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A comparison framework for breathing motion
estimation methods from 4D imaging

David Sarruta,b, Bertrand Delhayb, Pierre-Frédéric Villardc, Vlad Boldeaa,c, Michael Beuvec and Patrick Clarysseb

Abstract— Motion estimation is an important issue in radia-
tion therapy of moving organs. In particular, motion estimates
from 4D imaging can be used to compute the distribution of
absorbed dose during the therapeutic irradiation. We propose a
strategy and criteria incorporating spatio-temporal information
to evaluate the accuracy of model based methods capturing
breathing motion from 4D CT images. This evaluation relies
on the identification and tracking of landmarks on the 4D CT
images by medical experts. Three different experts selected more
than 500 landmarks within 4D CT images of lungs for three
patients. Landmark tracking was performed at 4 instants of
the expiration phase. Two metrics are proposed to evaluate the
tracking performance of motion-estimation models. The first
metric cumulates over the 4 instants the errors on landmark
location by the models. The second metric integrates the error
over a time interval according to an a priori breathing model
for the landmark spatio-temporal trajectory. This latter metric
better takes into account the dynamics of the motion. A second
aim of the study was to estimate the impact of considering
several phases of the respiratory cycle as compared to using
only the extreme phases (end-inspiration and end-expiration).
The accuracy of three motion estimation models (two image
registration based methods and a biomechanical method), were
compared through the proposed metrics and statistical tools. This
study points out the interest of taking into account more frames
for reliably tracking the respiratory motion.

Index Terms— deformable registration, validation, thorax, ra-
diotherapy

I. INTRODUCTION

ACcounting for organ motion due to breathing in lung
cancer radiation treatment is an important challenge [1].

Reducing uncertainties on target position should result in
decreasing irradiation of healthy lung areas and should al-
low tumor dose escalation, potentially leading to better out-
come [2]. Several approaches are currently under investi-
gation (breath-hold treatment, gating [3] ...) but all require
patient-specific spatio-temporal information about movements
and deformations induced by breathing. Ideally, treatment
planning should not rely on 3D images only, but also on
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a patient-specific breathing thorax model, encompassing all
mechanical and functional information available. Some data
can be obtained from 4D CT imaging [4], but 4D images
alone are not sufficient and should be associated with new
image analysis tools such as motion estimators and anatomical
structure tracking methods [5]. They can also be used to build
a “4D model” composed of spatio-temporal trajectories of all
volume elements in the thorax. Using such a model would
make it possible to select the best way of managing organ
motion for each patient and provide helpful information for
planning real-time tracking and dose delivery.

For example, a motion margin can be defined in order
to account for respiratory motion, leading to unnecessary
irradiation of large volumes of normal tissues. Zhang et al. [6]
have proposed to incorporate target motion into treatment
optimization using the displacement vector fields at different
breathing phases, based on patient 4D CT images; beam
targeting is optimized according to the motion. Instructing
the patient to breathe following a visually displayed guiding
cycle potentially allows to spare larger volumes of normal
tissue. Rietzel et al. [7] have delineated volumes of interest
in each phase of a 4D CT dataset and used them to determine
the maximal displacement of GTV1 centroids. Using B-spline
deformable registrations, they have tried to quantify the impact
of respiratory motion on generated dose distributions. The
dose delivered to a given volume is directly related to the
time of irradiation2. Therefore, motion of the tumors must be
taken into account during the whole respiratory cycle. Brock
et al. [8] have developed an approximation to modulate the
weight of dose calculations from the exhale toward the inhale
model as breathing progresses and using time weights obtained
via fluoroscopy on a given population of patients. Keall et
al. [5] have extended this concept to DMLC-based (Dynamic
Multi-Leaf Collimator3) respiratory motion tracking. They
have used deformable image registration to automatically
transfer contours defined on the peak-inhale CT scan to other
respiratory phase CT images. Dose distributions at each phase
were then computed with phase-adapted MLC-defined beam,
then mapped back to a reference CT image using estimated
deformation fields.

1Gross Tumor Volume
2Dynamic aspect of IMRT (Intensity Modulated Radiation Therapy) may

induce more complex behavior, but is not considered here
3In radiation therapy, a Multi-Leaf Collimator (MLC) is a device used for

delimiting the radiation beam. It generally consists of two pairs of opposite
jaws reshaping beams to a square or rectangular cross-section. Dynamic MLC
supposes that leafs can move during irradiation.
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Breathing motion tracking has been a fundamental element
in these recent studies and must therefore be validated. Time-
related issues must also be taken into account. A major
challenge in deformable motion estimation is the validation
of the resulting deformation fields. Today, contrary to the
rigid motion case [9]–[11], there are few evaluation stan-
dards for deformable motion estimation. A tentative evaluation
framework has been proposed by Hellier et al. [12] which
focuses on the deformable registration of the brains of different
individuals. In the present paper, our goal was to quantitatively
compare motion estimators by taking into account the temporal
aspects of the observed motions. Our clinical motivation was
related to the use of deformable motion estimators with 4D
scans to simulate radiation dose delivery inside moving and
deforming organs for given irradiation configurations. We
propose a framework and criteria incorporating temporal infor-
mation to evaluate the accuracy of motion estimation methods
for the purpose of compensating for breathing motion in 4D
CT images. The proposed framework will be illustrated with
the evaluation of three different motion estimation methods in
terms of accuracy.

The paper is organized as follows. Section II briefly presents
the experimental 4D CT data used in the study. Our approach
for the evaluation of motion tracking methods in 4D CT
sequences is based on landmark location estimation. Sec-
tion III-A and III-B explains how the landmarks have been
selected and tracked by medical experts. Then, two error
criteria to evaluate the accuracy of landmark location estimated
by motion tracking methods are introduced. The first one is the
generalization of the conventional TRE metric to the tracking
in successive images (section III-C). The second one, takes
into account the temporal nature of the motion and is presented
in III-D. Section IV describes three motion tracking methods
compared using the proposed strategy. Results are presented
in sections V. Section VI compares the behavior of the motion
tracking methods and discuss the respective properties of the
two metrics.

II. MATERIALS

This study considered as input data thoracic 4D CT
sequences from patients with non small-cell lung cancer
(NSCLC). 4D images were acquired according to a recent pro-
tocol similar to the one described in [13], using a “cine” scan-
ning protocol: multiple image acquisitions were performed
along the cranio-caudal direction at a time interval greater than
the average respiratory cycle. The acquisition was repeated
until the prescribed volume was completely scanned. During
the entire acquisition, an external respiratory signal, generated
with the Real-Time Position Management (RPM) Respiratory
Gating System (from Varian Medical Systems, Palo Alto, CA),
was recorded. The signal was then used to sort data into
respiratory phases by selecting, for each slice position and for
each phase, the closest image. The resulting 4D images were
composed of ten 3D images covering a respiratory cycle from
the end of normal inspiration to the end of normal expiration.

In this study, we focused on the expiration part of the respi-
ratory cycle (six out of ten frames, including extreme phases).

The number of exploitable frames varies from one dataset to
the other and the common maximum number in our series
was four out of six. We thus decided to consider four images:
two extreme images (denoted II for end-inspiration and IE

for end-expiration) and two intermediate images denoted I1

and I2, corresponding to intermediate lung volumes. For some
reasons (too rapid patient breath, inaccuracy of the external
respiratory signal), selected data at a given phase and slice
position may not be consistent. Hence, the corresponding 3D
images presented some misaligned slices, generally around the
diaphragm (see Figure 1). Some other (less frequent) artifacts
were probably due to patient movement during scanning.

At the time when the acquisitions were performed according
to this protocol, 3 patient datasets (referred to as patient
1, 2 and 3 in the sequel) were found exploitable. Image
size was 512 × 512 pixels, with 88, 115, 120 slices for
patients 1, 2 and 3, respectively. In all images, pixel size was
0.97×0.97 mm2 and slice thickness 2.5 mm. All tumors were
located in the lower part of the right lung. The tumor volume
was approximately 160, 165 and 37 cm3 in patients 1, 2 and
3, respectively.

Note also that the same phase can correspond to different
lung volume percentages in different patients depending on
each patient’s breathing pattern. Approximated lung volumes
were computed (see Tab. I) by automated segmentation us-
ing thresholding and morphological operations as described
in [14]. Maximal displacements close to the diaphragm were
estimated to: 23 mm, 25 mm and 17 mm for patients 1, 2 and
3, respectively. We want to emphasize that the use of 4D CT
images is relatively new in the field of radiation therapy and
that, although the technique has already been used in several
clinical studies, it is still under developpement.

TABLE I
LUNG VOLUMES (IN cm3 AND IN % OF THE DIFFERENCE BETWEEN IE

AND II ) FOR ALL IMAGES.

Images patient1 patient2 patient3

II 5181 (100%) 3214 (100%) 3121 (100%)
I1 5004 (50%) 2981 (49%) 2897 (47%)
I2 4692 (44%) 2880 (27%) 2797 (24%)
IE 4315 (0%) 2755 (0%) 2696 (0%)

Fig. 1. Examples of image artifacts. (Left) several slices were missing at
the given temporal phase. (Right) Blurred structures inside the lung due to
unforeseen movement.
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III. METHODS

Criteria permitting to evaluate and compare breathing mo-
tion estimators are proposed. They rely on the comparison
of landmark locations obtained by manual reference selection
(see next sub-section) and landmark locations obtained by
applying deformation fields obtained using automated motion
estimation methods. Three methods (m1, m2 and m3) will be
described in section IV to illustrate the proposed evaluation
framework. For comparison purpose, we found it impor-
tant to compare results obtained by these methods against
the situation where no compensation was performed (noted
m0). Methods evaluation was based on two spatio-temporal
distances between reference and observed trajectories, and
distance to direct straight line trajectories. Section III-A and
III-B describes landmark selection and tracking. Section III-C
and III-D present the two evaluation approaches.

A. Landmark selection

A set of anatomical landmarks were selected and labeled
inside the lungs in the reference image II of each of the
three patients, by three medical experts. The instructions were
to select salient anatomical features: each landmark should
be undoubtedly identifiable and labeled with a descriptive
name allowing other experts to find it. Examples of salient
points are : carina, calcified nodules, culmen-lingula junction,
specific branch of pulmonary arteries, apical pulmonary vein
of the upper lobe, etc (see Fig. 2). Actually, there might be
some degree of statistical dependence between landmark point
locations. In order to limit the impact of this dependence onto
the statistical analysis, we asked the experts to select points
distributed as evenly as possible all over the lungs (left/right
lung, upper/lower and central/peripheral parts of the lungs).
The experts were also instructed to identify as many landmarks
as possible with a minimum of 20. However, some experts
extracted twice as many landmarks as the others. Up to 27
points were selected in Patient 1, 41 in Patient 2 and 56 in
Patient 3.

The tracking of initial landmarks across the following
frames was performed by all the experts. They were not autho-
rized to see other experts’ results so as not to bias the selection.
Finally, all inputs were averaged to obtain mean landmark
locations. Let pe,k

i denote the location of the kth landmark
in image i (with i ∈ {I, 1, 2, E}, I and E corresponding to
end-inspiration and end-expiration, respectively), selected by
expert e. The three point locations issued from the different
expert selections were averaged to define pseudo-ground truth
landmarks denoted by :

qk
i =

1
3

∑
e

pe,k
i (1)

except for the reference image II in which qk
I was the result

of a unique selection. In order to estimate the inter-expert
variability associated with manual identification of anatomical
landmarks, we computed the standard deviation of the dis-
tances between all qk

i and pe,k
i values.

Fig. 2. Example of landmark selection by the three experts. The mean
position corresponds to the pseudo-ground truth landmark. In this example,
the three positions lie on the same slice but this was not always the case.

B. Landmark tracking

Landmark motion is represented by a trajectory. A physical
point at a given reference time is identified by its geometrical
position: x0 = (x0, y0, z0). The mapping x = φ(x0, t) stands
for the geometrical position of the same physical point at time
t. φ is the function which maps the physical point x0 from time
t0 to time t. By definition, φ(x0, t0) = x0. The geometrical
positions of the landmarks are expressed for discrete times of
interest according to the previous definitions. qk

I denotes the
position of the kth landmark in the reference image II . We
have the following relation:

qk
i = φ(qk

I , ti) (2)

where φ(x, ti) maps every geometrical point x from reference
time tI to time ti (with i ∈ {1, 2, E}).

In section IV, we will introduce examples of methods
allowing to automatically estimate the displacement of the
landmarks. For the three patient datasets, each method will
be used to estimate the transformation φ̃ between all images
in the sequence (ie. I1, I2, IE) and the reference end-inhalation
image II (see Fig. 3). In the following, we will denote φ̃i the
estimated function which maps image II to image Ii.

C. Punctual accuracy analysis

The first criterion to assess the accuracy of the motion
estimation methods is an extension of the Target Registration
Error (TRE) proposed in [10]. Initially proposed for rigid
motion, this criterion was extented to motion tracking of the
sets of landmark points. Let us consider qk

I , the kth pseudo-
ground truth landmark in the reference image II ; its estimated
geometrical location rk

i in image Ii is calculated as rk
i =

φ̃i(qk
I ). The difference between pseudo-ground truth landmark

positions and estimated landmark positions is illustrated in
Fig. 3. The TRE for the transformation between image II and
image Ii is defined by:

TREi =
1
n

n∑

k=1

√
(qk

i − rk
i )2 (3)

where n = 27 for patient 1, n = 41 for patient 2 and n = 56
for patient 3. Error dispersion was represented using ’box
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Fig. 3. (a) Transformations between all images in a sequence and the end-
inspiration reference image II are estimated. (b) Expert (qk

i ) and estimated
(rk

i ) landmark definitions.

and whiskers plots’ [15] to highlight the median and mean of
each sample, its spreading and possible outliers. Bland-Altman
diagrams [16] were used to compare the motion estimation
results obtained with the different methods. Finally, paired
Student t-tests were performed to check whether two methods
behaved equivalently or not, under the assumptions that the
paired differences are independent and normally distributed
(such assumptions were verified before applying the test).

D. Analysis of spatio-temporal trajectories

1) Respiratory cycle modeling: It is generally assumed
that all the points in the volume reach their final position
at the same time and that the temporal behavior along the
trajectory is determined by a one dimensional breathing signal.
Several models of breathing cycles have been proposed in the
literature. We chose the one proposed by Lujan et al. [17]
(Eq. 4) which models the dynamic breathing volume curve. It
is based on a periodic but asymmetric function (more time
spent at exhalation versus inhalation). In Eq. 4, V0 is the
volume at exhalation, b corresponds to the tidal volume (TV)
which is the amount of air breathed in or out during normal
respiration, V0 + b is the volume at inhalation, τ is the period
of the breathing cycle, n is a parameter that determines the
general shape (steepness or flatness) of the model, and ϕ is
the starting phase of the breathing cycle (Fig. 4). Using the
Lujan model, George et al. [18] have studied the correlation
of respiratory motion traces between breathing cycles, based
on 331 four-minute respiratory traces acquired from 24 lung
cancer patients. They advocated the use of n = 2. We followed
their suggestion in the present study. Of course, the period and
magnitude of the motion due to breathing can vary, even over a
short period of time. This model represents a priori knowledge
of a conventional breathing cycle which will be incorporated
into the validation procedure through the metrics introduced
in the next section. Other models could also be considered. An
illustration of the temporal position of each image in the test
sequences according to this respiratory cycle modeling and
the estimated volumes is given in Fig. 5 (see also Tab. I). The
parameters for such a model can also be estimated using an
external measurement system, such as the RPM.

V (t) = V0 + b cos2n(
π

τ
t− ϕ), (4)

Fig. 4. Breathing cycle modeling proposed by Lujan et al. [17] (n = 2).
See text for details.

2) Spatio-temporal localization error: The main drawback
of the TRE metric is that it does not take into account the
time spent at the main phases of a trajectory. According to
the previously introduced breathing model (section III-D.1),
material points move along their trajectory at variable speed
(determined by the derivative of the volume curve V ). In
section A, we mentioned that the dose deposit was mainly
related to the duration of irradiation. Thus, a global and more
pertinent metric should take into account that more time is
spent at the end-inspiration and end-expiration phases than
between these extremes. In other words, estimation errors at an
intermediate phase of the cycle should have lower weight than
errors at extreme phases. This is the purpose of the following
metric: for a given temporal interval [ta, tb] of the respiratory
cycle, we defined the Spatio-Temporal Error (STE) as:

STEta,tb
(T1, T2) =

1
tb − ta

∫ tb

ta

dist(T1(s(t)), T2(s(t)))dt

(5)
with dist the Euclidean distance and s(t) the curvilinear

abscissa. T1 and T2 denoted two trajectories. Let T be a
parametric trajectory (which defines the set of the different
locations of a material point during its motion) defined by:

T : [0, 1] ∈ R −→ R3

s 7−→ T (s) =




x(s)
y(s)
z(s)


 (6)

where s is the normalized curvilinear abscissa of the trajec-
tory. This abscissa is a function of time and denotes the curve
length traveled between initial time ta and time t. The relation
between time t and abscissa s is thus defined by:

s : [ta, tb] ∈ R −→ [0, 1] ∈ R
t 7−→ s(t) (7)

where s is a strictly increasing function. The breathing cycle a
priori model is incorporated into the STE metrics through the
volume evolution function V (t) defined by Eq. (4). s is thus
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Fig. 5. Lung volume curves for the three patients during expiration. Values are indicated for the four time points estimated by the respiratory model introduced
in section III-D.1. Left: Patient1; center: Patient2; right: Patient3.

expressed by s(t) = (V (t)− V (ta))/(V (tb)− V (ta)). Fig. 6
illustrates the relation between respiratory cycle modeling
V (t) and the curvilinear abscissa. In this figure, the non-linear
relation is compared to the linear case where s(t) = (t −
ta)/(tb − ta). Practically, a constant time step δt corresponds
to a non constant abscissa step such as δs = δt ·ds/dt because
of the relative breathing velocity ds/dt. The relation depends
on the chosen breathing model. In our case, the trajectory
samples are denser at phases close to the end-inspiration and
end-expiration time points than at intermediate phases.

Fig. 6. Relation between the global breathing cycle model and the curvilinear
abscissa s of the trajectories. The linear case sl(t) = t is represented by the
dashed plot while the non linear case snl computed from the breathing cycle
model (plain curve) is illustrated by the dash-dotted plot.

The parametric trajectories were chosen such that the ele-
mentary displacements are approximated by linear interpola-
tion between each pair of phases considered, and the abscissa
s traverses this piecewise-linear trajectory (see Fig. 3).

STE varies with the respiratory cycle model and the
temporal spacing between images in the sequence (i.e., the
relative position at t1 and t2 during expiration phase). A STE
value equal to x means that, over a given portion of the cycle
(from ta to tb), using trajectory T1 instead of T2 leads to
xmm shift in average. In practice, Eq. 5 was computed by
approximating the integral by a sum over a set (one hundred
or more) of regularly temporally spaced samples. Figure 7
illustrates the distances between two trajectories computed
with a linear and a non-linear relation between t and s.

Fig. 7. Illustration of the STE criterion with a linear (left) and a non-linear
(right) model.

3) Straight-linear and piecewise-linear direct trajectories:
In order to clarify the different trajectories considered in the
sequel, we introduced a set of acronyms whose meaning is
illustrated in figure 8.

• SRT denotes the Straight-linear Reference Trajectory,
that is the rectilinear trajectory obtained when directly
connecting the points defined by the experts at the
beginning and the end of expiration.

• SET stands for the Straight-linear Estimated Trajectory,
the rectilinear trajectory obtained when directly connect-
ing the position of a landmark extracted from the image
taken at the beginning of expiration to the estimated
corresponding point by a given method at the end of
expiration.

• PRT corresponds to the Piecewise-linear Reference Tra-
jectory, piecewise linear trajectory obtained when con-
necting the reference points issued from all the time
points.

• PET denotes the Piecewise-linear Estimated Trajectory,
the piecewise linear trajectory obtained when connecting
the estimated points issued from all the time points.

IV. EXAMPLES OF MOTION ESTIMATORS EVALUATED IN
OUR FRAMEWORK

In order to illustrate the use of this evaluation framework,
we selected and compared three available motion estimation
methods. The literature on motion estimation methods is abun-
dant. One approach is to seek for a geometric transformation



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MEDICAL IMAGING 6

Fig. 8. Definition of Straight-Linear/Piecewise-Linear Reference/Estimated
Trajectories.

between two consecutive images in a sequence. This process
is known as image registration and two of the three methods
are based on this concept. Image registration algorithms are
currently described as the combination of several components:
a feature space, a similarity measure, a transformation model
and an optimization algorithm [19]–[21]. The goal is to find
an optimal transformation that leads to maximum similarity
(or minimum distance) between a reference image and a
deformable floating image. Numerous methods have been
proposed. Feature-based methods use landmark points [22],
[23], organs contours [24], [25] or segmented surfaces to drive
the transformation search. Intensity-based methods often refer
to optical-flow like methods [22], [26], [27]. In this case,
image similarity is defined as a statistical measure between
the intensity (gray-levels) distributions of the two images,
and deformable fields are the result of the optimization of
a function establishing a tradeoff between image similarity
and deformation smoothness. Another approach relies on
biomechanical models [28]–[30] which do not explicitly use a
similarity measure. Instead, they simulate organ deformation
based on both physical material properties and constraints
given by the initial and final states of the organs. They are
usually based on the Finite-Element Method (FEM) and use
physically-based equations (elastic model for example) to sim-
ulate individual organ deformation (represented by triangular
meshes for surface-based models or tetrahedral meshes for
volume-based models). The individual material properties of
each organ have to be described, with parameters such as
Young’s modulus and Poisson’s ratio.

In order to illustrate our evaluation framework, we con-
sidered the three following motion estimation methods: m1

is a bi-pyramidal free form deformation method, m2 is an
optimized optical flow method and m3 is a biomechanical
method. These methods constitute rather conceptually different
approaches to the problem of motion estimation. While m1 is a
parametric registration-based method, m2 is a non-parametric
one, and m3 is based on an a priori physiological model of the
lung dynamics. The three methods are therefore representative
of different categories of motion estimation methods and good
candidates to illustrate the proposed comparison techniques
and metrics. The three methods are described hereafter. Let
I1 and I2 be two images to be registered. We denote by u(x)
the displacement of a point x and by φ(x) = x + u(x), the
deformation.

A. Method m1 : bi-pyramidal free form deformation-based
image registration

The non-rigid transformation is modeled using multi-level
free form deformations [31], [32]. The basic idea of the
free form deformation is to warp an object (a 3D image in
the present case) by moving an underlying set of control
points distributed over a regular grid [33], [34] (the sets
of control points and the landmarks defined in section III-
A are strictly uncorrelated). An interpolation function at each
node of the grid is used to recover the final spatial continuous
transformation. At any point x, the deformation is computed
by:

φ(x) = x’ = x +
∑

j∈J

QjBj(x) (8)

where J ∈ Zd defines the set of spatial parameter values, Qj

is a vector which contains the parameters of the transformation
to be estimated (i.e. displacements of the control points)
and Bj is a tensorial product of interpolation functions. We
chose cubic B-Spline functions which are recognized to be
the best choice in terms of computational efficiency, good
approximation properties, and implicit smoothness (minimum
curvature property) [35]. Cubic B-Spline functions have a
limited support, and are C3 continuous. Thus, the influence
of each control point is local and the final motion field is
continuous. If we consider that the object to deform belongs
to the Rd space and that the warping grid size is N , the
transformation is thus defined by d×Nd parameters.

The algorithm relies on a bi-pyramidal formulation. In
the first pyramid P1, a multiresolution decomposition of the
original image (Im, Im−1, ..., I0) is stored, where each sub-
resolution level Im−1 is obtained by first applying a low-pass
Gaussian filter to the current image Im, then decimating the
number of pixels (or voxels). The second pyramid P2 allows
for the multiscale decomposition of motion field u [35]–[37].
The final mapping function φ belongs to the Hilbert space
of finite energy deformation fields and can be approximated
with a set of multilevel functions. The multilevel formulation
of the transformation is described in [38]. At the coarsest
level, φ0 is defined by a few parameters. Once a deformation
field has been estimated for one level l of P2, the next level
is initialized using a projection onto the finer space. The
algorithm is organized as follows: first, the transformation
parameters are estimated at the coarsest image resolution and
transformation level. Then, the image resolution is increased
without changing any parameter of the transformation and a
new estimation is performed. Afterward, the transformation
level increases and previous parameters are projected onto the
new finer space. These steps are repeated until the final image
resolution and transformation levels are reached. The sum of
squared differences (SSD) similarity criterion is used:

SSD(I1, I2,φ) =
∫

x∈Ω

(I1(x)− I2(φ(x)))2 (9)

(with Ω the image overlapping domain). This criterion
assumes the invariance of the material point brightness during
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∇QSSD(I1, I2, φ) = −2×
∫

x∈Ω

(I1(x)− I2(φ(x)))× ∂I2(φ(x))
∂Q

(10)

motion which is reasonable in our monomodal case. The opti-
mization is achieved through a gradient descent search based
on the first derivative (Eq. 10) of the SSD similarity criterion,
with respect to the parameters of the current transformation
level.

∂I2(φ(x))
∂Q

=
∂I2(φ(x))

∂x

∣∣∣∣∣
φ(x)

× ∂φ

∂Q

∣∣∣∣∣
x

(11)

In Eq. 11, the terms on the right are respectively the gradient
of I2 at point x = φ(x) and the Jacobian of the transformation
with respect to the parameters at point x. At each iteration,
the parameters of the current transformation level are updated
according to:

Qi+1 = Qi + λ∇QSSD(I1, I2, φ) (12)

where λ is the maximum step of the gradient descent
algorithm. We developed a C++ multithreaded version of the
algorithm where the region of interest of the reference image
was split according to the number of available processors. This
considerably reduced the computing time on SMP architec-
tures.

B. Method m2: optimized optical flow method

The method m2 is described in details in [39]. It involved
three main steps: (1) preprocessing step consisting of segment-
ing the 3D images into three regions labeled as air, patient and
lung, (2) a priori lung density modification in order to take
into account the density decrease due to inhalation, (3) dense
optical-flow like deformable registration.

The intensity conservation assumption implies that an im-
age point has the same intensity in the other image but
at a different location. However, lung densities are known
to decrease from exhalation to inhalation according to the
quantity of inhaled air. Therefore, the second step of this
method aimed at artificially changing the lung density of
one image in order to be closer to the intensity conservation
assumption. We called this method A Priori Lung Density
Modification (APLDM) [39]. Deformable registration was
achieved by optimizing of a criterion composed of the SSD
(see Eq. 9) and a regularization measure by a steepest gradient
descent algorithm. Previous works have shown that elastic
and Gaussian regularizations lead to similar results for thorax
CT images [39]–[41]. In this work, we considered Gaussian
regularization [42]. Gradient ∇L of the SSD criterion was
expressed as proposed by Pennec et al. [43] (Eq. 13), which
limits the local displacement at each iteration according to a

maximum vector displacement α. This criterion is an approx-
imation of a second order gradient descent of the SSD [44].
The iterative process is given by Eq. 14.

ui+1(x) = Gσ(ui(x) +∇L(x,ui)) (14)

u(x) denotes the displacement at point x, ∇I1(x) denotes
the gradient of image I1 at point x, ui denotes the displace-
ment field at iteration i and Gσ(.) denotes Gaussian kernel
of variance σ > 0 (the higher the σ value the smoother
the vector field). Gaussian filtering was performed using
Deriche recursive Gaussian filter [45]. Images were previously
resampled to an isotropic voxel’s size of 2.5 mm3.

C. Method m3: Biomechanical method

Various studies have analyzed organ motion with FEM
methods. Some methods have been proposed to reproduce
the lung behavior, such as the one by Grimal et al. [46] that
was used to study thoracic impact injuries. In this work, bio-
mechanical parameters were studied in depth but breathing
motion was not included into the modeling. Other methods
focused on the breathing motion [47]. We recently proposed
to apply, as boundary conditions, a normal displacement field
to the external lung surface extracted from IE limited by the
maximal displacement field of the surface extracted from II .
The method proposed has been detailed in [48]. It is based on
a biomechanical approach and aims at physically simulating
the lung behavior with laws of continuous mechanics based
on physiological and anatomical studies and solved by FEM
methods.

a) Model: The mechanical model was composed of: 1 -
A geometrical description of the lung which was discretized
into small elements to constitute a mesh, 2 - Mechanical
parameters to properly describe lung tissue behavior and 3-
Boundary conditions to define the muscle actions allowing
pulmonary motion. The initial state was obtained by lung
surface mesh extraction from the CT images. The mesh was
multi-level: 1- An external smooth mesh was obtained by
a surface reconstruction method (Marching Cube) [49]. 2-
This algorithm was extended to also provide an accurate
tetrahedral mesh of the lung periphery [50]. 3- A bulk mesh
was modeled by hexahedrons directly extracted from CT scan
voxels for better convergence rate. The mechanical parame-
ters, especially compliance, were issued from physiological
measurements [51]. Compliance represents the ratio of air
volume variation to the related air pressure variation. Each
patient’s data are linked to lung tissue elasticity, especially the
Young modulus. The boundary conditions were derived from

∇L(x,u) =
I1(x)− I2(x + u(x))

||∇I1(x)||2 + α2(I1(x)− I2(x + u(x)))2
∇I1(x) (13)
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mechanical pleura action [52]. We computed the boundary
conditions by imposing surface displacements. The boundaries
of the lungs were modeled with a mesh extracted from CT scan
image I2 representing the deformed state. A uniform normal
pressure was applied around the rib cage and around the
diaphragm areas to simulate the pleural elastic recoil pressure.
Adding contact condition constraints to that boundary allowed
either to block the displacement or to simulate the slipping
skins. Figure 9 illustrates these constraints. Note that in one
dataset, the upper part of the lungs was missing. Therefore,
the model could not be applied directly. To overcome this
problem, the missing part of the lung apex (only about 1.5 cm)
was approximated with a semi-ellipsoid. The semi-axe lengths
were manually set.

Fig. 9. Boundary conditions defined by diaphragm and rib cage actions for
the biomechanical model

b) Displacement estimation: The solution to the problem
was achieved using the finite element method [53]. This
numerical method consists in approaching the solution by a
simple expression based on the discretization of the space into
a mesh. In the present case, displacements U were estimated
to minimize the residue R defined by:

R(U) = F −K(U).U = 0 (15)

where K is the stiffness matrix and F is the load vector. The
term K expresses the rigidity of the lung. It depends both on
mechanical parameters (Young modulus and Poisson’s ratio)
and on topological relationships between mesh nodes. The
term F expresses the external forces applied to the lung, such
as negative pressure. The displacement vector U represents
the displacement of all the mesh nodes and allows to estimate
the displacement in the whole lung by interpolation. The
space of such displacements is a subspace of functions and
minimizing the residue R(U) is equivalent to finding the best
approximation of the solution to laws of continuous mechanics
describing the behavior of deformable solid under boundary
condition stresses.

In our FEM approach, this non-linear problem was solved
using the Newton-Raphson algorithm which is an iterative
method based on the computation of the gradient and the
second order gradient of R(U). The displacements and strains
were too large to assume that geometrical mesh changes
would not influence the mechanical behavior. Therefore, we
employed the iterative scheme presented in [54]. This method
consists in readjusting the geometrical description at each load
step in order to re-evaluate K(U). To account for contact
conditions, we calculated algebraic distances between the

nodes of the lung surface and the triangles representing the
target lung surface (end-inhalation). If a distance remained
positive, a negative pressure was applied to the corresponding
node. When this became zero or negative, a contact between
the current and the target lung surface was assumed. In this
case, a restoring force was applied to ensure that the node was
pulled back to the target surface. The restoring force was set
as normal at the surface in order to allow surface sliding.

Up to now, we have focused on the technical aspects of the
method: convergence, biomechanical parameters influence and
the interest of using a multi-layer mesh. The fact that the lungs
are composed of different biological tissues was not taken into
account in this study. As a consequence, mechanical properties
were supposed to be uniform all over the lungs.

V. RESULTS

The two criteria TRE and STE, introduced in Eq. 3 and 5,
were used to evaluate the motion estimates obtained by the
three previously described methods applied to the 4D image
sequences for the 3 patients presented in section II. Box and
whiskers, Bland-Altman and Student paired t-tests analyses
were derived for the two criteria. For methods m1 and m2,
the resulting deformation field obtained between images II

and I1 was used as the starting deformation field for the
subsequent registration (II to I2), and so on. It allowed to
save some initial iterations by starting closer to the solution.
Method m1 was run on a 1.5 Ghz Non Uniform Memory
Access Multiprocessor SGI with 64Gb RAM, running Linux
OS. The computation time for one iteration was related to
the image resolution and the transformation level. For all the
registrations, four image resolutions and four transformation
levels were used with cubic B-Spline basis functions. The size
of the regular grids were 5×5×5, 7×7×7, 11×11×11 and
19 × 19 × 19. Registration time, using 10 processors, ranged
from 18 minutes (patient 1) to 22 minutes (patient 2). Method
m2 was run on a 2.8Ghz PC with 1Gb RAM running Linux
OS. The computation time was about 1.5 seconds for one
million voxels and for one iteration. Registration time ranged
from 5 minutes to 9 minutes depending on the image size and
the deformation to recover. Method m3 was run on a 3.2Ghz
PC. The computation time was about 2 minutes for a mesh
composed of 7000 nodes and 20000 elements. Method m3 was
not applied to patient 3. Indeed, as the tumor was attached to
the diaphragm, the lung surface was found difficult to extract
reliably.

A. First criterion : TRE

Figure 10 displays the Box and Whiskers plots for TRE on
the three patients (one line per patient). The three columns
correspond to the three transformations φ1, φ2 and φE ,
respectively. Each plot shows the statistics for the four methods
(m0 stands for ’without registration’, methods m1, m2, m3

were described in section IV). Table II gives the TRE statistics
obtained with all the methods. Bland-Altman analysis was
performed on each pair of methods. Only two representative
plots are given here as other plots lead to similar behavior.
Figure 11 compares the landmark cranio-caudal coordinates
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given by the experts to those obtained with method m3

(Fig. 11a) and method (Fig. 11b) for the transformation φE ,
in patient 1. A Bland-Altman diagram plots the differences
between two methods against their mean. For each diagram,
95% of differences will lie between the two straight line
limits (or, more precisely, between d − 1.96s and d + 1.96s,
where d stands for the mean difference and s for the standard
deviation). Such a representation is very helpful to identify
situations where the results given by two methods are truly
discordant. Table III shows the Student t-test results between
each pair of methods, allowing to identify whether the TRE
obtained with a method is statistically different from the TRE
obtained with another method. The acceptable significance
value α was set to 0.05. The p-value is a probability measure
of the confidence against a null hypothesis H0. In the present
case, hypothesis H0 was: ”the two methods are equivalent
according to the computed TRE metric”. The lower the p-
value, the more likely the difference between methods is
significant.

a) Patient 1. φ1. b) Patient 1. φ2. c) Patient 1. φE .

d) Patient 2. φ1. e) Patient 2. φ2. f) Patient 2. φE .

g) Patient 3. φ1. h) Patient 3. φ2. i) Patient 3. φE .

Fig. 10. Box and Whiskers plots for the TRE criterion obtained for the motion
estimation methods. The first line corresponds to patient 1, the second line
to patient 2 and the third line to patient 3. First column corresponds to φ1,
second to φ2 and third to φE . Each subfigure displays the box and whiskers
plot for the four methods: m0 is without transformation, m1 corresponds
to the bi-pyramidal free form-based image registration, m2 to the optimized
optical flow method and m3 to the biomechanical method.

B. Second criterion : STE

Figure 12 displays the length of the PRT according to
the distance to the lung apex for patient 1. The greater
displacements were observed near the diaphragm. Therefore,
the magnitude of the motion to be recovered by motion
estimators was variable along the thorax (from about 3 mm
near the apex to 25 mm close to the diaphragm). Table IV
gives the STE statistics between the PRT and PET obtained
with each method in order to discuss spatio-temporal errors.

TABLE II
TRE IN MILLIMETERS FOR EACH METHOD AT EACH TIME POINT. FOR

EACH CASE, THE FIRST VALUE CORRESPONDS TO THE MEAN VALUE OF

THE TRE CRITERION. THE TWO VALUES IN PARENTHESES CORRESPOND

TO THE FIRST AND THIRD QUARTILES, RESPECTIVELY

Methods Patient 1

φ1 φ2 φE

m0 5.1 (1.8 / 7.4) 8.4 (4.3 / 10.8) 11.4 (7.6 / 15.1)
m1 2.7 (1.1 / 4.0) 1.8 (1.1 / 2.2) 1.7 (1.0 / 2.3)
m2 3.0 (1.2 / 3.5) 2.0 (1.0 / 2.4) 1.7 (0.9 / 2.5)
m3 4.5 (2.3 / 5.5) 5.9 (3.0 / 7.5) 6.5 (4.5 / 7.7)

Methods Patient 2

φ1 φ2 φE

m0 3.9 (2.5 / 4.5) 5.8 (3.1 / 7.7) 6.8 (3.5 / 9.2)
m1 2.2 (1.0 / 3.0) 2.5 (1.2 / 3.4) 1.8 (0.5 / 2.2)
m2 1.8 (1.1 / 2.2) 1.8 (1.0 / 1.9) 1.6 (1.8 / 2.0)
m3 2.8 (2.2 / 3.5) 3.8 (2.7 / 5) 5 (3.1 / 6.5)

Methods Patient 3

φ1 φ2 φE

m0 2.5 (1.7 / 2.9) 3.3 (2.2 / 3.8) 6.4 (4.8 / 7.7)
m1 1.7 (1.0 / 2.4) 1.4 (0.9 / 1.7) 1.4 (0.9 / 1.8)
m2 2.2 (1.4 / 2.8) 1.2 (0.6 / 1.7) 1.3 (0.9 / 1.5)
m3 – – –

Fig. 11. Example of Bland-Altman plots for comparing motion estimation
methods (transformation φE , patient 1); on top, comparison of cranio-
caudal displacements: expert’s reference against m3 estimations; on botton,
comparison of cranio-caudal displacements: expert’s reference against m1

estimations.
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TABLE III
STATISTICAL TESTS PERFORMED ON EACH PAIR OF METHODS (FOR ALL

PATIENTS, ALL LANDMARKS AND ALL MOTION ESTIMATION METHODS).
IF P-VALUE IS GREATER THAN 0.1, THE DIFFERENCE IS NOT

STATISTICALLY SIGNIFICANT (SYMBOL ’=’). IF p < 0.1 THE DIFFERENCE

IS SIGNIFICANT (SYMBOL ’+’) AND IF p < 0.001, THE DIFFERENCE IS

HIGHLY SIGNIFICANT (SYMBOL ’+ + +’).

Patient 1

Comparison p-value Is difference significant ?

m0 vs m1 <0.0001 +++
m0 vs m2 <0.0001 +++
m0 vs m3 0.00001 ++
m1 vs m2 0.42 =
m1 vs m3 <0.0001 +++
m2 vs m3 <0.0001 +++

Patient 2

Comparison p-value Is difference significant ?

m0 vs m1 <0.0001 +++
m0 vs m2 <0.0001 +++
m0 vs m3 0.5067 =
m1 vs m2 0.007 +
m1 vs m3 <0.0001 +++
m2 vs m3 <0.0001 +++

Patient 3

Comparison p-value Is difference significant ?

m0 vs m1 <0.0001 +++
m0 vs m2 <0.0001 +++
m1 vs m2 0.34 =

The temporal sampling differed from one sequence to another
as a function of the breathing cycle modeling (Eq. 4 and
Fig. 5). The importance of accounting for motion (through
intermediate time points) in radiation treatment is assessed in
table V which provides the STE statistics between the PRT
and SET obtained with each registration method. In particular,
these results allow to discuss whether all the frames of the
sequence are essential or if only a few of them (i.e. the two
extreme phases) are needed. Table VI displays the results of
the Student t-test comparing the STE metric obtained with
SET and PET, respectively.

Fig. 12. Distribution of the norm of the displacements according to the
distance to the lung apex for patient 1 (PRT).

TABLE V
FOR EACH SEQUENCE, STE METRIC (MEAN VALUE IN MILLIMETERS ±
STANDARD VARIATION), BETWEEN PRTS AND THE SRTS ON THE ONE

HAND AND THE SETS ON THE OTHER HAND. ALL LANDMARKS ARE

TAKEN INTO ACCOUNT.

STE
Methods Patient 1 Patient 2 Patient 3
PRT vs. SRT 2.9 ± 1.7 1.2 ± 0.7 0.6 ± 0.2

PRT vs. SET (m1) 3.3 ± 1.8 1.7 ± 1.1 1.0 ± 0.5

PRT vs. SET (m2) 3.4 ± 2.0 1.7 ± 1.2 1.0 ± 0.4

PRT vs. SET (m3) 5.6 ± 2.4 3.9 ± 1.8 –

VI. DISCUSSION

The proposed framework allows the comparison, in terms
of accuracy, of motion estimation methods from 4D scans.
First, the punctual accuracy of the three selected methods (m1,
m2 and m3) was evaluated with the TRE criterion, and the
behavior of the different methods was studied with the help of
statistical tools (Bland-Altman, Box and Whiskers and Student
t-tests). The STE criterion introduces temporal information
into the evaluation framework through a breathing model. This
is to better take into account the dynamics of the organs in
our context, which is of particular importance in radiotherapy
of the lungs.

A. Method accuracy (TRE criterion)

Overall landmark errors (TRE, table II) for the two
intensity-based methods m1 and m2 (2.1 mm and 2.0 mm,
respectively) were in agreement with the voxel size (0.9 ×
0.9× 2.5 mm3) and the experts variability (1.2 mm). We also
observed that displacements were generally slightly under-
estimated (mean difference of the Bland-Altman diagrams
below the zero line), suggesting that the regularizations used in
intensity-based methods (cubic B-splines for m1 and Gaussian
smoothing for m2) sometimes prevent points to reach their
true location. For the biomechanical method m3, only a
rather rough mesh was considered (mean hexahedron size
is 24 × 12 × 3mm3 for patient 1 and 10 × 10 × 10mm3

for patient 2). The landmark points were defined in areas of
significant intensity gradients which correspond to materially
heterogeneous regions not yet included into the biomechanical
model. Nevertheless, we observe in Fig. 10 that the estimated
average error is approximately less than half the average mesh
element size: lower than 6.5 mm for patient 1 and lower than
5 mm for patient 2. Bland-Altman diagrams (Fig. 11), revealed
one specific landmark position for which the location provided
by the experts was not in agreement. After discussion with the
experts, this landmarks was discarded from the experiments.

The TRE statistical descriptors (mean, quartiles, Fig. 10
and table II) computed from m1 and m2 are similar between
patient 1 and patient 2 despite the overall greater motion mag-
nitude in patient 1 (see tab. II). The slight differences observed
between m1 and m2 may be related to the transformation
model used. The non parametric representation of method m2

allows to estimate deformation with a precision depending on
the voxel size. For method m1, the motion field was expressed
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TABLE IV
STE METRIC (MEAN VALUE IN MILLIMETERS ± STANDARD VARIATION), FOR THE THREE DATASETS, BETWEEN PRTS AND PETS OBTAINED WITH EACH

METHOD. THE LAST THREE COLUMNS DEPICT MAXIMUM STE VALUES.

STE Maximum STE
Methods Patient 1 Patient 2 Patient 3 Patient 1 Patient 2 Patient 3

m0 (no motion) 6.8 ± 3.6 4.2 ± 2.7 3.2 ± 1.7 14.6 11.6 9.4

m1 (PRT vs PET) 2.2 ± 1.2 1.7 ± 0.9 1.2 ± 0.4 5.1 4.4 2.6

m2 (PRT vs PET) 2.3 ± 1.5 1.3 ± 0.9 1.2 ± 0.5 6.5 5.7 3.4

m3 (PRT vs PET) 5.6 ± 1.9 4.3 ± 1.4 – 10.4 8.7 –

TABLE VI
STATISTICAL TESTS PERFORMED (FOR EACH PATIENT AND EACH POINT) TO COMPARE SETS AND PETS FOR EACH METHOD. IF P-VALUE IS GREATER

THAN 0.1, THE DIFFERENCE IS NOT STATISTICALLY SIGNIFICANT (SYMBOL ’=’). IF p < 0.1 THE DIFFERENCE IS SIGNIFICANT (SYMBOL ’+’) AND IF

p < 0.001, THE DIFFERENCE IS VERY SIGNIFICANT (SYMBOL ’+ + +’).

Patient 1

Comparison p-value Is difference significant ?

SET(m1) vs PET(m1) <0.0001 + + +

SET(m2) vs PET(m2) <0.0001 + + +

SET(m3) vs PET(m3) 0.63 =

Patient 2

Comparison p-value Is difference significant ?

SET(m1) vs PET(m1) 0.95 =

SET(m2) vs PET(m2) <0.0001 + + +

SET(m3) vs PET(m3) 0.0039 ++

Patient 3
Comparison p-value Is difference significant ?

SET(m1) vs PET(m1) 0.0005 + + +

SET(m2) vs PET(m2) <0.0001 + + +

with a continuous model and the accuracy depended on the
size of the grid and of a region of interest (ROI). For example,
in patient 1 dataset, the ROI was about 200×200 pixels in the
acquisition plane, corresponding to approximately one control
point every 10 voxels (9 mm in native image plane). The ROI
was larger for patient 2 dataset (250 × 250 pixels) due to
morphological differences between the two patients implying
a distribution of one control point every 14 voxels (12.6 mm in
native image plane). This might explain accuracy differences
between the two sequences when using method m1.

Methods m1 and m2 were found to be statistically similar
but significantly different from method m3 (p < 0.001), as
shown by results of the Student t-tests summed up in table III.

B. Trajectory study (STE criterion)

1) STE as a method evaluation criterion: The study of
trajectories through the STE metric showed that the mean
distance between reference (PRT) and estimated piecewise-
linear trajectories (PET) was around 1.6 mm with methods
m1 and m2 and around 5 mm with method m3 (tab. IV).
The difference between methods m1 and m2 was found not
statistically significant. With m1 and m2, the STE for patient
1 (see tab. IV) was slightly higher than the mean of the
three TRE (2.0 and 2.2 mm compared to 2.2 and 2.3 mm,
table II), while the STE for patients 2 and 3 were inferior
to the corresponding TRE values. Even if m1 and m2 lead
to comparable average results, the maximum STE was lower
using method m1. Whereas each time point contributes with
an equal weight to the mean TRE, STE metric introduces a
variable weight according to the breathing cycle model and

displacement speed along the trajectories. This implies that
intermediate time points (φ1 and φ2) influence depends on
their relative location in the breathing cycle (see Fig. 5). STE
values are inferior to the mean TRE values for patients 2 and
3 (1.7/1.2 mm vs 2.2/1.5 mm average TRE for method m1)
because most influent time point is tE . On the contrary, STE
values are greater to the mean TRE values for patient 1 since
first intermediate time point contributes more. In conclusion,
STE metric takes into account the breathing dynamics and the
acquisition time of each of the sequence frame.

The STE criterion depends on the selected breathing model.
Other breathing models could be considered. The proposed
framework could also be used to study the hysteresis pattern
which is known to occur during breathing (different inhalation
and exhalation pathways), but it would require the definition
of many more landmarks. STE criteria should be well adapted
to compare inhalation and exhalation trajectories and to put
the focus on different parts of the breathing cycle.

2) Taking intermediate frames into account in lung ra-
diotherapy treatments: Table V illustrates, through the three
sequences studied, the importance of taking into account
motion in radiotherapy treatment. PRT compared to SRT
represents the error committed when straight-linear trajectories
are considered instead of piecewise-linear ones. This error was
particularly low for patients 2 and 3 (1.2 mm and 0.6 mm,
respectively). It suggests that, for the considered trajectories,
the observed motion was almost rectilinear. Indeed, using
straight-linear trajectories (one single motion estimation be-
tween end-inspiration and end-expiration images) increased
the overall error for patient 1 whereas errors remain almost
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equivalent for patients 2 and 3 (in Tab. IV and V, STE rises
from 2.2 to 3.3 mm for method m1). However, it is not
clear at this stage whether such discrepancies in accuracy
results between patients come from the variablity in patient
organ motion or from the 4D acquisitions. Moreover, methods
behave differently: although results for m1 and m2 lead
to similar STE, table VI shows that the error difference
between straight-linear and piecewise-linear trajectories was
highly significant for method m2 for all patient whereas, for
method m1 it was significant for patient 1 and 3. It seems
that trajectories estimated with method m1 were more linear
than those estimated with method m2. The results concerning
method m3 called our attention to the contact conditions of
the Finite Element Model. We observed afterward that this
contact condition had not been properly handled. In particular,
the conditions for surface contact had not been met for some
nodes due to the mesh resolution, thus explaining why some
differences could be observed. Inaccuracy at the contact was
of the order of 5 mm, which explains why the differences
were almost constant, whatever the displacement, and why
the straight-linear process gave better results. Moreover, even
if the method m3 is still under development, the current
evaluation study has made it possible to point out some of
the problems that should be solved in the future. Overall,
the benefit of incorporating additional frames for taking into
account the breathing motion appears to depend on the patient.
So, in the abscence of a priori information on the patient
breathing pattern, it is certainly better to dispose of more than
the two extreme phase images.

Criteria were computed over the whole image domain. But
it is known that lung motion is not homogeneous during the
breathing cycle and that trajectories are longer and more linear
near the diaphragm than near the lung apex (Fig. 12). In the
future, by using the same criteria, it should be very interesting
to study motion behavior in the different parts of the lungs
(lower part of the lung versus upper part, tumor areas). The
chronology of the landmark trajectory is globally imposed by
the Lujan’s model : all the landmarks are assumed to have
the same temporal evolution (homogeneous behaviour), but
it is known that such an assumption is not rigorously true.
However, if information about the breathing pattern in different
lung regions would be available (for example by means of
external or internal markers), it could be easily inserted into the
proposed STE measure : currently V (t) only depends on the
time variable, it would switch to V (x, t) according to a spatio-
temporal breathing model. Indeed, the main reason for using
a breathing model is to compensate for the limited number
of temporal frames. The model would be less necessary if
we dispose of more temporally resolved sequences. However,
there is still a tradeoff between image spatial and temporal
resolutions and the acquisition costs in terms of dose delivered
to the patient, the compatibility of the acquisition time with
the clinical constraints and the management of large amounts
of data. The acquisitions considered in this paper take into
account those constraints as they have been indeed used for
patient treatment planning.

Motion validation by means of landmarks is intrinsically
limited to the point location with the consequence that no

information is available in between those points. Landmarks
were selected as evenly as possible all over the lungs based
on visible anatomical structures. However in homogeneous
regions, no landmark could be identified and thus the quality
of the estimated deformation field could no be assessed within
these regions. Moreover, medical experts generally find it
difficult and time consuming to select landmarks . This is the
reason why the number of landmarks was limited to some tens.
To our knowledge, this is one of the first time that such an
evaluation is performed on the lungs with such a significant
number of landmarks. More complex primitives (such as 3D
lines following vessels) would bring higher level information
and thus contribute to define a better ground truth for the
evaluation. This would still require to be evaluated by experts
which is a difficult task in 3D.

VII. CONCLUSION

In this paper, we propose a strategy and criteria in order
to evaluate the accuracy of motion estimators from 4D CT
sequences with a limited number of phases between end-
inspiration and end-expiration. Such an evaluation is partic-
ularly crucial in radiation therapy where estimated motion
can be used to estimate the distribution of the absorbed dose
during the therapeutic irradiation of moving organs such as
the lungs. The main contributions of this paper were the
setup of test cases and of a procedure to obtain expert inputs
(carefully identifying more than 500 landmarks over 4 phases
and 3 patients) and the proposal of spatio-temporal criteria to
evaluate the predictions of landmark displacements through the
respiratory cycle. The spatio-temporal trajectory error (STE)
criterion allows to take into account the dynamics of the
motion by introducing an a priori respiratory cycle modeling.
It can be considered as a specialization of the TRE metric to
the specific context of breathing motion compensation. The
proposed comparison framework was illustrated by the study
of three different motion estimation methods (two registration
based methods, and one biomechanical model based method).
The study allowed to compare the accuracy of those methods
and to highlight some of their limits. The analysis also
demonstrated the interest of incorporating several frames over
the respiratory cycle in view to better adapt the therapy of
lung tumors to the patient. This study has been conducted
on three 4D datasets encompassing only half the respiratory
cycle. The study should be pursued by including additional
datasets and extending the tracking over the entire respiratory
cycle. Adding more landmarks, in particular outside the lung
region, could also improve the evaluation of accuracy. Dose
deposit simulations could be performed on 4D images in order
to quantify the influence of the type of motion estimators on
dose distribution. Finally, a similar framework could also be
used to evaluate motion tracking methods in other medical
imaging contexts such as in cardiac motion analysis.
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structures déformables. Application l’imagerie dynamique du coeur et
du thorax,” Ph.D. dissertation, Institut National des Sciences appliques
de Lyon, 2006.

[32] B. Delhay, P. Clarysse, C. Pera, and I. E. Magnin, “A spatio-temporal
deformation model for dense motion estimation in periodic cardiac im-
age sequences,” in Workshop MICCAI 2006 : From Statistical Atlases to
Personalized Models : Understanding Complex Diseases in Populations
and Individuals., Copenhage Denmark, 2006, pp. 87–90.

[33] T. W. Sederberg and S. R. Parry, “Free-Form Deformation of solid
geometric models,” Proceedings of SIGGRAPH 86, Computer Graphics
20, vol. 4, pp. 151–159, August 1986.

[34] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and
D. J. Hawkes, “Nonrigid registration using Free-Form Deformations:
application to breast MR images.” IEEE Trans. Med. Imag., vol. 18,
no. 8, pp. 712–721, August 1999.

[35] M. J. Ledesma-Carbayo, J. Kybic, M. Desco, A. Santos, M. Shuling, and
P. H. ans M. Unser, “Spatio-temporal nonrigid registration for ultrasound
cardiac motion estimation,” IEEE Trans. Med. Imag., vol. 24, no. 9, pp.
1113–1126, Sept 2005.

[36] V. Noblet, C. Heinrich, F. Heitz, and J. Armspach, “3-D deformable
image registration: a topology preservation scheme based on hierarchical
deformation models and interval analysis optimization,” IEEE Trans.
Image Processing, vol. 14, no. 5, pp. 553–566, May 2005.

[37] T. Rohlfing, C. Maurer, D. Bluemke, and M. Jacobs, “Volume-preserving
non-rigid registration of MR breast images using free-form deformation
with an incompressibility constraint,” IEEE Trans. Med. Imag., vol. 22,
no. 6, pp. 730–741, June 2003.

[38] S. Lee, G. Wolberg, and S. Y. Shin, “Scattered data interpolation with
multilevel B-Splines,” IEEE Trans. Visual. Comput. Graphics, vol. 3,
no. 3, pp. 228–244, 1997.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MEDICAL IMAGING 14

[39] D. Sarrut, V. Boldea, S. Miguet, and C. Ginestet, “Simulation of 4D CT
images from deformable registration between inhale and exhale breath-
hold CT scans,” Medical physics, 2006, to appear.

[40] V. Boldea, D. Sarrut, and S. Clippe, “Lung deformation estimation
with non-rigid registration for radiotherapy treatment,” in Medical
Image Computing and Computer-Assisted Intervention MICCAI’2003,
vol. 2878. Springer Verlag, Lecture Notes in Computer Science, 2003,
pp. 770–7.

[41] V. Boldea, D. Sarrut, and C. Carrie, “Comparison of 3D dense de-
formable registration methods for breath-hold reproducibility study in
radiotherapy,” in SPIE Medical Imaging: Visualization, Image-Guided
Procedures, and Display, vol. 5747, 2005, pp. 222–230.

[42] J. Thirion, “Image matching as a diffusion process: an analogy with
Maxwell’s demons,” Medical Image Analysis, vol. 2, no. 3, pp. 243–
260, 1998.

[43] X. Pennec, P. Cachier, and N. Ayache, “Understanding the demon’s algo-
rithm: 3D non rigid registration by gradient descent,” in Medical Image
Computing and Computer-Assisted Intervention MICCAI’99, C. Taylor
and A. Colschester, Eds., vol. 1679. Cambridge, UK: Springer Verlag,
Lecture Notes in Computer Science, 1999, pp. 597–605.

[44] P. Cachier and N. Ayache, “Isotropic energies, filters and splines for
vectorial regularization,” J. of Math. Imaging and Vision, vol. 20, no. 3,
pp. 251–265, May 2004.

[45] R. Deriche, “Recursively implementing the gaussian and its deriva-
tives,” INRIA, Tech. Rep. 1893, Apr. 1993, http://www.inria.fr/rrrt/rr-
1893.html.

[46] Q. Grimal, A. Watzky, and S. Naili, “Nonpenetrating impact on the tho-
rax : a study of the wave propagation,” Comptes Rendus de l’Academie
des Sciences, vol. IIb, no. 329, pp. 655–662, 2001.

[47] K. Brock, M. Sharpe, L. Dawson, S. Kim, and D. Jaffray, “Accuracy of
finite element model-based multi-organ deformable image registration,”
Medical physics, vol. 32, no. 6, pp. 1647–59, June 2005.

[48] P. Villard, M. Beuve, B. Shariat, V. Baudet, and F. Jaillet, “Simulation
of lung behaviour with finite elements: Influence of bio-mechanical
parameters,” in MEDIVIS ’05: Proceedings of the Third International
Conference on Medical Information Visualisation–BioMedical Visuali-
sation. Washington, DC, USA: IEEE Computer Society, 2005, pp.
9–14.

[49] W. Lorensen and H. Cline, “Marching cubes: a high resolution 3D
surface reconstruction algorithm,” Computer Graphics, vol. 21, pp. 163–
169, 1987.

[50] P. Villard, M. Beuve, B. Shariat, V. Baudet, and F. Jaillet, “Lung mesh
generation to simulate breathing motion with a finite element method,”
in Information Visualisation. London, GB: IEEE Computer Society,
2004, pp. 194–199.

[51] M. L. Moy and S. H. Loring, “Compliance,” Seminar in respiratory and
critical care medecine, vol. 19, no. 4, pp. 349–359, 1998.

[52] J. Humphrey, “A possible role of the pleura in lung mechanics,” J
Biomech, vol. 20, no. 8, pp. 773–777, 1987.

[53] O. C. Zienkiewicz and R. L. Taylor, The finite element method, 5th ed.
Butterworth-Heinemann, 2000.

[54] J. Simo and C. Miehe, “Associative coupled thermoplasticity at finite
strains: formulation, numerical analysis and implementation,” Comp.
Meth. Appl. Mech. Eng., vol. 98, pp. 41–104, 1992.

David Sarrut Born in 1974, David Sarrut received a
PhD in computer science in 2000. Initially assistant
professor, he is now a researcher at Léon Bérard
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