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Abstract

Purpose. We propose a new method for efficient particle transportation in vox-
elized geometry for Monte-Carlo simulations. We describe its use for calculating
dose distribution in CT images for radiation therapy.

Material and methods. The proposed approach, based on an implicit volume
representation named segmented volume, coupled with an adapted segmentation
procedure and a distance map, allows to minimize the number of boundary crossings
which slows down simulation. The method was implemented with the Geant4 toolkit
and compared to four other methods: one box per voxel, parameterized volumes,
octree-based volumes and nested parameterized volumes. For each representation,
we compared dose distribution, time and memory consumption.

Results. The proposed method allows to decrease computational time by up to a
factor of 15, while keeping memory consumption low and without any modification
of the transportation engine. Speed up is related to the geometry complexity and to
the number of different materials used. We obtained an optimal number of steps with
removal of all unnecessary steps between adjacent voxels sharing a similar material.
However, the cost of each step is increased. When the number of steps cannot be
decreased enough, due for example to the large number of material boundaries, such
method is not considered suitable.

Conclusion. This feasibility study shows that optimizing the representation of
an image in memory potentially increases computing efficiency. We used the Geant4
toolkit but could potentially use other Monte-Carlo simulation codes. The method
introduces a tradeoff between speed and geometry accuracy allowing computational
time gain. However, simulations with Geant4 remain slow and further work is needed
to speed up the procedure while preserving the desired accuracy.
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1 Introduction

In radiation therapy, simulations are used to compute the three-dimensional (3D)
dose distribution within a patient’s body from a given set of irradiation parameters.
Monte Carlo (MC) methods allow accurate simulation of the physical interactions
of irradiation particles within patient tissues with photon/electron beams used in
conventional radiotherapy [25], but also with proton [11] or carbon [15] beams used
in hadrontherapy. Amongst other applications, MC simulations are a promising
basis for designing fast treatment planning systems based on analytical simulations.

The present paper will focus on condensed simulation model which simulates the
global effects of collisions in the course of a given step, but uses approximations.
Condensed MC is known to track particles on a step-by-step basis [17]. There are
two types of steps: physical steps transport particles and simulate physical processes
(e.g. photoelectric effect, Compton scattering, etc) in homogeneous media, whereas
geometrical steps take into account the spatial environment of the particle and occur
when it passes from a medium to another during transport.

Generally, the anatomical representation of the patient’s organs is obtained from
a Computerized Tomography (CT) image. Such a spatial description requires a
large amount of data. In [7], the authors have used about 38 million voxels. Besides
the need for computer memory, the lengthy processing time limits the use of MC.
Besides using more powerful computers, several other approaches are currently under
study to reduce the computational time. For example, several authors have used
variance reduction [1], optimized energy cut or production range parameters [13, 14,
9]. Hybrid approaches combining analytical models and MC simulation have also
been proposed [4]. All these methods either decrease the number of physical steps
or accelerate the stepping process.

At least two possibilities exist to reduce the computational burden due to com-
plex geometry: either reduce the complexity of the scene or speed up the geometrical
stepping algorithm. We propose here a new approach to fasten the simulation when
representing a 3D image using a MC code. It is based on allowing particles to cross
voxel boundaries between two similar materials. The principle is not new since sev-
eral authors have proposed comparable approaches, for example for DOSXYZnrc
(EGSnrc) code [27, 23]. However, the way such boundaries are removed is differ-
ent since, in our case, the transportation algorithm is not modified and thus any
algorithm can be used. Instead, a new volume representation was defined, and we
used a distance map to efficiently return to the transportation engine the distance
to the nearest real boundary. Moreover, the method was implemented in the Geant4
toolkit. At our knowledge, similar approaches has not been published before. This
method can be coupled with other acceleration techniques (e.g. variance reduction,
use of parallel machines, etc) to further decrease simulation times.

This paper is organized as follows. Section 2 describes the state-of-the-art pro-
cedure to prepare a CT image in order to use it in a MC simulation (2.1) and the
existing representations allowing to handle it in Geant4 (2.2). Section 3 describes
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the proposed approach, which consists in an optimized image representation (3.1)
for CT data which have been preprocessed by an adequate image segmentation pro-
cedure (3.2). Section 4 describes and discusses three series of experiments that we
have carried out in order to evaluate the newly proposed method in comparison to
existing ones. Section 5 finally concludes.

2 Existing image representations for particle tracking

2.1 From CT image to tissue composition

In order to represent a patient’s anatomy given by a CT image in a MC simulation,
it is necessary to associate each voxel of the image with a given tissue composition.
A material m is defined by a mass density ρ (g.cm−3) and an element weight vector
denoted by ωi ∈ [0; 1], with

∑
i ωi = 1. The MC simulator uses such a description

to load cross sectional datafiles and compute physics tables. The image acquisi-
tion process of a CT is the measure of the attenuation coefficients (µ, expressed in
Hounsfield Units, H) of traversed tissues. H are obtained with eq. 1 ([20]), where
µ(E) is the linear attenuation coefficient of a tissue m = (ρ, {ωi}) at energy E (see
eq. 2), with NA (mol−1) the Avogadro constant, i the element index and σi the total
cross section of the physical processes involved during the image acquisition.

H =
(

µ

µwater
− 1
)
× 1000 µ =

H −Hair

Hwater −Hair
(1)

µ(E) = ρNA

n∑
i=1

(
ωi

Ai
σi(E)

)
(2)

A stoichiometric calibration method to establish a relationship between H and
tissue compositions has been proposed by Schneider et al. [21]. Images of phantoms
made up of materials with known compositions and densities are used to calibrate
the CT scanner. The authors have assigned the known materials to the measured
H. Materials corresponding to intermediate H values have been interpolated both in
terms of atomic composition and density according to eq. 3 and eq. 4.

ρ =
ρ1H2 − ρ2H1 + (ρ2 − ρ1)H

H2 −H1
(3)

ωi =
ρ1(H2 −H)

(ρ1H2 − ρ2H1) + (ρ2 − ρ1)H
(ω1,i − ω2,i) + ω2,i (4)

As stated by the authors, such a calibration procedure provides an approximated
description of the composition of body tissues. Indeed, at conventional scanner ener-
gies (around 120 KeV) the imaging process mostly involves the photoelectric effect,
coherent scattering and Compton scattering. Tissues with different compositions
may thus result in similar H (this is particularly true for soft tissues). Moreover,
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the partial volume effect may assign an artificial H value to a voxel containing a
mixture of several tissues. Schneider et al [21] have estimated the accuracy of their
calibration method to be better than 0.04g.cm−3, which corresponds to about 20
to 40 H units, depending on the density (slightly lower slope for denser tissues).
Kanematsu et al [8] have estimated the precision to be 1% (about 20 H). Schaffner
et al. [19] have estimated the accuracy to be around 1.1% for soft tissues and 1.8%
for bone tissues (from 20 to 40 H).

2.2 Existing image representations in Geant4

Once the CT image has been converted to an image of materials, different possibil-
ities exist to insert the data into a MC simulation. In a MC simulation code, the
physical world is described by means of elementary volumes of homogeneous compo-
sition. This work was elaborated using the Geant4 toolkit [1] but could be adapted
to other simulation codes (provided that they force interactions at voxel boundaries,
unlike DPM or VMC [5]). In Geant4, an image of materials can be introduced using
several techniques :

1. Box Volume (BV). This first method is straightforward. For each voxel of
the image, it creates a parallelepiped box (G4Box) filled with the associated
material. Memory consumption is high (about 56 bytes per voxel [5]) and
navigation is very slow, thus preventing the use of such a representation for
large images.

2. Parameterized Volume (PV). This method, advocated for example by Jiang et
al. [7], allows storing a single voxel representation in memory and dynamically
changing its location and composition at run-time during the navigation. The
main advantage of this method is high efficiency in memory space.

3. Isothetic Volume (IV). By merging adjacent voxels sharing similar material
(with a given tolerance) into a larger voxel, it is possible to reduce the num-
ber of parallelepipeds. Hubert-Tremblay et al. [5] have proposed the use of
octree compression to merge adjacent voxels. All resulting parallelepipeds are
inserted into Geant4 by means of the BV (or possibly PV) approach. “Iso-
thetic” means that the image is composed of parallelepiped cells arranged with
their faces parallel to the three principal axes.

4. Nested Parameterized Volume (NPV). While reusing the same mechanism as
PV, this representation also splits the 3D volume along the three principal
directions, allowing logarithmic finding of neighboring voxels.

All these representations have in common that images are splitted into sub-
volumes of homogeneous composition which are parallelepipeds, either of the voxel
size or larger. In BV, PV and NPV all parallelepipeds have the same dimensions,
while in IV parallelepipeds have different sizes (the side length can be a multiple
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of the initial voxel side length). The main advantage is that geometrical opera-
tions needed for particle tracking (for example computing the intersection between
a vector and a volume) are fast to compute for a parallelepiped. However, the main
drawback is that all the particles are forced to stop at the boundaries of all par-
allelepipeds, generating a supplementary step and additional time cost, even if the
two neighboring parallelepipeds share the same content. Such artificial steps occur
very often as human organs are far from being parallelepipedic.

Another potential source of slowness is the navigation algorithm used to find par-
allelepiped neighbors when a particle moves outside a volume. Geant4 uses a tech-
nique called SmartVoxel or voxelisation which consists in spanning the space with
virtual geometrical slices. When seeking for the next volume, research is performed
hierarchically, dimension by dimension. Smartless, a parameter corresponding to
the average number of slices used per contained volume, defines the granularity of
the voxelisation. Setting a high value when using an image composed of millions of
parallelepipeds, leads to too many created slices, which increases memory consump-
tion and prevents launching the simulation. The default value in Geant4 is 2, which
is not adapted to very large geometry. As proposed in [6], a value of 0.02 was used.

3 Proposed approach : regions of arbitrary shape

The CT calibration accuracy estimations reported in section 2.1 above suggest that
it should not be necessary to use the whole range of H and that voxels with neighbor-
ing H can be associated in a same homogeneous region. This is typically an image
segmentation problem aiming at reducing the complexity of the scene while preserv-
ing overall accuracy. Our approach is based on two steps : (1) segmenting the CT
image into homogeneous regions, whatever the shape of the resulting regions (par-
allelepiped or not), and (2) inserting the segmented image into the simulation using
a new representation which allows to handle voxelised regions of arbitrary shape.
The next section first describes the new representation proposed which allows to
handle arbitrary shaped voxelised regions in Geant4 simulations. This method is
very general and can be used with any segmented image as input. We then describe
a method used to segment a CT image into regions.

3.1 Handling segmented volumes in Geant4 simulations

We assume here that an initial CT image has been segmented into regions of ho-
mogeneous composition, resulting into a label image in which each voxel is labeled
with the index of a material. Together with this label image comes a file which as-
sociates each label to a given material composition and density. In the label image,
a region is defined as a set of voxels sharing the same label, and is not necessarily
a parallelepiped. Instead of providing an analytical description (such as NURBS
or superquadric modeling [12]), we propose to describe the regions using the ini-
tial underlying discrete uniform voxel grid. We propose new geometric operators to
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manage such a geometry. This approach is named SegmentedVolume (SV).
In Geant4, the geometrical properties of a volume are handled by a G4VSolid

class which must be able to answer several geometrical queries during the navigation
process. The main operations are:

• Inside(p), which computes whether the point p is inside, outside or on the
surface of the volume.

• DistanceToIn(p,v), which computes the distance covered by a particle at
point p to enter the volume when travelling in direction v. If the line defined
by (p, v) does not intersect the volume then an infinite distance is returned.
Another version of DistanceToIn computes the shortest distance between the
point p and the volume, independently of the direction. This is used as a safety
distance, avoiding further computation when, for example, a shorter distance
to another volume has been found previously.

• DistanceToOut(p,v) is similar to DistanceToIn and computes the distance
needed by a particle at point p to move out of the volume according to the
direction v. A direction-independent version is also available.

Such functions are very fast to compute if the volume is as simple as a paral-
lelepiped (independently of its size). To represent a SV, we propose a new G4VSolid
class, called RegionSolid, and we provide an efficient way to compute the above
mentioned geometric queries. Given a label image, a RegionSolid is created for each
region in the image ; it has access to the label image and to the label of the region
it represents. Each RegionSolid then performs the computation of the different
geometrical queries as follows. For Inside(p), the calculation is straightforward.
By rounding the coordinate of the point p according to the underlying voxel grid,
one directly obtains the region to which p belongs by reading the voxel label. For
DistanceToIn and DistanceToOut, we adapted a voxel-based discrete ray-tracing
algorithm allowing to compute the distance on a step-by-step basis, each step being
determined according to the voxel boundaries (see figure 1). For the direction-
independent versions, we used a distance map which stores, for each voxel, the
shortest distance to the nearest boundary of the region to which the voxel belongs
(see figure 1). More precisely, for a voxel v belonging to region R(v), the distance
dmin(v) is the shortest distance between any location in v and any location in R(v),
the complementary set of R(v):

dmin(v) = min{d(p, q)|p ∈ v, q ∈ R(v)} (5)

Hence for a given particle located at non integer coordinates within a voxel, the
distance is an underestimate of the real nearest distance to the boundary of the
region. Such an image of distances is usually called a Distance Map and efficient
algorithms to compute them have been proposed in the image processing community.
We used the Insight Toolkit1 implementation of Danielsson’s algorithm [3].

1http://www.itk.org
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Figure 1: 2D illustration of the SegmentedVolume approach. To compute the
DistanceToOut operation from the point p and along the direction v, a discrete
ray-tracing is performed (green dots : geometrical steps). The numbers indicated
inside the voxels in the dark region on the left represent the distance map values
used for safety distance computation.

Of course, the computation of these geometrical operations is longer for a
RegionSolid than for a parallelepiped (G4Box). However, in case of homogenous
regions spanning multiple voxels, the technique optimizes the number of geometri-
cal steps, which now only occur at real boundaries (between two different adjacent
materials) and not at artificial boundaries (between two parallelepipeds sharing the
same material).

In practice, such an approach does not involve modifying the Geant4 code. It
is sufficient to create the new RegionSolid class derived from the abstract class
G4VSolid. The distance map is computed and stored before the simulation. The
two voxel matrices (the initial one composed of the matrix of labels and the distance
map) are loaded and stored in memory. The SegmentedVolume in itself does not
occupy much more space in memory than the NPV approach (see section 4.1).

3.2 Image segmentation procedure

In the image processing field, the term segmentation refers to the process of par-
titioning an image into multiple regions (sets of pixels) in order to decrease scene
complexity by removing noise or unnecessary image details. For the sake of simplic-
ity, we will only focus on photon beams for which the majority of physical processes
depend on the electronic density of the material. Hence, the merging of two materi-
als will be performed with a certain tolerance regarding the difference of electronic
density between the voxels. For other types of beams (proton, carbon), such a step
should be performed using a different density distribution, such as the stopping
power density [8]. Electronic density was computed with eq. 6, where ρNg is the
number of electrons per unit volume of the mixture, Zi the atomic number and Ai

the atomic weight of element i.
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ρe = ρNg/ρ
waterNwater

g Ng = NA

∑
i

ωiZi

Ai
(6)

Based on such a density image, several image segmentation methods can be
applied to merge homogeneous neighboring regions. Amongst other approaches,
region-based segmentation methods are generally composed of a homogeneous crite-
rion and a regularization one. For example, Hubert-Tremblay et al. [5] have proposed
to define a region as homogeneous if it has no density gradient value greater than
a user-specified threshold (named DGT, Density Gradient Threshold). Based on an
octree method, the regions were constrained to be parallelepipeds. For the sake of
comparison, we used this procedure for image segmentation. The resulting octree
structure was used with the IV method and the resulting segmented image was also
used with the proposed SV method. After segmentation, resulting images have a
large number of regions (the leaves of the octree) with an averaged density. Like
others authors [7, 5], we then attributed labels according to a quantization of the
range of density, leading to a discrete number of different densities and correspond-
ing materials. Quantization was performed according to the mean density difference
obtained between initial and segmented density images. Such a procedure allows to
obtain both an octree structure for the IV method and a label image for the SV one.
The difference is that in our SV model, all parallelepipeds sharing the same label
are viewed as an unique volume.

3.3 Dose scoring : voxel and dosel grids

We decided to separate the 3D matrix of voxels describing the patient (the geomet-
rical grid) from the 3D matrix of scoring voxels (the scoring grid). By analogy with
the term “voxel” describing a volume element used to record a material description,
we propose to name “dosel” any volume element used to record a deposited dose.
As emphasized in [24], this method allows, when high resolution is required for im-
age description (for example when inhomogeneous materials are considered), to gain
computational time by scoring doses in dosels that are larger than voxels and thus
to accelerate convergence to reduced statistical uncertainty. Note that when dealing
with segmented images, we used the average density obtained after segmentation
to compute the dose in order to be consistent with the way energy deposit was
simulated.

Relative statistical uncertainty ε(x) at a given dosel x was estimated by eq.7
(see for example [10]). n is the number of primary events (or history), and di(x) is
the deposited energy in dosel x at (primary) event i. Average relative uncertainty s
(eq. 8) was computed with the method proposed by [16] for all m dosels x such that
d(x) > 0.5dmax, with dmax the maximum deposited dose in a dosel. More details
on statistical uncertainty can be found in [2]. We used mean relative difference
MRD(d1, d2) = 1

m

∑m
x
|d1(x)−d2(x)|

d1(x) to compare the dose distribution d2 relatively to
d1. For comparison purpose, we will also present the results using dose difference
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relatively to dmax, because this form is sometimes used in the literature ([5]) :
MRDdmax(d1, d2) = 1

m

∑m
x
|d1(x)−d2(x)|

dmax .

ε(x) =

√
n
∑n

i d
i(x)2 − (

∑n
i d

i(x))2

(n− 1)(
∑

i d
i(x))2

(7)

s =

√√√√ 1
md>0.5dmax

m∑
x

(ε(x))2 (8)

Contrary to [24], in the proposed Geant4 implementation, adding a dosel matrix
to the voxel matrix does not significantly increase the computational time (less
than 10% of the total time). Each dose deposition event leads to a floating point
coordinate (in the world coordinate system) which is rounded to find the correct
dosel index. The memory requirement is four floating point numbers per dosel:
one for the deposited energy, one for the squared energy (for computing statistical
uncertainty), one temporary value and one value storing the last hit event number as
proposed in the efficient update method of [26, 22] that we implemented in Geant4.
Finally, in Geant4, each step is defined by a line segment determined with a pre
(starting) and a post (ending) position. In order to avoid biases and as advocated
in the documentation, we computed a random location on the segment and added
the current energy deposition to the dosel containing this location.

4 Experiments

We tested the proposed SegmentedVolume in three experiments. The first exper-
iment was the irradiation of a simple water box. The goal was to validate the
approach and estimate the computational burden due to the introduction of voxels.
The second experiment used a phantom. It aimed at illustrating the time decrease
as a function of the number of voxels. The third experiment was performed on pa-
tient data. It illustrates the proposed method in a complex geometry with numerous
heterogeneities.

4.1 Water box experiment

4.1.1 Description

This first experiment aimed at illustrating the difference between non-voxelized and
voxelized geometry in terms of computation time, dose distribution and memory
consumption. It also aimed at validating the proposed method. The geometry was
composed of a box of water. The beam source was a 6 MV photon conic beam with
an energy spectrum obtained by MCNPX simulation of an Elekta PreciseTM device.
The physics list was based on the low energy electromagnetic package. Distance
to axis was set to 100 cm and we used a 20 mm radius beam size (at isocenter).
Sixty million primary events were simulated. The box (160 × 160 × 300 mm3) was
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Table 1: Water box experiment. Mean (standard deviation) relative difference be-
tween various image parameterization; differences relative to dmax are also given.
Parameterizations were Single Box (SB), Box Volumes (BV), Parameterized Vol-
umes (PV), Nested Parameterized Volumes (NPV) and Segmented Volumes (SV).

described successively with a single homogeneous box (denoted by SB) or a voxelized
volume with cubic voxels. Three sizes were used : 23, 1.53 and 13 mm3, leading to
1, 2.3 and 7.7 million voxels, respectively. Four methods were compared : multiple
G4Box (BV), parameterized volume (PV), nested parameterized volume (NPV) and
segmented volume (SV). Of course, the IV model would give the same result as SB
because the octree segmentation would lead to only one box. For all configurations,
the deposited energy distribution was stored in a 80 × 80 × 150 dosel grid with
2× 2× 2 mm3 dosel size. Production cuts were set to 0.5 mm for photons and 0.3
mm for electrons/positrons in the water box, and 2 mm for all particles outside the
box. Such cuts prevent the creation of secondary particles when the energy range is
below the chosen values ; instead, the energy is deposited locally.

4.1.2 Results

Table 1 displays the mean relative difference between the dose distribution ob-
tained with the various parameterizations (BV,PV,NPV,SV) and without voxeli-
sation (SB). All simulations led to average relative uncertainties below 0.9%. We
also computed the total dose deposited inside the whole box with the different meth-
ods and found the following relative differences : 0.2 % between SB and PV (or BV),
0.18 %, between SB and NPV , 0.0023 % between SB and SV. Computational time,
number of geometrical and physical steps (relatively to the SB experiment with 0.96
million voxels) are given in table 2 for SB, NPV and SV configurations, and for 0.96,
2.3 and 7.7 million voxels. Memory consumption (on a 64-bits AMD Athlon PC)
according to the different parameterizations is displayed in table 3.

4.1.3 Discussion

In table 1, BV, PV and NPV should produce exactly the same results because Geant4
has been forced to use the same random number sequence. Indeed, the history of all
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Table 2: Water box experiment. Time, number of geometrical steps and number of
physical steps (expressed relatively to the SB experiment with 0.96 million voxels),
for the three different configurations (SB,NPV,SV) and three voxel numbers (0.96,
2.3 and 7.7 million voxels).

Table 3: Water box experiment. Memory (in Mega-bytes) used for processing 1
million voxels according to the different methods. Three versions of the PV param-
eterization with different smartless values are indicated.
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particles should be identical because all are stopped at exactly the same positions,
whatever the parameterization used. However, even if it came true for BV compared
to PV, NPV induced a slightly different behaviour. Inadequate management of some
particular situations (a particle touching the edge of a volume but not entering it,
for instance) was observed in Geant4 when using NPV. We have proposed the use
of a patch to partially correct the problem (submitted to the Geant4 community).
This patch reduces relative differences between BV/PV and NPV to less than 0.07%.
We thus consider that the three parameterizations BV, PV, NPV are equivalent in
terms of deposited dose.

First, we observed that dose differences between voxelized (BV, PV, NPV, SV)
and non-voxelized (SB) volumes remained equivalent or below the statistical uncer-
tainty (1%). The number of histories (60 million) was chosen to keep statistical
uncertainty below 1%. SV should also be statistically identical to SB because it re-
moves all voxel boundaries inside the box. However, there are some approximations
in the computation of safety distance based on the distance map and we observed
slight differences. We recall that all the mentioned differences are made (on aver-
age) dosel by dosel. Global differences computed on the whole box were very low
(< 0.003% between BV and SV for example).

Such experiments also bring to light the computational cost of introducing voxels.
For NPV, time was increased by a factor between 4 and 8 when using 0.96, 2.3 and
7.7 million voxels, respectively. We observed that the number of geometrical steps
dramatically increased (by a factor of 50 to 100). The number of physical steps was
also increased by a factor of 3 to 4. SV remained slower than SB (1.5 times slower
for 7.7 million voxels) due to the burden of geometrical steps which increases when
the image is complex. The simulation is however about 5 times faster with SV than
with NPV for approximately the same memory requirement as SB (table 3).

4.2 Phantom experiment

4.2.1 Description

In these experiments, we used a CT image of a manufactured phantom composed
of wood (0.47 g.cm−3), polyethylene (0.9 g.cm−3) and PMMA (1.2 g.cm−3), used for
portal image calibration in our radiotherapy department. The phantom image (see
figure 2) was segmented into five materials (by adding air and graphite). The image
was 512 × 512 × 47 (about 12.3 million voxels) with a resolution of 0.6 × 0.6 × 5
mm3. We compared NPV, IV and SV methods. For IV, as only five materials were
used, we used an exact octree segmentation [5] with a DGT value of 0. Parameters
were the same as for the previous experiment, except for the beam radius which was
50 mm. One hundred million primary events were simulated. Dosel size was set
to 2 × 2 × 2 mm. Production cuts were set to 0.01 mm for gamma, electrons and
positrons.

12
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Figure 2: Slice of the phantom used in the experiment. The phantom is composed
of wood, polyethylene and PMMA.

Table 4: Phantom experiment. Top: Mean (standard deviation) relative difference
between NPV, IV and SV for the phantom experiment. Differences relative to dmax
are also given. Bottom: Time, number of geometrical steps and number of physical
steps with NPV, IV and SV for 1 million events.

4.2.2 Results

Octree compression (IV) led to about 800 thousand parallelepipeds (compression
ratio of about 93%, comparable to what is found in [5] for another phantom image).
Simulations performed with 100 million primary particles led to average relative
uncertainties below 0.8%. Table 4 displays the relative dose difference, the time and
the number of geometrical and physical steps. The simulation was performed on
a remote cluster of workstations (composed of AMD Opteron dual-core processors
under Linux, 2Ghz). The time measurements were done for 1 million events. Time
measurements were subject to variation due to the load of the cluster, however the
normalization of values according to the percentage of CPU used allowed to compare
simulation times.
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4.2.3 Discussion

Computational time was decreased by a factor greater than 15 when using SV com-
pared to NPV. Such a performance can be explained by the large reduction in the
number of steps (almost 34 times less). We note that the reduction here was supe-
rior to the one obtained in the waterbox experiment. There are more voxels (12.3
million) and the number of physical interactions is higher. Average dose relative
differences between the three methods remain lower than 1% which in the order of
the statistical uncertainty. Figure 3 illustrates the dose distribution in the phantom
and figure 4 shows a depth dose distribution plot with the three methods (NPV, IV
and SV) and the corresponding differences between NPV and SV. We observed that
there were no dosel with relative error greater than 3%. The effect of the boundaries
between different media can be observed with the vertical lines.

Figure 3: Example of the dose distribution superimposed on one phantom CT slice.
The corresponding dose difference distribution between NPV and SV is shown at
bottom.

4.3 CT image experiment

4.3.1 Description

For the third series of simulations, we used a thorax CT image of a patient with
NSCLC (Non-Small Cell Lung Cancer). Initial image size was 512× 512× 77 (more
than 20 million voxels) with a resolution of 1.2×1.2×5 mm3. We reduced the number
of voxels by segmenting the air region surrounding the patient (according to the
method described in [18]) and kept the bounding box corresponding to 349×228×77
voxels (about 6 million). After CT calibration [21], six segmentations were performed
with the octree method according to six DGT parameters (see table 5 and figure 5).
In this figure, we do not show all segmentations because they are hardly visually
distinguishable from the original image. Three methods were compared for dose
and timing: NPV, IV and SV. One hundred million primary events were simulated.
Dosel size was set to 2.5×2.5×5mm3 (about 1.3 million dosels). Other parameters
were the same as for previous experiment.
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Figure 4: Dose profile in the phantom computed with the methods NPV, SV and
IV (dose is expressed relatively to the maximum dose observed with NPV, on the
left axe). Relative differences between NPV and SV are shown with vertical boxes
(values are on the right axe). Vertical lines show the limits between different media.
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Original CT slice Segmented CT slice, mean HU

Octree segmented CT slice Final segmented CT slice

Figure 5: Top-left: original CT slice. Top-right: The four images show the segmen-
tation results obtained with different DGT values. Mean Density Difference (MDD)
and corresponding number of materials is indicated on the images (see table 5).
Bottom-left: parallelepipeds leaves resulting from the octree procedure. Bottom-
right: same images after quantization procedure. Simplification is especially visible
on the last images.
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Table 5: Segmentation DGT (g.cm−3), quantization (number of materials), density
differences (mean, max, standard deviation) and number of resulting boxes (octree
leafs).

4.3.2 Results

All 18 simulations (3 methods, 6 cases) led to average relative uncertainties below
0.9%. Table 6 displays the dose relative differences and table 7 the computational
time according to the different segmentations, for NPV, IV and SV methods. Time
is expressed relatively to NPV and test1 experiment.

4.3.3 Discussion

The mean accuracy in mass density during the segmentation stage ranged from
0.002 to 0.027 g.cm−3. The octree stage yielded between 750, 000 and near 2 million
boxes. Table 7 illustrates that using SV with a reduced number of materials allowed
to reduce the computational time by up to a factor greater than 4. Using the octree
structure also decreased the time by up to a factor of approximately 1.5. The gain is
attributable to the large decrease in the number of geometrical steps, the number of
physical steps only slightly decreases. We also observed that for excessive numbers
of materials, the methods are not efficient and can even lead to increased computing
time (test1). We observed that the dose distribution differences between NPV, IV
and SV methods remained below 1.2% (left part of table 6). In this case, this is
the same material approximation and, as in the phantom experiment, differences
are in the order of the uncertainty (which is below 0.9%). In the right part of
the table 6, dose differences due to material approximation can be observed and
range from 1.1% to 1.5%. Figure 6 illustrates the experiment with profiles : on
the upper part, electronic density profiles are displayed for reference image, test n◦5
and test n◦6. The approximation due to the segmentation part can be observed
(note that the segmentation was performed in 3D, which explain that in the right
part of the figure, the segmentation n◦6 seems crude). On the bottom part of
the figure, deposited dose distribution profiles are shown for test n◦1 compared
to test n◦5 and 6, with the corresponding differences between NPV and RV. In
this example, some differences are greater than 3% with test n◦6, while this is not
the case with test n◦5. We computed that 90% of the dosels in test n◦6 have
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Table 6: CT experiment. Dose relative difference between NPV, IV and SV, accord-
ing to different segmentations. Left: differences between methods using the same
segmentation. Right : differences relatively to the reference NPV with test1 case.

Table 7: Time, number of geometrical steps and number of physical steps (expressed
relatively to the NPV case with 242 materials), for the three different configurations
(NPV,IV,SV) and the six segmentation cases.
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relative dose difference lower than 3%. Maximum differences were greater than 7%
for about 50 dosels and can reach 10% in four dosels. It is however difficult to
separate what is due to statistical uncertainties (around 0.9%) from what is due
to NPV vs. SV implementation (maybe about 0.5%) and what is due to material
approximation. Note that [5] also observed that the mean dose difference expressed
in % of the maximum is around 1%, which is in the same order as our observation.
More validation are still needed to compare the different approaches according to
experimentally measured data in such very inhomogeneous media.

Finally, the gain of computational time with the proposed method increases
almost linearly according to the parameter DGT. This parameter is linked to the
number of regions of the segmentation. For high DGT values, a small number of
regions is obtained and the proposed method is faster. However, dose differences
increase as the image is simplified. The image segmentation parameters (DGT here)
can thus be used to control the tradeoff between speed and desired accuracy.

5 Conclusion

We have proposed a method to decrease the computational time required for Geant4
simulations involving a 3D image-based description of the scene, such as a CT im-
age of a phantom or a patient. Our method consists in representing the matrix
of voxels with regions having specific boundary-finding functions based on discrete
ray-tracing. It is different from previously published methods because the trans-
portation algorithm is not modified. We have also described experiments permit-
ting to validate the proposed method in different configurations. According to the
image segmentation procedure, the proposed method allowed to eliminate the MC
steps required at artificial interfaces (between two voxels sharing the same material)
until reaching an optimal number of geometrical steps. We are able to decrease
the computational time by up to a factor of 15 (in the phantom case involving few
materials).

The gain still remains a tradeoff between time and accuracy, with the reduction in
the number of different materials leading to larger speed up. We want to emphasize
that the main goal of this paper was not the in depth study of the influence of
this segmentation stage on final simulation results. The loss of accuracy due to
the material simplification still needs to be evaluated for each application : it is the
responsibility of the user to decide if dose differences that occur between NPV and SV
are acceptable of not for a given application. For example, scene simplification will
probably not have the same importance for dosimetric or for imaging applications.
As in the method DOSSCORE proposed by Smedt at al. [23], the speed gain is much
more significant for weakly inhomogeneous medias (factor of 15). However, it also
remains interesting (reduction in time of 3 to 4) for patient data.

On patient data, the segmentation of the CT image could be difficult to perform
automatically a priori because of the noise. Manual segmentation can also be em-
ployed. Other criteria than the DGT of homogeneous criteria could be used (such as
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Figure 6: (Top) electronic density profiles for initial image data and tests n◦5 and
6. (Bottom) deposited dose profiles for test n◦1 with NPV and tests n◦5 and 6 with
RV. Corresponding differences are shown with boxes.

20



To appear in Medical Physics 2008

region density variance). Generally, segmentation combines a homogeneity criterion
(internal energy) with a shape regularization (external energy) allowing to introduce
a certain a priori in the region shape. Finding the best way to segment an image
could be the subject of another study.

The proposed approach has been applied to the Geant4 code but should also be
applicable to other simulation codes. It does not require to modify the transportation
algorithm. It is not dedicated to accelerating radiotherapy simulations only and is
also applicable to other simulations, for example PET imaging with the GATE
software [6]. Finally, even with the proposed technique, complete simulation still
remains relatively slow. Other acceleration techniques (variance reduction, tracking
cuts) must be used to further speed up the whole process. The particle navigation
algorithm [7] should still be optimized with the proposed SV approach. It would
accelerate the time reduction. A discrete ray-tracing algorithm faster than the simple
one we used should also contribute to further decrease computational time. The
method proposed here is available within an open source licence on the following
website http://www.creatis.insa-lyon.fr/rio/ThIS . The proposed method has been
proposed to the OpenGate collaboration for further study and will be introduced in
a future release of the GATE [6] platform.
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