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Purpose. We propose a new method for efficient particle transportation in voxelized geometry for
Monte Carlo simulations. We describe its use for calculating dose distribution in CT images for
radiation therapy. Material and methods. The proposed approach, based on an implicit volume
representation named segmented volume, coupled with an adapted segmentation procedure and a
distance map, allows us to minimize the number of boundary crossings, which slows down simu-
lation. The method was implemented with the GEANT4 toolkit and compared to four other methods:
One box per voxel, parameterized volumes, octree-based volumes, and nested parameterized vol-
umes. For each representation, we compared dose distribution, time, and memory consumption.
Results. The proposed method allows us to decrease computational time by up to a factor of 15,
while keeping memory consumption low, and without any modification of the transportation engine.
Speeding up is related to the geometry complexity and the number of different materials used. We
obtained an optimal number of steps with removal of all unnecessary steps between adjacent voxels
sharing a similar material. However, the cost of each step is increased. When the number of steps
cannot be decreased enough, due for example, to the large number of material boundaries, such a
method is not considered suitable. Conclusion. This feasibility study shows that optimizing the
representation of an image in memory potentially increases computing efficiency. We used the
GEANT4 toolkit, but we could potentially use other Monte Carlo simulation codes. The method
introduces a tradeoff between speed and geometry accuracy, allowing computational time gain.
However, simulations with GEANT4 remain slow and further work is needed to speed up the pro-
cedure while preserving the desired accuracy. © 2008 American Association of Physicists in Medi-
cine. �DOI: 10.1118/1.2884854�
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I. INTRODUCTION

In radiation therapy, simulations are used to compute the
three-dimensional �3D� dose distribution within a patient’s
body from a given set of irradiation parameters. Monte Carlo
�MC� methods allow accurate simulation of the physical in-
teractions of irradiation particles within patient tissues with
photon/electron beams used in conventional radiotherapy,1

but also with proton2 or carbon3 beams used in hadron-
therapy. Amongst other applications, MC simulations are a
promising basis for designing fast treatment planning sys-
tems based on analytical simulations.

The present article will focus on a condensed simulation
model that simulates the global effects of collisions in the
course of a given step, but uses approximations. Condensed
MC is known to track particles on a step-by-step basis.4

There are two types of steps: Physical steps transport par-
ticles and simulate physical processes �e.g., photoelectric ef-

fect, Compton scattering, etc.� in homogeneous media,
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whereas geometrical steps take into account the spatial envi-
ronment of the particle and occur when it passes from a
medium to another during transport.

Generally, the anatomical representation of the patient’s
organs is obtained from a computerized tomography �CT�
image. Such a spatial description requires a large amount of
data. In Ref. 5, the authors have used about 38 million vox-
els. Besides the need for computer memory, the lengthy pro-
cessing time limits the use of MC. Besides using more pow-
erful computers, several other approaches are currently under
study to reduce the computational time. For example, several
authors have used variance reduction,6 optimized energy or
production cuts.7–9 Hybrid approaches combining analytical
models and MC simulation have also been proposed.10 All
these methods either decrease the number of physical steps
or accelerate the stepping process.

At least two possibilities exist to reduce the computational
burden due to complex geometry: Either reduce the com-

plexity of the scene or speed up the geometrical stepping
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algorithm. We propose a new approach here to fasten the
simulation when representing a 3D image using a MC code.
It is based on allowing particles to cross voxel boundaries
between two similar materials. The principle is not new since
several authors have proposed comparable approaches, for
example, for DOSXYZnrc �EGSnrc� code.11,12 However, the
way such boundaries are removed is different since in our
case, the transportation algorithm is not modified and thus
any algorithm can be used. Instead, a new volume represen-
tation was defined, and we used a distance map to efficiently
return to the transportation engine the distance to the nearest
real boundary. Moreover, the method was implemented in
the GEANT4 toolkit. To our knowledge, similar approaches
have not been published before. This method can be coupled
with other acceleration techniques �e.g., variance reduction,
use of parallel machines, etc.� to further decrease simulation
times.

This article is organized as follows. Section II describes
the state-of-the-art procedure to prepare a CT image in order
to use it in a MC simulation �Sec. II A� and the existing
representations allowing to handle it in GEANT4 �Sec. II B�.
Section III describes the proposed approach, which consists
of an optimized image representation �Sec. III A� for CT
data, which have been preprocessed by an adequate image
segmentation procedure �Sec. III B�. Section IV describes
and discusses three series of experiments that we have car-
ried out in order to evaluate the newly proposed method in
comparison to existing ones. Section V finally concludes.

II. EXISTING IMAGE REPRESENTATIONS FOR
PARTICLE TRACKING

II.A. From CT image to tissue composition

In order to represent a patient’s anatomy given by a CT
image in a MC simulation, it is necessary to associate each
voxel of the image with a given tissue composition. A mate-
rial m is defined by a mass density � �g cm−3� and an element
weight vector denoted by �i� �0;1�, with �i�i=1. The MC
simulator uses such a description to load cross-sectional data
files and compute physics tables. The image acquisition pro-
cess of a CT is the measure of the attenuation coefficients ��,
expressed in Hounsfield units, H� of traversed tissues. H are
obtained with Eq. �1� �Ref. 13�, where ��E� is the linear
attenuation coefficient of a tissue m= �� , ��i�� at energy E
�see Eq. �2��, with NA �mol−1� the Avogadro constant, i the
element index, and �i the total cross section of the physical
processes involved during the image acquisition,

H = � �

�water
− 1	 � 1000, � =

H − Hair

Hwater − Hair
, �1�

��E� = �NA�
i=1

n ��i

Ai
�i�E�	 . �2�

A stoichiometric calibration method to establish a rela-
tionship between H and tissue compositions has been pro-
posed by Schneider et al.14 Images of phantoms made up of

materials with known compositions and densities are used to
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calibrate the CT scanner. The authors have assigned the
known materials to the measured H. Materials corresponding
to intermediate H values have been interpolated, both in
terms of atomic composition and density according to Eqs.
�3� and �4�

� =
�1H2 − �2H1 + ��2 − �1�H

H2 − H1
, �3�

�i =
�1�H2 − H�

��1H2 − �2H1� + ��2 − �1�H
��1,i − �2,i� + �2,i. �4�

As stated by the authors, such a calibration procedure
provides an approximated description of the composition of
body tissues. Indeed, at conventional scanner energies
�around 120 keV� the imaging process mostly involves the
photoelectric effect, coherent scattering, and Compton scat-
tering. Tissues with different compositions may thus result in
similar H �this is particularly true for soft tissues�. Moreover,
the partial volume effect may assign an artificial H value to a
voxel containing a mixture of several tissues. Schneider
et al.14 have estimated the accuracy of their calibration
method to be better than 0.04 g cm−3, which corresponds to
about 20–40 H units, depending on the density �slightly
lower slope for denser tissues�. Kanematsu et al.15 have es-
timated the precision to be 1% �about 20 H�. Schaffner and
Pedroni16 have estimated the accuracy to be around 1.1% for
soft tissues and 1.8% for bone tissues �from 20 to 40 H�.

II.B. Existing image representations in GEANT4

Once the CT image has been converted to an image of
materials, different possibilities exist to insert the data into a
MC simulation. In a MC simulation code, the physical world
is described by means of elementary volumes of homoge-
neous composition. This work was elaborated using the
GEANT4 toolkit6 but could be adapted to other simulation
codes �provided that they force interactions at voxel bound-
aries, unlike DPM or VMC17�. In GEANT4, an image of ma-
terials can be introduced using several techniques:

�1� Box Volume �BV�. This first method is straightforward.
For each voxel of the image, it creates a parallelepiped
box �G4Box� filled with the associated material.
Memory consumption is high �about 56 bytes per
voxel17� and navigation is very slow, thus preventing the
use of such a representation for large images.

�2� Parameterized Volume �PV�. This method, advocated for
example by Jiang and Paganetti,5 allows storing a single
voxel representation in memory and dynamically chang-
ing its location and composition at run-time during the
navigation. The main advantage of this method is high
efficiency in memory space.

�3� Isothetic Volume �IV�. By merging adjacent voxels shar-
ing similar material �with a given tolerance� into a larger
voxel, it is possible to reduce the number of parallelepi-
peds. Hubert-Tremblay et al.17 have proposed the use of
octree compression to merge adjacent voxels. All result-

ing parallelepipeds are inserted into GEANT4 by means of
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the BV �or possibly PV� approach. “Isothetic” means
that the image is composed of parallelepiped cells ar-
ranged with their faces parallel to the three principal
axes.

�4� Nested Parametrized Volume �NPV�. While reusing the
same mechanism as PV, this representation also splits
the 3D volume along the three principal directions, al-
lowing logarithmic finding of neighboring voxels.

What all of these representations have in common is that
images are split into sub-volumes of homogeneous composi-
tion, which are parallelepipeds, either of the voxel size or
larger. In BV, PV, and NPV all parallelepipeds have the same
dimensions, while in IV parallelepipeds have different sizes
�the side length can be a multiple of the initial voxel side
length�. The main advantage is that geometrical operations
needed for particle tracking �for example, computing the in-
tersection between a vector and a volume� are fast to com-
pute for a parallelepiped. However, the main drawback is
that all the particles are forced to stop at the boundaries of all
parallelepipeds, generating a supplementary step and addi-
tional time cost, even if the two neighboring parallelepipeds
share the same content. Such artificial steps occur very often
as human organs are far from being parallelepipedic.

Another potential source of slowness is the navigation
algorithm used to find parallelepiped neighbors when a par-
ticle moves outside a volume. GEANT4 uses a technique
called SmartVoxel or voxelization, which consists of span-
ning the space with virtual geometrical slices. When seeking
for the next volume, research is performed hierarchically,
dimension by dimension. Smartless, a parameter correspond-
ing to the average number of slices used per contained vol-
ume, defines the granularity of the voxelization. Setting a
high value when using an image composed of millions of
parallelepipeds leads to too many created slices, which in-
creases memory consumption and prevents launching of the
simulation. The default value in GEANT4 is 2, which is not
adapted to very large geometry. As proposed in Ref. 18, a
value of 0.02 was used.

III. PROPOSED APPROACH: REGIONS OF
ARBITRARY SHAPE

The CT calibration accuracy estimations reported in Sec.
II A before suggest that it should not be necessary to use the
whole range of H and that voxels with neighboring H can be
associated in a same homogeneous region. This is typically
an image segmentation problem aiming at reducing the com-
plexity of the scene while preserving overall accuracy. Our
approach is based on two steps: �1� Segmenting the CT im-
age into homogeneous regions, whatever the shape of the
resulting regions �parallelepiped or not�, and �2� inserting the
segmented image into the simulation using a new represen-
tation that allows us to handle voxelized regions of arbitrary
shape. The next section first describes the new representation
proposed that allows us to handle arbitrary shaped voxelized

regions in GEANT4 simulations. This method is very general
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and can be used with any segmented image as input. We then
describe a method used to segment a CT image into regions.

III.A. Handling segmented volumes in GEANT4
simulations

We assume here that an initial CT image has been seg-
mented into regions of homogeneous composition, resulting
in a label image in which each voxel is labeled with the
index of a material. Together with this label image comes a
file that associates each label with a given material compo-
sition and density. In the label image, a region is defined as a
set of voxels sharing the same label, and is not necessarily a
parallelepiped. Instead of providing an analytical description
�such as NURBS or superquadric modeling19�, we propose to
describe the regions using the initial underlying discrete uni-
form voxel grid. We propose new geometric operators to
manage such a geometry. This approach is named Segmented
Volume �SV�.

In GEANT4, the geometrical properties of a volume are
handled by a G4VSolid class, which must be able to an-
swer several geometrical queries during the navigation pro-
cess. The main operations are:

• Inside(p), which computes whether the point p is
inside, outside, or on the surface of the volume.

• DistanceToIn(p, v), which computes the dis-
tance covered by a particle at point p to enter the vol-
ume when travelling in direction v. If the line defined
by �p ,v� does not intersect the volume then an infinite
distance is returned. Another version of Distanc-
eToIn computes the shortest distance between the
point p and the volume, independently of the direction.
This is used as a safety distance, avoiding further com-
putation when, for example, a shorter distance to an-
other volume has been found previously.

• DistanceToOut�p, v� is similar to Distanc-
eToIn and computes the distance needed by a particle
at point p to move out of the volume according to the
direction v. A direction-independent version is also
available.

Such functions are very fast to compute if the volume is
as simple as a parallelepiped �independently of its size�. To
represent a SV, we propose a new G4VSolid class, called
RegionSolid, and we provide an efficient way to com-
pute the previously mentioned geometric queries. Given a
label image, a RegionSolid is created for each region in
the image; it has access to the label image and to the label of
the region it represents. Each RegionSolid then performs
the computation of the different geometrical queries as fol-
lows. For Inside�p�, the calculation is straightforward. By
rounding the coordinate of the point p according to the un-
derlying voxel grid, one directly obtains the region to which
p belongs by reading the voxel label. For DistanceToIn
and DistanceToOut, we adapted a voxel-based discrete
ray-tracing algorithm allowing us to compute the distance on
a step-by-step basis, each step being determined according to
the voxel boundaries �see Fig. 1�. For the direction-

independent versions, we used a distance map that stores, for
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each voxel, the shortest distance to the nearest boundary of
the region to which the voxel belongs �see Fig. 1�. More
precisely, for a voxel v belonging to region R�v�, the distance
dmin�v� is the shortest distance between any location in v
and any location in R�v�, the complementary set of R�v�

dmin�v� = min�
d�p,q�
p � v,q � R�v�� . �5�

Hence, for a given particle located at noninteger coordi-
nates within a voxel, the distance is an underestimate of the
real nearest distance to the boundary of the region. Such an
image of distances is usually called a Distance Map and ef-
ficient algorithms to compute them have been proposed in
the image processing community. We used the INSIGHT

Toolkit �http://www.itk.org� implementation of Daniels-
son’s algorithm.20

Of course, the computation of these geometrical opera-
tions is longer for a RegionSolid than for a parallelepi-
ped �G4Box�. However, in the case of homogenous regions
spanning multiple voxels, the technique optimizes the num-
ber of geometrical steps, which now only occur at real
boundaries �between two different adjacent materials� and
not at artificial boundaries �between two parallelepipeds
sharing the same material�.

In practice, such an approach does not involve modifying
the GEANT4 code. It is sufficient to create the new Region-
Solid class derived from the abstract class G4VSolid.
The distance map is computed and stored before the simula-
tion. The two voxel matrices �the initial one composed of the
matrix of labels and the distance map� are loaded and stored
in memory. The SegmentedVolume in itself does not oc-
cupy much more space in memory than the NPV approach
�see Sec. IV A�.

III.B. Image segmentation procedure

In the image processing field, the term segmentation re-
fers to the process of partitioning an image into multiple
regions �sets of pixels� in order to decrease scene complexity
by removing noise or unnecessary image details. For the
sake of simplicity, we will focus only on photon beams for

FIG. 1. Two dimensional illustration of the Segmented Volume approach. To
compute the DistanceToOut operation from the point p and along the
direction v, a discrete ray-tracing is performed �the dots on the line illustrate
the geometrical steps�. The numbers indicated inside the voxels in the dark
region on the left represent the distance map values used for safety distance
computation.
which the majority of physical processes depend on the elec-
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tronic density of the material. Hence, the merging of two
materials will be performed with a certain tolerance regard-
ing the difference of electronic density between the voxels.
For other types of beams �proton, carbon�, such a step should
be performed using a different density distribution, such as
the stopping power density.15 Electronic density was com-
puted with Eq. �6�, where �Ng is the number of electrons per
unit volume of the mixture, Zi is the atomic number, and Ai is
the atomic weight of element i.

�e = �Ng/�waterNg
water, Ng = NA�

i

�iZi

Ai
. �6�

Based on such a density image, several image segmenta-
tion methods can be applied to merge homogeneous neigh-
boring regions. Among other approaches, region-based seg-
mentation methods are generally composed of a
homogeneous criterion and a regularization one. For ex-
ample, Hubert-Tremblay et al.17 have proposed to define a
region as homogeneous if it has no density gradient value
greater than a user-specified threshold �named density gradi-
ent threshold �DGT��. Based on an octree method, the re-
gions were constrained to be parallelepipeds. For the sake of
comparison, we used this procedure for image segmentation.
The resulting octree structure was used with the IV method
and the resulting segmented image was also used with the
proposed SV method. After segmentation, resulting images
have a large number of regions �the leaves of the octree� with
an averaged density. Like others authors,5,17 we then attrib-
uted labels according to a quantization of the range of den-
sity, leading to a discrete number of different densities and
corresponding materials. Quantization was performed ac-
cording to the mean density difference obtained between ini-
tial and segmented density images. Such a procedure allows
us to obtain both an octree structure for the IV method and a
label image for the SV one. The difference is that in our SV
model, all parallelepipeds sharing the same label are viewed
as a unique volume.

III.C. Dose scoring: Voxel and dosel grids

We decided to separate the 3D matrix of voxels describing
the patient �the geometrical grid� from the 3D matrix of scor-
ing voxels �the scoring grid�. By analogy with the term
“voxel” describing a volume element used to record a mate-
rial description, we propose to name “dosel” any volume
element used to record a deposited dose. As emphasized in
Ref. 21, when high resolution is required for image descrip-
tion �for example when inhomogeneous materials are consid-
ered�, this method allows us to gain computational time by
scoring doses in dosels that are larger than voxels and thus to
accelerate convergence to reduced statistical uncertainty.
Note that when dealing with segmented images, we used the
average density obtained after segmentation to compute the
dose in order to be consistent with the way energy deposit
was simulated.

Relative statistical uncertainty ��x� at a given dosel x was
estimated by Eq. �7� �see for example Ref. 22�. n is the

i
number of primary events �or history�, and d �x� is the de-
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posited energy in dosel x at �primary� event i. Average rela-
tive uncertainty s �Eq. �8�� was computed with the method
proposed by Ref. 23 for all m dosels x such that d�x�
�0.5 dmax, with dmax the maximum deposited dose in a
dosel. More details on statistical uncertainty can be found in
Ref. 24. We used mean relative difference

MRD�d1,d2� =
1

m
�

x

m 
d1�x� − d2�x�

d1�x�

to compare the dose distribution d2 relatively to d1. For com-
parison purposes, we will also present the results using dose
difference relatively to dmax, because this form is sometimes
used in the literature �Ref. 17�

MRDdmax�d1,d2� =
1

m
�

x

m 
d1�x� − d2�x�

dmax

,

��x� =�n�i
ndi�x�2 − ��i

ndi�x��2

�n − 1���id
i�x��2 , �7�

s =� 1

md�0.5 dmax
�

x

m

���x��2. �8�

Contrary to Ref. 21, in the proposed GEANT4 implemen-
tation, adding a dosel matrix to the voxel matrix does not
significantly increase the computational time �less than 10%
of the total time�. Each dose deposition event leads to a
floating point coordinate �in the world coordinate system�,
which is rounded to find the correct dosel index. The
memory requirement is four floating point numbers per
dosel: One for the deposited energy, one for the squared en-
ergy �for computing statistical uncertainty�, one temporary
value, and one value storing the last hit event number as
proposed in the efficient update method of Refs. 25 and 26
that we implemented in GEANT4. Finally, in GEANT4, each
step is defined by a line segment determined with a pre
�starting� and a post �ending� position. In order to avoid bi-

TABLE I. Waterbox experiment. Mean �standard dev
etrization; differences relative to dmax are also giv
�BV�, parametrized volumes �PV�, nested parametriz

Parameter Parameter

Relative d

mean
�%� Stan

SB BV 1.0
SB PV 1.0
SB NPV 1.0
SB SV 0.7
BV PV 0.0
BV NPV 0.1
BV SV 1.0
NPV PV 0.5
NPV SV 1.0
ases and as advocated in the documentation, we computed a
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random location on the segment and added the current en-
ergy deposition to the dosel containing this location.

IV. EXPERIMENTS

We tested the proposed Segmented Volume in three ex-
periments. The first experiment was the irradiation of a
simple water box. The goal was to validate the approach and
estimate the computational burden due to the introduction of
voxels. The second experiment used a phantom. It aimed at
illustrating the time decrease as a function of the number of
voxels. The third experiment was performed on patient data.
It illustrates the proposed method in a complex geometry
with numerous heterogeneities.

IV.A. Water box experiment

IV.A.1. Description

This first experiment aimed at illustrating the difference
between nonvoxelized and voxelized geometry in terms of
computation time, dose distribution, and memory consump-
tion. It also aimed at validating the proposed method. The
geometry was composed of a box of water. The beam source
was a 6 MV photon conic beam with an energy spectrum
obtained by MCNPX simulation of an Elekta Precise™ de-
vice. The physics list was based on the low energy electro-
magnetic package. The distance to axis was set to 100 cm
and we used a 20 mm radius beam size �at isocenter�. Sixty
million primary events were simulated. The box �160�160
�300 mm3� was described successively with a single homo-
geneous box �denoted by SB� or a voxelized volume with
cubic voxels. Three sizes were used: 23, 1 .53, and 13 mm3,
leading to 1, 2.3, and 7.7 million voxels, respectively. Four
methods were compared: Multiple G4Box �BV�, param-
etrized volume �PV�, nested parametrized volume �NPV�,
and segmented volume �SV�. Of course, the IV model would
give the same result as SB because the octree segmentation
would lead to only one box. For all configurations, the de-
posited energy distribution was stored in a 80�80�150

3

� relative difference between various image param-
arametrizations were single box �SB�, box volumes
lumes �NPV�, and segmented volumes �SV�.

nce Difference relative to dmax

mean
deviation �%� Standard deviation

7 0.7 0.5
8 0.7 0.5
7 0.7 0.5
6 0.5 0.4
0 0.0 0.0
0 0.0 0.2
8 0.7 0.5
4 0.4 0.3
8 0.7 0.5
iation
en. P
ed vo

iffere

dard

0.
0.
0.
0.
0.
0.
0.
0.
0.
dosel grid with 2�2�2 mm dosel size. Production cuts
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were set to 0.5 mm for photons and 0.3 mm for electrons/
positrons in the water box, and 2 mm for all particles outside
the box. Such cuts prevent the creation of secondary particles
when the energy range is below the chosen values; instead,
the energy is deposited locally.

IV.A.2. Results

Table I displays the mean relative difference between the
dose distribution obtained with the various parameterizations
�BV, PV, NPV, SV� and without voxelization �SB�. All simu-
lations led to average relative uncertainties below 0.9%. We
also computed the total dose deposited inside the whole box
with the different methods and found the following relative
differences: 0.2% between SB and PV �or BV�, 0.18% be-
tween SB and NPV, and 0.0023% between SB and SV. Com-
putational time, the number of geometrical and physical
steps �relatively to the SB experiment with 0.96 million vox-
els� are given in Table II for SB, NPV, and SV configura-
tions, and for 0.96, 2.3, and 7.7 million voxels. Memory
consumption �on a 64-bit AMD Athlon PC� according to the

TABLE II. Waterbox experiment. Time, the number of geometrical steps, and
million voxels�, for the three different configurations �SB, NPV, and SV� an

000
different parametrizations is displayed in Table III.
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IV.A.3. Discussion

In Table I, BV, PV, and NPV should produce exactly the
same results because GEANT4 has been forced to use the same
random number sequence. Indeed, the history of all particles
should be identical because all are stopped at exactly the
same positions, whatever the parametrization used. However,
even if it came true for BV compared to PV, NPV induced a
slightly different behavior. Inadequate management of some

mber of physical steps �expressed relatively to the SB experiment with 0.96
ee voxel numbers �0.96, 2.3, and 7.7 million voxels�.

TABLE III. Waterbox experiment. Memory �in megabytes� used for process-
ing 1 million voxels according to the different methods. Three versions of
the PV parametrization with different smartless values are indicated.

Parametrization
RAM

�Mbytes�

SB �no voxels� 62
BV 1416
PV (smartless	2) 850
PV (smartless	0.2) 303
PV (smartless	0.02) 122
NPV 66
SV 70
the nu
d thr
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particular situations �a particle touching the edge of a volume
but not entering it, for instance� was observed in GEANT4

when using NPV. We have proposed the use of a patch to
partially correct the problem �submitted to the GEANT4 com-
munity�. This patch reduces relative differences between
BV/PV and NPV to less than 0.07%. We thus consider that
the three parametrizations BV, PV, NPV are equivalent in
terms of deposited dose.

First, we observed that dose differences between voxel-
ized �BV, PV, NPV, SV� and nonvoxelized �SB� volumes
remained equivalent or below the statistical uncertainty
�1%�. The number of histories �60 million� was chosen to
keep statistical uncertainty below 1%. SV should also be
statistically identical to SB because it removes all voxel
boundaries inside the box. However, there are some approxi-
mations in the computation of safety distance based on the
distance map and we observed slight differences. We recall
that all the mentioned differences are made �on average�
dosel by dosel. Global differences computed on the whole
box were very low �
0.003% between BV and SV, for ex-
ample�.

Such experiments also bring to light the computational

FIG. 2. Slice of the phantom used in the experiment. The phantom is com-
posed of wood, polyethylene, and PMMA.

TABLE IV. Phantom experiment. Top: Mean �standard
for the phantom experiment. Differences relative to d
steps, and number of physical steps with NPV, IV, an

Parameter Parameter Relative differ

Mean Standar
�%�

NPV IV 0.92
NPV SV 0.93
IV SV 0.90

NPV IV

Time �mn� 216 mn 43 nm 1
SG 562 million 72 million 16
SP 48 million 28 million 24
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cost of introducing voxels. For NPV, time was increased by a
factor between 4 and 8 when using 0.96, 2.3, and 7.7 million
voxels, respectively. We observed that the number of geo-
metrical steps dramatically increased �by a factor of 50–100�.
The number of physical steps was also increased by a factor
of 3 to 4. SV remained slower than SB �1.5 times slower for
7.7 million voxels� due to the burden of geometrical steps,
which increases when the image is complex. The simulation
is, however, about five times faster with SV than with NPV
for approximately the same memory requirement as SB
�Table III�.

IV.B. Phantom experiment

IV.B.1. Description

In these experiments, we used a CT image of a manufac-
tured phantom composed of wood �0.47 g cm−3�, polyethyl-
ene �0.9 g cm−3�, and PMMA �1.2 g cm−3�, used for portal
image calibration in our radiotherapy department. The phan-
tom image �see Fig. 2� was segmented into five materials �by
adding air and graphite�. The image was 512�512�47
�about 12.3 million voxels� with a resolution of 0.6�0.6
�5 mm3. We compared NPV, IV, and SV methods. For IV,
as only five materials were used, we used an exact octree
segmentation17 with a DGT value of 0. Parameters were the
same as for the previous experiment, except for the beam
radius, which was 50 mm. One hundred million primary
events were simulated. Dosel size was set to 2�2�2 mm.
Production cuts were set to 0.01 mm for gamma, electrons,
and positrons.

IV.B.2. Results

Octree compression �IV� led to about 800 000 parallelepi-
peds �compression ratio of about 93%, comparable to what is
found in Ref. 17 for another phantom image�. Simulations
performed with 100 million primary particles led to average
relative uncertainties below 0.8%. Table IV displays the rela-
tive dose difference, the time, and the number of geometrical
and physical steps. The simulation was performed on a re-

iation� relative difference between NPV, IV, and SV
re also given. Bottom: Time, number of geometrical
for 1 million events.

Difference relative to dmax

iation Mean Standard deviation
�%�

0.68 0.53
0.68 0.53
0.66 0.53

NPV/IV NPV/SV IV/SV

5.1 15.1 3.0
n 7.8 33.9 4.4
n 1.7 2.0 1.2
dev
max a
d SV

ence

d dev

0.67
0.72
0.71
SV

4 mn
millio
millio
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mote cluster of workstations �composed of AMD Opteron,
dual-core processors under Linux, 2Ghz�. The time measure-
ments were done for 1 million events. Time measurements
were subject to variation due to the load of the cluster, how-
ever, the normalization of values according to the percentage
of CPU used allowed us to compare simulation times.

IV.B.3. Discussion

Computational time was decreased by a factor of 15 when
using SV compared to NPV. Such a performance can be ex-
plained by the large reduction in the number of steps �almost
34 times less�. We note that the reduction here was superior
to the one obtained in the waterbox experiment. There are
more voxels �12.3 million� and the number of physical inter-
actions is higher. Average dose relative differences between
the three methods remain lower than 1% which in the order
of the statistical uncertainty. Figure 3 illustrates the dose dis-
tribution in the phantom and Fig. 4 shows a depth dose dis-
tribution plot with the three methods �NPV, IV, and SV� and
the corresponding differences between NPV and SV. We ob-
served that there were no dosels with relative error greater

FIG. 3. Example of the dose distribution superimposed on one phantom CT
slice. The corresponding dose difference distribution between NPV and SV
is shown at the bottom.

FIG. 4. Dose profile in the phantom computed with the methods NPV, SV,
and IV �dose is expressed relatively to the maximum dose observed with
NPV, on the left axis�. Relative differences between NPV and SV are shown
with vertical boxes �values are on the right axis�. Vertical lines show the

limits between different media.
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than 3%. The effect of the boundaries between different me-
dia can be observed with the vertical lines.

IV.C. CT image experiment

IV.C.1. Description

For the third series of simulations, we used a thorax CT
image of a patient with nonsmall cell lung cancer. Initial
image size was 512�512�77 �more than 20 million voxels�
with a resolution of 1.2�1.2�5 mm3. We reduced the num-
ber of voxels by segmenting the air region surrounding the

TABLE V. Segmentation DGT �g cm−3�, quantization �number of materials�,
density differences �mean, max, standard deviation� and number of resulting
boxes �octree leafs�.

DGT Materials Mean Max
Standard
deviation

Number
of boxes

Test1 0.010 242 0.002 0.013 0.002 2,733,826
Test2 0.020 117 0.004 0.028 0.004 2,069,821
Test3 0.025 79 0.005 0.041 0.006 1,855,670
Test4 0.050 41 0.010 0.079 0.012 1,233,620
Test5 0.075 27 0.014 0.120 0.017 934,133
Test6 0.100 16 0.027 0.181 0.030 750,708

FIG. 5. Top left: Original CT slice. Top right: The four images show the
segmentation results obtained with different DGT values. The mean density
difference and corresponding number of materials are indicated on the im-
ages �see Table V�. Bottom left: Parallelepipeds leaves resulting from the
octree procedure. Bottom right: The same images after quantization proce-

dure. Simplification is especially visible on the last images.
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patient �according to the method described in Ref. 27� and
kept the bounding box corresponding to 349�228�77 vox-
els �about 6 million�. After CT calibration,14 six segmenta-
tions were performed with the octree method according to
six DGT parameters �see Table V and Fig. 5�. In this figure,
we do not show all segmentations because they are hardly
visually distinguishable from the original image. Three meth-
ods were compared for dose and timing: NPV, IV, and SV.

TABLE VI. CT experiment. Dose relative difference b
tations. Left: Differences between methods using th
reference NPV with the test 1 case.

R

Parameter Parameter mean �%
�%�

Test 1 NPV IV 1.0
242 materials NPV SV 1.1

IV SV 1.1

Test 2 NPV IV 1.1
117 materials NPV SV 1.1

IV SV 1.1

Test 3 NPV IV 1.0
79 materials NPV SV 1.1

IV SV 1.1

Test 4 NPV IV 1.0
41 materials NPV SV 1.2

IV SV 1.1

Test 5 NPV IV 1.1
27 materials NPV SV 1.2

IV SV 1.2

Test 6 NPV IV 1.1
16 materials NPV SV 1.2

IV SV 1.2

R

mean
�%�

Test 1 1.1
Test 2 1.1
Test 3 1.2
Test 4 1.3
Test 5 1.5
Test 6 1.5

R

mean
�%�

Test 1 1.0
Test 2 1.1
Test 3 1.1
Test 4 1.2
Test 5 1.4
Test 6 1.4
One hundred million primary events were simulated. Dosel
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size was set to 2.5�2.5�5 mm3 �about 1.3 million dosels�.
Other parameters were the same as for the previous experi-
ment.

IV.C.2. Results

All 18 simulations �three methods, six cases� led to aver-
age relative uncertainties below 0.9%. Table VI displays the

en NPV, IV and SV, according to different segmen-
e segmentation. Right: Differences relative to the

e difference Difference relative to dmax

Standard deviation mean Standard deviation
�%�

0.8 0.7 0.6
0.9 0.8 0.6
0.8 0.8 0.6

0.8 0.7 0.6
0.9 0.8 0.6
0.8 0.8 0.6

0.8 0.7 0.6
0.9 0.8 0.6
0.9 0.8 0.6

0.8 0.7 0.6
0.9 0.8 0.6
0.9 0.8 0.6

0.8 0.7 0.6
0.9 0.8 0.6
0.9 0.8 0.6

0.8 0.7 0.6
0.9 0.8 0.6
0.9 0.8 0.6
SV �ref	test1/NPV�

e difference Difference relative to dmax

Standard deviation mean Standard deviation
�%�

0.9 0.8 0.6
0.9 0.8 0.6
0.9 0.8 0.6
1.1 0.9 0.7
1.4 1.0 0.9
1.4 1.0 0.9
IV �ref	test1/NPV�

e difference Difference relative to dmax

Standard deviation mean Standard deviation
�%�

0.8 0.7 0.6
0.8 0.7 0.6
0.9 0.8 0.6
1.1 0.8 0.7
1.4 1.0 0.9
1.3 1.0 0.8
etwe
e sam

elativ

�

elativ

elativ
dose relative differences and Table VII the computational



1461 D. Sarrut and L. L. Guigues: Voxelized geometry with GEANT4 1461
time according to the different segmentations for NPV, IV,
and SV methods. Time is expressed relatively to NPV and
test 1 experiment.

IV.C.3. Discussion

The mean accuracy in mass density during the segmenta-
tion stage ranged from 0.002 to 0.027 g cm−3. The octree
stage yielded between 750 000 and nearly 2 000 000 boxes.
Table VII illustrates that using SV with a reduced number of
materials allowed us to reduce the computational time by up
to a factor greater than 4. Using the octree structure also
decreased the time by up to a factor of approximately 1.5.
The gain is attributable to the large decrease in the number of
geometrical steps; the number of physical steps only slightly
decreases. We also observed that for excessive numbers of
materials, the methods are not efficient and can even lead to
increased computing time �test 1�. We observed that the dose
distribution differences between NPV, IV, and SV methods
remained below 1.2% �left part of Table VI�. In this case, this
is the same material approximation and, as in the phantom
experiment, differences are in the order of the uncertainty
�which is below 0.9%�. In the right part of Table VI, dose
differences due to material approximation can be observed
and range from 1.1% to 1.5%. Figure 6 illustrates the experi-
ment with profiles: In the upper part, electronic density pro-
files are displayed for reference image, test no 5 and test no
6. The approximation due to the segmentation part can be

TABLE VII. Time, number of geometrical steps and number of physical steps
configurations �NPV, IV, SV� and the six segmentation cases.
observed �note that the segmentation was performed in 3D,
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which explain that in the right part of the figure, the segmen-
tation n°6 seems crude�. In the bottom part of the figure,
deposited dose distribution profiles are shown for test no 1
compared to test no 5 and 6, with the corresponding differ-
ences between NPV and RV. In this example, some differ-
ences are greater than 3% with test no 6, while this is not the
case with test no 5. We computed that 90% of the dosels in
test no 6 have a relative dose difference lower than 3%.
Maximum differences were greater than 7% for about 50
dosels and can reach 10% in four dosels. It is, however,
difficult to separate what is due to statistical uncertainties
�around 0.9%� from what is due to NPV versus SV imple-
mentation �maybe about 0.5%� and what is due to material
approximation. Note that Ref. 17 also observed that the mean
dose difference expressed in percent of the maximum is
around 1%, which is in the same order as our observation.
More validation are still needed to compare the different ap-
proaches according to experimentally measured data in such
very inhomogeneous media.

Finally, the gain of computational time with the proposed
method increases almost linearly according to the parameter
DGT. This parameter is linked to the number of regions of
the segmentation. For high DGT values, a small number of
regions is obtained and the proposed method is faster. How-
ever, dose differences increase as the image is simplified.
The image segmentation parameters �DGT here� can thus be
used to control the tradeoff between speed and desired accu-

ressed relatively to the NPV case with 242 materials�, for the three different
�exp
racy.
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V. CONCLUSION

We have proposed a method to decrease the computa-
tional time required for GEANT4 simulations involving a 3D
image-based description of the scene, such as a CT image of
a phantom or a patient. Our method consists in representing
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FIG. 6. �Top� Electronic density profiles for initial image data and tests n°5
and 6. �Bottom� Deposited dose profiles for test n°1 with NPV and tests
n°5 and n°6 with RV. Corresponding differences are shown with boxes.
the matrix of voxels with regions having specific boundary-
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finding functions based on discrete ray-tracing. It is different
from previously published methods because the transporta-
tion algorithm is not modified. We have also described ex-
periments permitting us to validate the proposed method in
different configurations. According to the image segmenta-
tion procedure, the proposed method allowed us to eliminate
the MC steps required at artificial interfaces �between two
voxels sharing the same material� until reaching an optimal
number of geometrical steps. We are able to decrease the
computational time by up to a factor of 15 �in the phantom
case involving few materials�.

The gain still remains a tradeoff between time and accu-
racy, with the reduction in the number of different materials
leading to larger speed up. We want to emphasize that the
main goal of this article was not the in depth study of the
influence of this segmentation stage on final simulation re-
sults. The loss of accuracy due to the material simplification
still needs to be evaluated for each application: It is the re-
sponsibility of the user to decide if dose differences that
occur between NPV and SV are acceptable or not for a given
application. For example, scene simplification will probably
not have the same importance for dosimetric or for imaging
applications. As in the method DOSSCORE proposed by
Smedt et al.,12 the speed gain is much more significant for
weakly inhomogeneous medias �factor of 15�. However, it
also remains interesting �reduction in time of 3 to 4� for
patient data.

On patient data, the segmentation of the CT image could
be difficult to perform automatically a priori because of the
noise. Manual segmentation can also be employed. Other
criteria than the DGT of homogeneous criteria could be used
�such as region density variance�. Generally, segmentation
combines a homogeneity criterion �internal energy� with a
shape regularization �external energy� allowing us to intro-
duce a certain a priori in the region shape. Finding the best
way to segment an image could be the subject of another
study.

The proposed approach has been applied to the GEANT4

code but should also be applicable to other simulation codes.
It does not require us to modify the transportation algorithm.
It is not dedicated to accelerating radiotherapy simulations
only and is also applicable to other simulations, for example
PET imaging with the GATE software.18 Finally, even with
the proposed technique, complete simulation still remains
relatively slow. Other acceleration techniques �variance re-
duction, tracking cuts� must be used to further speed up the
whole process. The particle navigation algorithm5 should
still be optimized with the proposed SV approach. It would
accelerate the time reduction. A discrete ray-tracing algo-
rithm faster than the simple one we used should also contrib-
ute to further decrease computational time. The method pro-
posed here is available within an open source licence on the
following website: http://www.creatis.insa-lyon.fr/rio/ThIS.
The proposed method has been proposed to the OpenGate
collaboration for further study and will be introduced in a

18
future release of the GATE platform.
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