviation of less than 2.5 mm in each

direction. All algorithms had a mean absolute error and abso-

lute standard deviation of less than 3.0 mm in each direction.

Fifteen algorithms had a maximum error of less than 2.5 mm,



Fig. 5. Exhale, 50% phase reconstruction from the four-dimensional computed tomography (left) voluntary exhale breath
hold magnetic resonance images (right) obtained for the example liver patient. The liver (pink) and tumor (red) contoured
on the exhale images are overlaid onto the magnetic resonance images for reference.
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and the maximum error for all algorithms was 3.3 mm. Sum-

maries of the results are shown in Table 5.

Right kidney. Eleven algorithms had a mean absolute error

of less than 2.5 mm in each direction. Four algorithms had

a mean absolute error of less than 3.5 mm in each direction.

All algorithms had an absolute standard deviation of less than

2.5 mm in each direction. Four algorithms had a maximum

error of less than 2.5 mm in all directions. Ten algorithms

had a maximum error of less than 5.0 mm in all directions.

The maximum error in the right kidney was 5.6 mm. Summa-

ries of the results are shown in Table 5.
Liver MRI-CT
Three investigators submitted results for the MR-CT

liver registration. The mean absolute error for the liver

ranged from 1.1 to 5.0 mm, with the SI direction having

the worst error for one algorithm and the AP direction

having the worst error for two algorithms. The absolute

standard deviations were less than 2.5 mm for all three al-

gorithms. The maximum error was less than 7.0 mm for all

three algorithms. Summaries of the results are shown in

Table 6.
Prostate
Three investigators submitted results for the repeat MRIs

of the prostate. The mean absolute error for the prostate

ranged from 0.4 to 6.2 mm, with the largest error in the LR

(one algorithm) and AP (two algorithms) directions. The ab-

solute standard deviations ranged from 0.3 to 3.4 mm. The

maximum errors ranged from 5.0 to 8.7 mm. Summaries of

the results are shown in Table 7.
Algorithm efficiency
The times required for the algorithms to complete ranged

from 45 s to more than 10 hours. This large variation indi-

cates the potential for near real-time deformable registration,

which may be suitable for online image guidance, and also

indicates the need for algorithm optimization. Efficiency var-

ied across algorithm implementation (i.e., different institu-

tions using the same algorithm basis). For example, four

implementations of B-spline ranged from 12 minutes to

10.3 hours. Implementation of the Demons algorithms tended

to have the best efficiency, ranging from 45 s to 60 min.

Efficiency did not seem to come at the expense of accu-

racy. For the three algorithms that did not have a maximum

error of greater than 5 mm, the algorithm efficiency ranged



Fig. 6. Example of the corresponding vessel bifurcations identified
in the exhale computed tomography (top) and magnetic resonance
(bottom) images. The liver (purple) contoured on the exhale image
is overlaid onto the magnetic resonance image.
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from 2 min to 1 hour. For the seven algorithms that did not

have a maximum error of greater than 7 mm, the algorithm

efficiency ranged from 3 min to 5 hours.
DISCUSSION

A multi-institutional deformable registration study was

successfully performed to evaluate the accuracy of several al-

gorithms using a common set of clinical data from human pa-

tients. Naturally occurring landmarks were used for

validation in the thorax and abdomen, with implanted

markers serving as validation points in the prostate.
Fig. 7. Repeat magnetic resonance images obtained for the exam
and rectum (blue) contoured on the first image (left) are overla
reference.
It should be noted that the data used in this study were clin-

ical data obtained from patients who had previously been

studied. Efforts were made to find 4D-CT data that exhibited

‘‘typical’’ motion caused by respiration with minimal arti-

facts. However, the data were not perfect, and some artifacts

did exist. These errors were in the 4D reconstruction of the

breathing data, where the correlation between the respiration

surrogate and the internal anatomy was not consistent, man-

ifesting itself, for example, as disconnected pieces of the

liver. Although efforts should be made to reduce or eliminate

these artifacts in clinical practice, in the clinical setting arti-

facts will exist. It was the goal of this study to examine the

accuracy of deformable registration algorithms on data that

are typically seen in the clinical setting.

Although the study was limited in the number of datasets,

several observations can be made; however’ complete con-

clusions on the robustness of the algorithms will require ad-

ditional testing on multiple datasets.

All algorithms performed well for lung 4D-CT, with mean

absolute errors of less than or equal to 2.5 mm in each direc-

tion. This is likely due to the consistent contrast between the

two images. The large maximum errors, up to 12.0 mm,

should be noted. The effect of these large errors may be

more forgiving in dose accumulation applications if gradients

are not sharp, but if these errors exist near the tumor, their

effect on image-guidance applications may be clinically

significant.

Most algorithms performed well for the liver 4D-CT, with

most mean absolute errors less than 2.5 mm. The large max-

imum errors, up to 13.0 mm, should also be noted. These

large errors may be especially concerning for the liver, where

the tumor is typically not visible on volumetric imaging with-

out the use of contrast medium. It should also be noted that

not all algorithms that performed the deformable registration

on the lung 4D-CT dataset returned results for the liver, high-

lighting the need to continue working on expanding the appli-

cation of deformable registration in other anatomic sites.

Very few algorithms reported results for the multimodality

liver images, primarily because of the algorithm’s inability to
ple prostate patient. The bladder (pink), prostate (green),
id onto the second magnetic resonance image (right) for



Table 3. List of participants: study number, institution, investigator, similarity metric used, interpolation method, optimization, and references

Study no. Institution Investigator
Similarity

metric Regularization method Optimization Time (m) Computer Reference

1 Aarhus Noe, Tanderup SSD Viscous-fluid GPU accelerated
gradient descent

3.5–4.3 PD, 3.0 GHz, 2 GB
RAM, GeForce
7900GTX 512 MB
DDRIII video RAM

23

2 CMS Han SSD Free-form with
spatial smoothing

Multi-resolution
gradient-decent

10–14 P4, 3.2 GHz, 3 GB
RAM

24, 25

3 Washing University
St. Louis

El Naqa, Yang MSD Horn-Schunck optical
flow

Multiresolution with
Gauss–Seidel
iterations

10–16 Xeon, 3.0 GHz, 3 GB
RAM

26

4 U of North Carolina Foskey, Chaney SSD Viscous fluid flow Multiscale, regularized
gradient descent
based
on a variational
calculation

21 Xeon, 3.06 GHz, 1 GB
RAM

9, 27, 28

5 UCL Hawkes, Crum CC Multiscale anisotropic
fluid flow

Multiresolution using
full multi-grid
(FMG) with
semicoarsening and
implicit smoothing

300–480 Sun v20z Opteron 250,
2.4 GHz, 4 GB RAM

29

6 Lyon Sarrut, Boldea Demons with
Gaussian
regularization

Approximation of
a second-order
gradient descent

10 P4, 2.1 GHz 512 MB
RAM

30, 31

7 McGill Heath CC Free-form constrained
by linear-elastic
model

three-dimensional
simplex

180–240 Suse Linux, 2.2 GHz
Athlon, 1 GB RAM

32, 33

8 MD Anderson
Cancer Center

Dong, Zhang Demons with
active force
and multiresolution

0.75–2.3 Xeon, 2.8 GHz, 2 GB
RAM

18, 34

9 Memorial Sloan
Kettering Cancer
Center

Mageras, Hu SSD Fast free
form with
energy
minimization with
vector
field smoothness

Calculus of variations
and Newton method

4.4–5.75 Xeon, 3.06 GHz, 2 GB
RAM

13

10 Philips Medical
Systems

Kaus, Vik Surface matching Thin plate spline 0.12–5* Opteron 2.8 GHz, 8 GB
RAM

35

11 Princess Margaret
Hospital

Brock, Nguyen Contour
matching

Linear elastic
finite element
analysis

1.2–22* Xeon, 3.73 GHz, 16
GB RAM

36-38

(Continued )
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Table 3. List of participants: study number, institution, investigator, similarity metric used, interpolation method, optimization, and references (Continued )

Study no. Institution Investigator
Similarity

metric Regularization method Optimization Time (m) Computer Reference

12 Massachusetts General
Hospital

Sharp MSE Cubic B-spline Gradient descent 12–13 P4, 3.04 GHz, 1.5 GB
RAM

39

13 University Hospitals
K. U. Leuven

Van den Heuvel,
Slagmolen

MI B-spline Limited memory quasi-
Newton

44–61 2x Xeon, 2.8 GHz, 6
GB RAM

40

14 Varian Medical
Systems

Nord SSD Demons 1.33–1.62 3.06 GHz dual
Xeon, 8 GB RAM

N/A

15 Université Catholique
de Louvain

Lee, Parraga MSE Multiscale demons +
level set B-spline

60 P4, Xeon, 3.06 GHz, 4
GB RAM

41

16 University of Maryland Shekhar, Wu MSD B-spline Downhill simplex 540–618 Xeon 3.6 GHz, 2 GB
RAM

42

17 University College of
London

Hawkes, McClelland SSD B-spline Gradient descent using
finite difference

300 Sun v20z Opteron 250,
2.4 GHz, 4 GB RAM

43, 44

18 Netherlands Cancer
Institute

Sonke, Wolthaus Optical flow using
quadrature filters

11 P4, 3.0 GHz, 1 GB
RAM

45, 46

19 William Beaumont
Hospital

Zhang, Chi CC Free form Modified gradient
search

3.5 Xeon, 2.8 GHz, 3 GB
RAM

47

20 Tomographix IP Ltd Dufort, Stundzia SSD Thin plate spline Backward Euler
gradient descent

26–76 P4, 3.2 GHz, 2GB
RAM

N/A

21 U of Florida Xia, Samant SSD Juggler algorithm
(2 diffusion-based
models)

Gradient descent 12 Intel 2.4 GHz, 3 GB
RAM

48

Abbreviations: SSD = sum of the squared differences; MSD = mean square difference; CC = cross correlation; MSE = mean square error; P4 = Pentium 4; PD = Pentium D; CMS = CMS Software.
* Excludes contouring time.
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Table 4. Results for the four-dimensional computed tomography lung data (mm)

Thorax Lungs only

Study no. Investigator

ABS AVG ABS SD MAX

Vector mag

ABS AVG ABS SD MAX

Vector mag

LR LR LR LR LR LR
AP AP AP AP AP AP
SI SI SI SI SI SI

1 Noe, Tanderup 0.7 0.7 3.3 1.6 0.7 0.5 1.9 1.5
0.8 1.2 6.4 0.8 1.1 6.4
1.2 1.5 7.5 1.0 1.4 7.5

2 Han 0.6 0.5 2.6 1.1 0.5 0.4 2.0 1.1
0.5 0.5 2.4 0.5 0.5 2.4
0.8 0.7 3.7 0.8 0.7 3.7

3 El Naqa, Yang 0.8 0.8 3.0 1.6 0.7 0.5 2.6 1.4
0.8 1.1 4.5 0.6 0.8 4.5
1.2 1.3 5.9 1.1 1.1 5.9

4 Foskey, Chaney 0.8 0.8 3.5 1.7 0.7 0.6 2.8 1.5
0.8 1.3 5.8 0.8 1.2 5.8
1.2 1.6 6.4 1.1 1.6 6.4

5 Hawkes, Crum 0.7 0.5 2.4 1.5 0.7 0.6 2.4 1.4
0.9 1.2 4.8 0.8 1.0 4.8
1.0 1.4 5.4 0.9 1.3 5.4

6 Sarrut, Boldea 1.0 0.9 4.1 2.0 0.9 0.7 3.4 2.0
1.2 0.9 4.2 1.2 1.0 4.2
1.3 1.8 7.7 1.3 1.9 7.7

7 Heath 0.9 0.7 3.1 1.5 0.9 0.7 3.1 1.4
0.9 0.8 3.7 0.9 0.6 3.7
0.8 1.2 4.6 0.7 1.1 4.6

8 Dong 0.6 0.5 2.8 1.0 0.5 0.4 1.7 1.0
0.5 0.5 2.6 0.4 0.4 1.8
0.7 0.6 2.9 0.7 0.6 2.9

9 Mageras, Hu 0.8 0.6 2.5 1.6 0.8 0.6 2.5 1.4
1.1 1.3 5.2 1.0 1.1 5.2
0.8 1.0 5.9 0.7 0.5 2.3

10 Kaus, Vik 0.8 0.7 2.8 2.1 0.8 0.6 2.8 2.0
1.4 1.5 6.9 1.3 1.2 6.9
1.3 1.3 7.2 1.2 1.3 7.2

11 Brock, Nguyen 1.2 1.0 3.9 2.2 1.2 1.0 3.9 2.2
1.4 1.3 6.5 1.5 1.3 6.5
1.3 1.3 6.7 1.1 1.0 4.1

12 Sharp 1.1 0.9 4.7 2.0 1.1 0.9 4.7 1.9
1.3 1.5 5.7 1.1 1.3 5.7
1.1 1.2 4.6 1.0 1.1 4.6

13 Van den Heuvel 0.7 0.6 2.5 1.6 0.7 0.5 2.5 1.5
0.8 0.9 4.0 0.7 0.8 3.5
1.2 1.7 7.2 1.2 1.8 7.2

14 Nord 0.6 0.5 2.1 1.5 0.6 0.5 2.1 1.4
0.9 1.4 5.7 0.8 1.1 5.7
1.0 1.3 5.6 0.9 1.2 5.6

15 Lee, Parraga 0.7 0.6 2.3 1.6 0.7 0.6 2.3 1.5
0.9 1.4 6.5 0.9 1.1 6.5
1.0 1.4 5.6 1.0 1.4 5.6

16 Shekhar, Wu 1.2 1.1 5.5 3.0 1.2 1.2 5.5 3.0
1.8 2.7 12.4 1.9 2.7 12.4
2.0 1.7 6.2 1.9 1.7 6.2

17 Hawkes, McClelland 1.2 1.1 4.6 2.5 1.1 0.8 3.7 2.4
1.4 1.3 7.0 1.5 1.2 7.0
1.7 2.0 7.8 1.5 1.9 7.8

18 Sonke, Wolthaus 0.8 1.0 5.1 1.6 0.8 0.9 5.1 1.5
0.9 1.6 7.8 0.9 1.3 7.8
0.9 1.1 4.2 0.8 1.0 4.0

19 Zhang, Chi 0.8 0.7 3.0 1.8 0.8 0.7 3.0 1.6
1.2 1.2 5.2 1.1 1.0 5.2
1.0 1.0 5.6 0.8 0.7 2.8

20 Dufort, Stundzia 0.6 0.5 2.0 1.1 0.5 0.4 2.0 1.1
0.6 1.1 5.1 0.6 0.9 5.1

(Continued )
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Table 4. Results for the four-dimensional computed tomography lung data (mm) (Continued )

Thorax Lungs only

Study no. Investigator

ABS AVG ABS SD MAX

Vector mag

ABS AVG ABS SD MAX

Vector mag

LR LR LR LR LR LR
AP AP AP AP AP AP
SI SI SI SI SI SI

0.8 0.8 4.0 0.8 0.7 4.0
21 Xia, Samant 0.7 0.6 2.7 1.2 0.6 0.4 1.9 1.1

0.7 0.8 3.2 0.6 0.7 3.2
0.7 0.5 2.0 0.7 0.5 2.0

Abbreviations: ABS AVG = absolute average; ABS SD = absolute standard deviation, MAX = maximum; Vector mag = vector magnitude;
AVG mag = average magnitude. LR = left–right; AP = anterior–posterior; SI = superior–inferior.
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perform on multimodality images. The algorithms that sub-

mitted results had variable accuracy.

The prostate data were arguably the most challenging data-

set because gas in the rectum caused artifacts and also sub-

stantial deformation of the prostate. Several participants
Table 5. Results for the four-dimensional c

Abdomen

Study no. Investigator

ABS AVG ABS SD MAX
LR LR LR
AP AP AP
SI SI SI

1 Noe, Tanderup 1.5 1.2 5.0
2.8 1.9 6.9
5.9 3.5 11.2

2 Han 1.0 0.9 4.0
1.2 1.3 5.9
2.0 2.5 10.1

3 El Naqa, Yang 1.3 1.2 4.4
2.4 1.7 5.8
3.7 2.2 7.8

5 Hawkes, Crum 1.1 0.9 3.7
1.7 1.5 5.9
3.0 2.0 6.6

6 Sarrut, Boldea 1.1 0.9 3.3
3.0 1.6 7.5
3.6 3.8 13.0

7 Heath 0.8 1.0 5.9
1.0 1.2 5.9
1.0 0.8 3.8

8 Dong 1.1 0.9 4.4
1.2 1.3 6.0
1.7 2.0 8.5

9 Mageras, Hu 1.0 0.9 3.4
1.4 1.4 6.4
1.9 1.1 4.0

10 Kaus, Vik 1.1 1.0 3.4
1.3 1.4 6.7
1.3 1.0 3.5

11 Brock, Nguyen 1.2 1.1 4.0
1.6 1.5 6.6
1.2 0.8 3.1

12 Sharp 1.5 1.4 7.4
2.6 1.9 7.4
2.4 1.5 5.2

13 Van den Heuvel 1.2 1.1 4.8
declined to submit the results of their algorithms because of

obvious erroneous results. Although the deformation ex-

hibited in this patient is not typical, it is consistent with the

deformation seen with the insertion of an endorectal coil.

As MRI with endorectal coil becomes more common the
omputed tomography liver data (mm)

Liver only

Vector mag

ABS AVG ABS SD MAX

Vector mag

LR LR LR
AP AP AP
SI SI SI

6.7 1.4 1.0 3.6 8.2
3.2 2.0 6.9
7.4 3.0 11.2

2.6 1.2 1.0 4.0 3.2
1.5 1.5 5.9
2.6 2.8 10.1

4.6 1.4 1.1 4.4 5.3
2.8 1.8 5.8
4.3 2.0 7.8

3.6 1.1 1.0 3.7 4.1
1.8 1.7 5.9
3.5 2.1 6.6

4.8 1.2 0.9 3.3 6.0
3.3 1.6 7.5
4.8 3.9 13.0

1.7 0.9 1.2 5.9 1.8
1.2 1.4 5.9
1.0 0.9 3.8

2.3 1.2 1.0 4.4 2.6
1.3 1.5 6.0
1.8 2.3 8.5

2.6 1.1 1.0 3.4 2.9
1.5 1.6 6.4
2.2 1.2 4.0

2.1 1.2 1.1 3.4 2.3
1.5 1.5 6.7
1.2 1.2 3.5

2.4 1.2 1.0 4.0 2.3
1.5 1.6 6.6
1.2 0.9 3.1

3.8 1.9 1.6 7.4 4.2
2.6 2.2 7.4
2.7 1.6 5.2

3.1 1.5 1.2 4.8 3.8
(Continued )



Table 5. Results for the four-dimensional computed tomography liver data (mm) (Continued )

Abdomen Liver only

Study no. Investigator

ABS AVG ABS SD MAX

Vector mag

ABS AVG ABS SD MAX

Vector mag

LR LR LR LR LR LR
AP AP AP AP AP AP
SI SI SI SI SI SI

1.8 1.7 5.8 2.3 1.8 5.8
2.2 2.0 8.6 2.6 2.3 8.6

14 Nord 1.1 0.9 3.3 3.3 1.1 0.9 3.3 4.0
1.3 1.4 5.8 1.5 1.6 5.8
2.9 2.1 7.2 3.6 2.2 7.2

16 Shekhar, Wu 1.1 0.9 3.8 3.4 1.3 1.0 3.8 4.1
1.7 1.5 5.1 2.0 1.7 5.1
2.7 2.5 8.7 3.3 2.7 8.7

18 Sonke, Wolthaus 1.3 1.3 6.2 2.3 1.5 1.4 6.2 2.6
1.3 1.4 6.7 1.5 1.6 6.7
1.4 1.1 4.6 1.4 1.2 4.6

20 Dufort, Stundzia 1.2 0.9 3.4 2.9 1.4 0.9 3.4 3.5
1.8 1.5 5.7 2.2 1.6 5.7
1.9 1.5 6.2 2.4 1.7 6.2

Abbreviations: ABS AVG = absolute average; ABS SD = absolute standard deviation, MAX = maximum; Vector mag = vector magnitude;
AVG mag = average magnitude. LR = left–right; AP = anterior–posterior; SI = superior–inferior.
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need to resolve these large deformations will become increas-

ingly important. Additionally, the MR images were acquired

at two separate times, unlike the 4D-CT datasets; therefore,

they required a global image registration before the study

of deformation. It was difficult for some investigators to re-

turn the total displacement vector, combining both the global

shift and the deformation vector, and to validate whether the

correct geometric transformation was combined properly. In

future multicenter tests, a dry run with known shifts in the test

dataset is highly recommended.

Algorithm implementation was shown to have an effect

on the registration results. Three algorithms reported using

Demons algorithm on the liver 4D-CT data, and the accu-

racy was 2.3, 3.3, and 4.8 mm. Three algorithms reported

using thin-plate spline for the liver 4D-CT data, and the ac-

curacy was 2.1, 2.9, and 7.8 mm; however, the similarity

metric varied from contour matching (2.1 mm), sum of

the squared difference (m = 2.9 mm), and feature of control
Table 6. Results for the magnetic resonance imag

Study no. Institution Investigator

2 CMS Han

10 Philips Medical Systems Kaus, Vik

11 Princess Margaret Hospital Brock, Nguyen

Abbreviations: ABS AVG = absolute average; ABS SD = absolute stan
AVG mag = average magnitude. LR = left–right; AP = anterior–posterio
points (m = 7.8 mm). Four algorithms reported using B-

spline for the lung 4D-CT. Two algorithms used mean

square error and had an error of 2.0 (optimized with gradi-

ent descent) and 3.0 mm (optimized with downhill sim-

plex). One algorithm used SSD, error of 2.5 mm. The B-

spline implementation, which used MI, had the smallest er-

ror (among the B-spline implementations) with an error of

1.6 mm. The clinical significance of these variations, and

also the consistency of this accuracy across a larger number

of patients, require further investigation.

In summary, this study highlights the success achieved in

deformable registration for anatomic sites imaged with con-

sistent contrast (i.e., 4D-CT of the lung) and the work that

must be done to ensure that these accuracies are also obtained

for multimodality images and anatomy that has less contrast

variation (i.e., prostate). Maximum errors, which were large

for some algorithms, should be investigated, and their effect

on applications (e.g., dose accumulation) should be studied.
ing/computed tomography liver data (mm)

ABS AVG ABS SD MAX

AVG mag

LR LR LR
AP AP AP
SI SI SI

2.6 2.3 6.8 6.5
5.0 1.4 6.6
2.2 1.6 5.4
1.1 0.9 2.5 4.5
3.2 1.8 5.9
2.5 0.6 3.3
1.5 1.3 3.5 3.9
2.0 1.2 3.3
2.6 1.6 5.6

dard deviation, MAX = maximum; Vector mag = vector magnitude;
r; SI = superior–inferior; CMS = CMS Software.



Table 7. Results for the repeat magnetic resonance imaging prostate data (mm)

Study no. Institution Investigator

ABS AVG ABS SD MAX

AVG mag

LR LR LR
AP AP AP
SI SI SI

8 MD Anderson
Cancer Center

Dong 6.2 2.4 8.7 7.4

3.1 2.0 5.4
2.0 1.5 3.6

10 Philips Medical Systems Kaus, Vik 0.5 0.4 0.9 4.3
3.7 1.5 5.0
2.0 0.5 2.5

11 Princess Margaret Hospital Brock, Nguyen 1.0 0.3 1.2 2.3
3.2 3.4 7.0
0.4 0.6 1.1

Abbreviations: ABS AVG = absolute average; ABS SD = absolute standard deviation, MAX = maximum; Vector mag = vector magnitude;
AVG mag = average magnitude. LR = left–right; AP = anterior–posterior; SI = superior–inferior.
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