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Abstract. Respiratory motion introduces uncertainties when planning
and delivering radiotherapy treatment to lung cancer patients. Cone-
beam projections potentially constitute a valuable source of motion in-
formation that could serve for motion compensated reconstruction and to
learn the relationship between internal motion and respiratory correlated
signals. We propose a method for respiratory motion estimation directly
from cone-beam projections by including prior knowledge about the pa-
tient’s breathing motion. The method requires that a four-dimensional
computed tomography is available from which a patient specific model
is constructed. Each cone-beam projection is compared to cone-beam
projection views of the model and motion estimation is accomplished by
optimizing the model parameters with respect to a similarity measure.
Experiments on simulated data show satisfying results. Experiments on
real cone-beam projections are currently being undertaken in order to
confirm these observations.

1 Introduction

External beam radiotherapy is the primary treatment modality for patients with
non-operable lung cancer. Respiratory motion introduces uncertainties during
imaging, treatment planning and treatment delivery [1]. To reduce respiratory
motion induced image artifacts, respiratory-correlated acquisition techniques
have been developed resulting in four-dimensional computed tomography im-
ages (4DCT). These images provide additional information about tumor and
organ-at-risk position and trajectory that can be incorporated in the treat-
ment planning process. To account for respiratory motion additional margins
are considered during treatment planning and treatment delivery methods such
as breath-hold and gating methods have been developed. These methods often
use an external respiratory correlated signal such as lung air flow or abdominal
height as a surrogate for tumor motion during the actual treatment. Changes of
the respiratory motion over the duration of the treatment have been reported [2]
and may influence the relationship between tumor motion and surrogate. Recent



developments have made cone-beam CT (CBCT) mounted on the linear accelera-
tor [3] available, which makes it possible to acquire patient images in treatment
position just prior to treatment. As with conventional CT, three-dimensional
(3D) CBCT is heavily influenced by respiratory motion. Respiratory correlated
CBCT [4] reduces respiratory motion artifacts. However, seeing only a subset of
the CB projections is used to reconstruct each 3D CBCT image, the resulting
image quality is lower. Motion compensated CB reconstruction techniques [5],
[6] have been proposed enabling the use of all the acquired projections. These
methods however require knowledge of the motion present during CB acquisition.

CB projections are potentially a valuable source of motion information that
could be used for motion compensated reconstruction and to study the rela-
tionship between an external surrogate signal and tumor motion. Zijp et al. [7]
proposed a fast and robust method to extract the breathing phase from a se-
quence of CB projections of the thorax. The method produces a breathing signal
from which the phase can be derived and has been successfully applied for respi-
ratory correlated CB reconstruction [4]. Zeng et al. [8] proposed a method for 3D
motion estimation from a sequence of CB projections. A B-spline deformation
model is used to deform a reference CT volume to match the motion observed in
the CB projections. The applied deformations are optimized by computing the
similarity between the CB projection views of the deformed volume and the CB
projection sequence. Optimization of the numerous parameters of the B-spline
deformation model was regularized by introducing spatial and temporal motion
roughness penalties and an aperiodicity penalty for the estimated breathing mo-
tion. Results on simulated data were encouraging, demonstrating the feasibility
of the approach.

We propose a method for estimating 3D respiratory motion from a CB projec-
tion sequence by incorporating prior knowledge about the patient’s respiratory
motion. The proposed method requires that a 4DCT image of the patient is
available at CB acquisition time. From this image the respiratory motion is es-
timated using deformable registration. The motion estimation is incorporated
into a patient specific motion model with two parameters: the breathing phase
and amplitude. For each CB projection, the 3D motion estimation comes down
to finding the model parameters for which the modeled CB projection view best
matches the CB projection with respect to a similarity measure. In the next sec-
tion the images used and the construction of the patient specific motion model
are discussed. Next the proposed cost function and optimization scheme are de-
tailed. Section 3 contains the experiments performed to test the proposed method
and the results for these experiments. Section 4 focuses on known limitations and
issues related to the chosen approach and outlines future work.

2 Materials and Methods

2.1 4DCT and Deformable Registration

The images used for this study are part of a freely available data set [9]. It
consists of a 4DCT image of the thorax composed of 10 3DCT images represent-



ing different phases of the respiratory cycle.The data set is completed by 400
anatomical landmarks (40 in each 3DCT image) identified by medical experts.
Each of the 3DCT images will be referred to as a phase of the 4DCT. Deforma-
tions between the phases were estimated by deformably registering them to one
particular phase, arbitrarily chosen to be the end-inhalation phase. Registration
was performed using the demons algorithm [10], of which its effectiveness on CT
images of the thorax was verified in earlier work by our group [11]. The accuracy
of the registrations was assessed using the landmarks provided with the data
set. The phase to phase displacements of 40 anatomical points, as estimated by
medical experts, were compared to the displacements given by the registration
results. The average registration error was thus estimated to be 1.2mm with a
standard deviation of 0.4mm. The maximum misalignment for these landmarks
was found to be 2.6mm.

2.2 Patient Model

Using the registration results obtained above, we can construct a patient specific
motion model. The proposed model is composed of a reference image Iref and
a deformation model T . Iref should be warped using the deformation model T
to obtain a modeled breathing state S. There are at least two ways of warping
an image with a deformation field: you can obtain the target through either
backward or forward mapping of the source. Suppose we have a source volume I
and a target volume J . In addition suppose we have estimated the displacements
of voxels of I to their corresponding positions in J and inversely. We can obtain
J through backwards mapping of the source voxels:

J(x) = I(x + DJ→I(x)) . (1)

where DJ→I(x) represents the displacement necessary to map a voxel with po-
sition x in the target space to its corresponding position in the source space.
J is thus obtained by fetching for each voxel position of J its corresponding
(interpolated) value in I. The second possibility is through forward mapping:

J(x + DI→J(x)) = I(x) . (2)

where this time DI→J(x) represents the displacement necessary to map a voxel
with position x in the source space to its corresponding position in the target
space. J is obtained by adding for each voxel position of I, a contribution to the
neighboring voxels of its corresponding position in J . If not explicitly taken into
account, forward mapping can lead to holes in the target image, i.e. voxels for
which no contribution was added. Backwards mapping is usually preferred as it
allows for a more efficient implementation.

The reference image for the proposed model is the mean-position image
(MPI), which we define as the image in which all structures appear at their
time-weighted mean position. This concept was also used by Wolthaus et al. [12]
for the definition of the mid-ventilation phase. Note that due to hysteresis of the



respiratory motion, the mean position of a moving structure does not necessar-
ily lie on the trajectory of that structure. It was obtained in the following way.
For each voxel of the end-inhalation used as reference image for the registrations
described in Section 2.1, we calculated the mean of the deformation vectors map-
ping this voxel to its positions in the other phases (including a zero vector to
account for the position of the voxel in the end-inhalation phase itself). The end-
inhalation phase was then deformed using this mean deformation field, through
backwards mapping. This requires the inversion of the mean deformation field.
The Figure 1 shows a graphical representation of the MPI.

The second element in the patient model is the deformation model T allowing
Iref to be warped to a different breathing state. As we want to incorporate the
phase to phase deformations observed in the 4DCT image, T should at least be
able to reach these states. The deformations between the MPI and the phases of
the 4DCT were again estimated through deformable registration. It was preferred
to re-estimated the deformations to avoid accumulating errors by composing the
previously obtained deformation fields. The resulting deformation fields were
combined to form a 4D vector image, the fourth dimension being the breathing
phase ϑ. This vector image was recursively filtered to obtain a 4D continuous
cubic B-spline representation [13], denoted by T (x, ϑ). In addition to modelling
the phase to phase deformations, a second model parameter α was introduced
to allow inter- and intracyle variations of the deformations. α can be interpreted
as an instantaneous amplitude, linearly scaling the displacements of all voxels
given by T for a certain value of ϑ.

Backwards mapping Iref using T would require to use the deformations defined
from the space of the phases of the 4DCT (the target volumes) to Iref (the source
volume). In this case interpolating these deformation fields with a cubic spline
would be interpolating the end point of vectors which have different starting
positions. Similarly, when scaling the deformations by α, one should scale the
deformations defined from Iref to the phases of the 4DCT. Tests were performed
performed with both backwards and forward mapping and showed very little
difference to the resulting target volumes and especially to their CB projection
view. This is due to the fact that the deformation fields vary quite smoothly in
space. In this work forward mapping was used when warping Iref to S. With
T (x, ϑ) representing the deformation given by the cubic spline for a phase ϑ on
position x, we can represent a model breathing state S through forward mapping
as:

S(x + αT (x, ϑ)) = Iref (x) . (3)
We will use Sϑ,α to represent the image that is the result of deforming Iref

through forward mapping using the deformations as given by αT (x, ϑ). The
phase parameter ϑ ∈ [0, 1[, goes through all breathing phases from the end-
exhale phase to end-inhale and back to end-exhale when rising from 0 to 1. For
the parameters at values α = 1 and ϑ = 0, 0.1, 0.2, ... the modeled breathing
states correspond to the phases of the 4DCT. For α = 0, Iref is found. The
right panel of Figure 1 shows a schematic representation of the proposed patient
model.



(a) (b)

Fig. 1. (a) Schematic 2D representation of the construction of the MPI. A reference
phase of the 4DCT (Ref ) is registered to all other phases. For each voxel the estimated
displacements are averaged (bold arrow) and after inversion used to obtain Iref (x)
through backwards mapping of the reference phase. (b) Schematic 2D representation
of the patient model. An anatomical point of Iref is shown at its time-weighted mean
position x. Its corresponding position in the phases of the 4DCT was estimated through
deformable registration. Interpolating these positions yields the closed contour repre-
sented in bold, which can be interpreted as an estimated trajectory. T (x, ϑ) will map
x on this trajectory, whereas αT (x, ϑ) can map x to any breathing state Sϑ,α(x) in
the plane of the ellipse.

2.3 Cost Function and Optimization

In order to compare the 3D modeled breathing state Sϑ,α to a CB projection pφ

taken from a projection angle φ, we calculate its CB projection view. Let Aφ de-
note the ideal CB projection operator from a projection angle φ. The projection
operator Aφ, was made to simulate the geometry of the Elekta Synergy. Figure 2
shows the modeled CB projection view of Iref . For comparison we also show a
CB projection of the same patient acquired on the Elekta Synergy. The hori-
zontal object present in the CB projection is a reinforcement of the treatment
table. For each CB projection can define the optimization problem as follows:

(ϑ̂, α̂)φ = arg max
ϑ,α

(F(pφ,AφSϑ,α)) . (4)

where ϑ̂ and α̂ represent the estimated model parameters, F(., .) is a similarity
measure for which we assumed that higher values correspond to higher similarity.
The optimization is performed in the space of the model parameters with respect
to the similarity measure between the real projection and the modeled projection
view. We used mutual information as similarity measure [14]. The cost function
was handed to a Powell optimization strategy [15]. Each subsequent optimization
was initialized with the model parameters found for the previous CB projection.
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Fig. 2. (a) CB projection view of Iref and (b) CB projection of the same patient
acquired on the Elekta Synergy.

3 Experiments and Results

Validation of the motion estimation on real CB sequences is difficult as no ground
truth is available. In this work experiments were performed on a simulated se-
quence of CB projections. We randomly generated a continuous phase signal
with a varying period using the statistical properties reported for the breathing
period by George et al. [16]. This resulted in a breathing period that varied
between 2.2s and 5.6s. The phase was not limited to linear functions of time,
allowing for intracycle breath rate variations. The continuous amplitude signal
α was randomly generated using a lognormal random number generator, and
was limited to slow variations in time and values close to one. The thus obtained
amplitude signal varied between 0.88 and 1.21. These parameter values were fed
to the patient model and the CB projection views were calculated every 0.6◦,
twice per second and starting from the right lateral side of the patient. This
is in good correspondence with actual CB acquisition parameters. We ran the
proposed method for the first 150 projections, which amounts to 30 seconds of
scanning time over an angle of 90◦. The optimization for the first projection
was initialized with ϑ = 0 and α = 1 which was close to the generated val-
ues ϑ = 0.02, α = 1.1. It is our opinion that including a second parameter to
account for the inter- and intracycle variations of amplitude extents the grasp
of the method and makes the estimation of the phase more robust. To verify
this we ran the optimization a second time on the same generated CB projec-
tion sequence but now fixing the amplitude of the patient model to one. The
phase estimated using this method will be noted as ϑ̆. Results obtained through
this method will be referred to as estimated using a phase based model (PhM),
as opposed to using the phase-amplitude based model (PhAM). The generated
phase signal and amplitude signal of the simulated CB sequence and their esti-
mated values are shown in Figure 3 in function of the projection number. The
estimation errors are summarized for the whole CB sequence in Table 1. We
also assessed the 3D misalignment for the landmarks discussed in Section 2.1.



Their 3D positions in the breathing states used to generate the CB sequence
are compared to their estimated positions. Figure 4 shows the misalignment in
function of the projection number while Table 2 summarizes these measures for
the whole CB sequence. Figure 5 shows an example of a generated CB projec-
tion for which difference images where calculated with the CB projection view of
Iref and with the estimated CB projections. For this projection (with projection
number 138), estimation errors were around their average value. When running
the optimization with the PhAM, results are accurate for the entire sequence,
yielding acceptable maximum errors and excellent mean errors for parameter
value. Figure 4 shows that the maximum misalignment of up to 16mm was ef-
fectively reduced to below 1mm for this experiment. When using the PhM, the
phase estimate showed bad correspondence. With respect to the 3D misalign-
ment, the estimated sequence hardly improved the mean misalignment of the
landmarks with respect to before the optimization.

Table 1. Summary of the estimation errors for the parameter values. The table con-
tains the mean absolute estimation error (ME), its standard deviation (SD) and the
maximum absolute estimation error (MaxE). ϑ̂ and α̂ represent the estimates of the
model parameters when using a PhAM, ϑ̆ is the phase estimate when PhM.

Parameters ME SD MaxE

ϑ̂ 0.0024 0.0265 0.0350
α̂ 0.0040 0.0001 0.0605

ϑ̆ 0.1109 0.2074 0.4800

Table 2. The 3D position of the landmarks is compared to their position in: Iref

(before), the estimated sequence when using a PhM and the estimated sequence when
using a PhAM. The table contains the mean of the misalignment (MeanM ), its standard
deviation (SD) and the maximum misalignment(MaxM ).

Method MeanM (mm) SD (mm) MaxE (mm)

before 3.8544 2.1760 16.7856
PhM 3.5033 1.7747 12.6477

PhAM 0.0184 0.0366 0.9596

4 Discussion and Conclusions

Motion estimation using a phase-amplitude based model performed well on this
simulated data. It was expected that the estimates when using a PhM would be
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Fig. 3. The randomly generated amplitude signal α (full line) and phase signal ϑ
(dashed line) used to generate the CB projection sequence, and the estimated amplitude
α̂ (plus marks) and phase ϑ̂ (cross marks) when using a PhAM. The phase ϑ̆ that was
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Fig. 5. Difference images between the generated CB projection and the: (left) CB
projection view of Iref , (middle) modeled CB projection view after optimization using
the PhAM, (right) modeled CB projection view after optimization using the PhM. For
the middle image the windowing was altered the emphasize the present differences.

less accurate since the CB sequence was generated using a PhAM. The phase
estimates when using a PhM were however surprisingly bad. They indicate that
the phase estimation is highly sensitive to even relatively small changes in ampli-
tude. We are currently working on expanding the method for real CB projection
sequences. One major issue is validation as it is hard to quantify the accuracy
of the motion estimation in the absence of a ground truth. Some other remarks
regarding real CB sequences can be made. In order to create CB projection
views from the patient model, one must first be able to accurately reproduce
the CB geometry and place the patient model in the same physical location as
the patient. This can be done by rigidly registering the reconstructed 3D CBCT
volume to for example a phase of the 4DCT. Although this CT-CBCT registra-
tion should not pose a problem, preliminary tests have shown that the method
is highly sensitive to misalignment of the volumes, becoming unpredictable even
for small misalignments. In the experiments performed, the similarity measure
used showed reliable identification of the optimal parameters on the simulated
data, and proved relatively easy to optimize. However several elements could
undermine its efficiency when confronted with real CB data. For example, the
borders of the treatment table will appear in a large part of the CB projections.
Scatter and detector noise, not taken into account by the ideal projection op-
erator, might turn the similarity measure less reliable and harder to optimize.
Finally it is possible that changes of the patient anatomy and breathing motion
over the course of the treatment are too large to remain adequately represented
by the proposed patient model. An example of such changes are baseline shifts
(variations of the mean tumor position), which have been reported for lung tu-
mors [2]. The proposed patient model might not handle well large baseline shifts,
but can in that case be expanded so that they are explicitly taken into account.
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