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Abstract

Ths paper examines several applications of deformable
registration algorithms in the field of image-guided radio-
therapy. The first part focuses on the description of input
and output of deformable registration algorithms, with a
brief review of conventional and most current methods.
The typical applications of deformable registration are
then reviewed on the basis of four practical examples.
The first two sets of examples deal with the fusion of
images obtained from the same patient (inter-fraction reg-
istration), with time intervals of several days between each
image. The other two examples deal with the fusion of
images obtained in immediate sequence (intra-fraction
registration), in this case, the focus is the displacement
during image acquisition or patient treatment (mainly due
to respiratory movement), with time intervals in the order
of magnitude of tenths of seconds. Finally, the registration
of images of different patients (inter-patient registration)
is also discussed.

In conclusion, deformable registration has become a fun-
damental tool for image analysis in radiotherapy.
Although extensive validation of the numerous existing
methods is required before extending its clinical use,
deformable registration is expected to become a standard
methodology in the treatment planning systems in the near
future.

Keywords: Deformable registration, Image-guided radiat-
ion therapy

Elastische Registrierung
in der bildgestiitzten Strahlentherapie

Zusammenfassung

In diesem Artikel wird ein Uberblick iiber die Prinzipien
und Anwendungen der elastischen Registrierung im
Bereich der bildgestiitzten Strahlentherapie gegeben.
Dabei werden iibliche Ein- und Ausgabeparameter ebenso
wie die derzeit gingigsten Methoden fiir die elastische
Registrierung beschrieben. Schlieflich werden typische
Anwendungen anhand von 4 Beispielen diskutiert. Die
ersten beiden Beispiele behandeln die Fusionierung von
Bilddaten des gleichen Patienten, die zwischen Fraktionen
gewonnen wurden (Inter-Fraktion). Die Zeitintervalle zwi-
schen den Aufnahmen liegen dabei in der GréfSenordnung
von mehreren Tagen. Zwei weitere Beispiele behandeln die
Fusionierung von Bilddaten, die unmittelbar hintereinan-
der gewonnen wurden. Dabei sind anatomische Verschie-
bungen wdhrend der Bilddatenakquisition oder Patienten-
behandlung, z.B. durch Atmung, kritisch. Die Zeitinterval-
le zwischen der Bildgewinnung bei dieser Anwendung sind
in der Groflenordnung von Zehntelsekunden. Abschlie-
fiend wird die Registrierung von Bilddaten besprochen,
die sich auf unterschiedliche Patienten beziehen.
Zusammenfassend kann festgestellt werden, dass die elas-
tische Registrierung ein grundlegendes Bildanalysewerk-
zeug in der Strahlentherapie geworden ist. Die praktische
Anwendung wird in der Zukunft zunehmen, ein routine-
mdpiger Einsatz im Patientenbetrieb setzt jedoch weitere
Uberpriifungen der existierenden Methoden voraus. Es ist
zu erwarten, dass diese Methoden in zukiinftigen Bestrah-
lungsplanungssystemen standardmdfig verfiighar sein
werden.

Schliisselworter: Elastische Registrierung, bildgestiitzte
Strahlentherapie
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1 Introduction

Deformable registration is a fundamental image tool that is
widely used for the analysis of medical images. Its use in the
field of radiation therapy is relatively recent and in constant
progression: a search of Pubmed! using the terms
“deformable registration” and “radiotherapy” (or related
words such as “radiation therapy”, “nonrigid registration” ...)
has returned about 40 full-length-papers. At ASTRO? and
AAPM?3 2005 meetings there were respectively 7 and 17
abstracts dedicated to deformable registration in radiothera-
py, whereas there had been only 1 and 7 at the 2004 meetings.
Usage of deformable registration is mainly found in conjunc-
tion with Image-Guided Radiation Therapy (IGRT [1, 2]).
The principle of IGRT involves an image-based monitoring
of changes in the shape and position of organs during treat-
ment. Images can be acquired using a large variety of modal-
ities: regular CT or in-room-CT (such as CT-on-rails [3] or
Cone-Beam CT [4]), MegaVoltage-CT [5], 2D images (either
MV or KV), US, PET, MRI, video, etc. The goal of using
these images is to reduce treatment margins, allowing to
potentially perform safe dose escalation and hopefully
improve patient treatment.

This paper is organized as follows. Section 2 describes the
input and output of a deformable registration. Section 3
describes various algorithms used to perform deformable
registration. Section 4 is dedicated to the use of deformable
registration in radiotherapy.

! http://www.ncbi.nlm.nih.gov/
2 American Society for Therapeutic Radiology and Oncology
3 American Association of Physicists in Medicine
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2 What is deformable registration?

Image registration is the process of defining a mapping
between two images so that the coordinates in one image cor-
respond to those in the other. When the mapping contains
deformations, one speaks of deformable registration (DR). A
DR takes as input two (or more) images. One image is consid-
ered as the reference (or the target image) and the other one is
the deformable (or object, or moving, or floating, or test)
image. We denote / the reference image and J the deformable
image. The output is a transformation ¢ which relates the con-
tent of the first image to the content of the second image. Let
X = (X}, Xy, x3) (for a 3D image) be the coordinates of a point
in I, ¢(x) = x"is the corresponding point in J: 1(x) = J(¢(x)).
DR is related to rigid registration (RR) which is now part of
most treatment planning systems. RR output is generally 6
numbers (translation and rotation). By comparison, DR out-
put is a deformation field (DF) of vectors, indicating the cor-
respondence between each voxel in the first image and each
corresponding voxel in the second. Such DF can be represent-
ed in different ways (see section 3.2), but hundreds or thou-
sands of parameters are generally required. For example, the
DR of all voxel displacements in a 512 x 512 x 100 image
involves 78 million parameters (three coordinates per voxel).
Even if it is not necessary to compute the displacement vector
of each individual voxel, DR is at least one order of magni-
tude more complex than RR. Figure 1 represent a DF by dis-
playing vectors on image slices. Hence, only a planar dis-

Figure 1 Vector field representa-
tion by superimposition of 2D dis-
placement vectors on several
slices. The length of the vectors
corresponds to the length of the
in-plane displacement. Compo-
nents of the 3D displacement
orthogonal to the slice can be
visualized with other slice orien-
tations and with variations of the
vector color (from light green to
light yellow according to the 3D
displacement amplitude). Here
vectors are spaced every 7 mm.
Sampling of displaying vectors
can be changed interactively by
the user.
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placement (two of the three dimensions) is represented on
each slice. By displaying other slices, with different orienta-
tions, it is possible to visualize the 3D deformation.

3 How does it work?

The literature on DR methods is very extensive. The goal of
this section is not to provide an exhaustive description of all
existing DR methods but to present the main classes of DR in
order to understand the contribution of DR methods current-
ly used in radiotherapy. More details can be found in several
surveys [6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16]. Generally, DR
algorithms are described as the combination of several com-
ponents: a feature space, a similarity measure, a transforma-
tion model and an optimization algorithm. The goal is to find
an optimal transformation that provides maximum similarity
(or minimum distance) between the reference and the
deformable image. DR is an ill-posed problem*. All methods
represent a tradeoff between a certain image similarity (or
distance) and an a priori knowledge of the nature (and ampli-
tude) of the deformation to recover.

3.1 Feature space and similarity measures

Similarity between images can be feature-based or intensity-
based or an hybrid of the two approaches. Feature-based
methods use landmark points [17, 18], organ contours [19,
20] or segmented surfaces. Features must be defined in the
two images and must generally be homologous, i.e. each fea-
ture in one image is related to its corresponding feature in the
other image. Landmarks correspond to identified anatomical
points manually selected and paired by an expert or (semi-)
automatically extracted [21]. Landmarks may also be select-
ed using image-based processing, typically corresponding to
high local gradients. The distance between pairs of features is
then defined (as a simple Euclidian distance for pairs of
homologous points, or more complex distances for high-
order features such as surfaces or lines, including uncertain-
ties or orientations). On the other hand, intensity-based meth-
ods involve optical-flow like methods and are generally
almost fully automatic. Image similarity is defined as a statis-
tical measure between the intensity (grey-levels) distribution
of the two images. For monomodality image registration,
other techniques can be used: Sum of Absolute Differences or
Sum of Squared Differences (SSD [17, 22, 23]), or Cross
Correlation [24]. For multimodal cases, more advanced
measures such as Mutual Information [8, 25, 26, 27] or Cor-
relation Ratio [28, 29] can be used but they generally require
a longer computation time. Hybrid methods make use of both
extracted features and voxel intensities [30] to make the
process more robust or to allow user interaction.

4 A problem is well-posed when a solution exists, is unique and depends con-
tinuously on the initial data. It is ill-posed when it fails to satisfy at least
one of these criteria.

3.2 Transformation models

There are roughly three main groups of methods to model a
transformation ¢: global modeling (polynomial, harmonic),
semi-local (piecewise polynomial with various splines) and
local (regularized dense vector fields) modeling [31] (see
table 1). Some authors use global high-order polynomial [32,
33], or Harmonic [34] to parameterize the transformation.
However, oscillations tend to appear and the global model
does not always allow to retrieve local deformation. Many
studies have used /ocal piece-wise polynomials (splines) as a
linear combination of radial basis functions (RBF). The
method makes it possible to interpolate or approximate pairs
of homologous features defined in each image. Thin-plate
splines (TPS) or second order Laplacian splines are the most
popular basis functions [35], but other functions such as mul-
tiquadrics, inverse multiquadrics or Gaussians can also be
used [36]. The TPS coeffcients are found by resolving a set of
linear equations, which requires the inversion of a matrix
which size depend on the number of points to be interpolat-
ed or approximated. Other basis functions such as Fourier
series [37], wavelets, membrane spline [38], elastic body
spline [39], div-curl spline [40] have also been used. Trans-
formation models supported by this approach are mostly
interpolant (exact landmarks matching) but an extension to
the approximation case has been proposed [41] to take into
account landmarks localization uncertainties. Such functions
do not have compact support: each landmark pair impacts the
transformation result globally. Fornefett et al. [36] proposed
the use of compactly supported RBF with Wendland func-
tions. There are many other ways to represent the transforma-
tion with local piecewise polynomial models. One of these is
B-splines [27, 31]. B-splines are piecewise polynomials of
degree n (tri-cubic splines are often used, n = 3), with inter-
esting mathematical properties: compact support, continuous
(n — 1) derivative, etc. They are often described by a free-
form deformation (FFD) model: deformation is carried out
by an underlying uniform regular mesh of control points.
Other widely used approaches consist in representing the
transformation with dense vector fields (up to one vector per
voxel) and adding regularization constraints to the field. Gen-
erally, constraints are defined using an energy function com-
puted from the deformation field. At each iteration of the
optimization procedure, the energy of the current transforma-
tion is used to impair non smooth transformation. Linear
elastic energy is commonly used [42, 37]. It is based on the
physical equations of the deforming material, assuming that
the relationship between strain and stress is linear. Other reg-
ularizing energies are the membrane or Laplacian model
(which can be considered as a simplification of the linear
elastic model [43]), bi-harmonic [35] (TPS correspond to an
exact solution to this energy minimization), viscous fluid [44,
45, 46] (same equations as for the elastic model but applied
to the velocity field instead of the displacement field), Jaco-
bian-based [47, 48], Gaussian [49, 45] (which can be related
to elastic regularization under some assumptions), etc. Inter-
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Table 1 Short classification of some feature-spaces and transformation models used in deformable registration.

Features space and similarity measures

Transformation models

Features- -« Types: points, lines, surface ... Global + Affine (almost rigid)
based + Selection: manual or automatic + Polynomial
+ Pairing: manual or automatic * Harmonic

Intensity- -« Local: SAD, SSD Semi-global + Non-compact support: TPS, Fourier

based + Neighbourhood: CC, MI, CR ... (RBF, piecewise  series, wavelets, elastic, div-curl
polynomial) + Compact support: Wendland, B-spline

Hybrid + Mix IR and FB method
Local + Membrane model (Laplacian)
(regularized + Bi-harmonic model (29 order Laplacian, TPS)
dense vector + Linear elastic fluid
field) + Gaussian

Biomechanical -

model

» Jacobian-based ...

FEM methods with triangular (surface) or
tetrahedral (volumes) meshes
+ Individual organ properties
(Young’s modulus and Poisson’s ratio)
+ Contact-impact analysis

ested readers should refer to Cachier et al. [S0] who report
that almost all regularization energies are based on the same
small set of differential quadratic forms.

Biomechanical models [51, 52] do not explicitly use simi-
larity measures. Instead they simulate organ deformation by
using both physical material properties and constraints based
on the initial and final states of the organs. They are based on
the Finite-Element Method (FEM) and use similar equations
(elastic model for example) to simulate individual organ
deformation. Deformation is generally represented by trian-
gular meshes for surface-based models or tetrahedral meshes
for volume-based models. The individual material properties
of each organ must be described, with parameters such as
Young’s modulus and Poisson’s ratio. Chi et al. [53] studied
the relationships between those parameters and achievable
registration. Contact between organs is also sometimes simu-
lated [54].

3.3 Conclusion

In feature-based methods, the intervention of experts did
allow to obtain a confident correspondence between sets of
points (even when taking into account inter-observer variabil-
ity), but this method remains time consuming, error prone
and not appropriate for a daily use. The diffculties were to
establish a correspondence between landmarks and to insure
that extracted landmarks in the two images correspond to
same physical points. Moreover, landmarks should be uni-
formly distributed within the volume in order to correctly
infer the deformation. However, such methods are generally
faster than intensity-based methods. Intensity-based methods
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do not require (manual) segmentation of organs but are sub-
ject to image artifacts. Biomechanical models require the
definition of organ properties which are generally not well
known and are thus to be found heuristically.

There is no single method outperforming all other meth-
ods and which can be used in all situations. The result is
always a tradeoff between accuracy and speed. The applica-
tion can help choose a DR as a function of a priori differences
in images. The differences between images that we want to be
registered can be due to several factors: change in patient
anatomy (intra-subject registration), different image view-
points, images from different sensors (multimodality regis-
tration), images from different patients (inter-subject regis-
tration), dynamic motion (intra-fraction motion such as
breathing). The type and amplitude of transformation ¢
depends on such a priori differences. A priori information on
the nature of the deformation is therefore crucial. The next
section describes several applications of DR.

4  What use in radiotherapy?

DF is used in a great variety of processes in IGRT. This sec-
tion does not provide an exhaustively list of DR applications
in radiotherapy but describes a number of examples. The first
example describes local organ deformations induced by the
application of an endo-rectal coil. The second example deals
with inter-fraction organ deformations. The third example
describes intra-fraction motion mainly due patient respira-
tion. Other examples include multi-modal DR (PET/CT) and
inter-patient segmentation propagation with DR.
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4.1 Example n° 1: fusion of functional MRSI

to anatomical CT or MRI for prostate treatment

DR is used to combine anatomical data obtained by MRI or
CT and functional information from magnetic resonance
spectroscopic imaging (MRSI) for prostate treatment plan-
ning. MRSI provides information on the in vivo metabolic
activity of tissues that can be related to the presence of can-
cer [55]. In practice, however, the use of endorectal probes
for MRSI distorts the prostate and other neighboring soft tis-
sue organs, modifying their shape when compared to an
anatomical MRI or a planning CT (see Fig. 2). It makes the
analysis and the use of MRSI in treatment planning diffcult
and RR insuffcient. DR is thus an adequate tool to recover the
deformation, as it allows a combination of functional and
anatomical information.

Lian et al. [56] used TPS to interpolate the deformation
from 4 to 8 homologous control points in each pair of slices.
DR is only performed slice by slice in 2D, potentially result-
ing in errors in the longitudinal direction. Control points were
chosen manually along the contour of the prostate gland and
feature points such as corners and intersections of edges were
identified. Based on a similar approach, Venugopal et al. [55]
reported a registration method that required contouring of the
gross tumor volume (GTV) in both inflated and deflated
images. They also used 2D TPS from a manual and contour
guided selection of homologous control points. Wu et al. [33]
used an intensity-based DR between MRSI and MRI images
which did not require contouring the organs. They used
mutual information as similarity measure and the deforma-
tion was parameterized by a global polynomial function of
order 5-6 (168-252 parameters). The regularization energy
was the bi-harmonic differential operator, an energy associat-
ed with the TPS, involving second partial derivatives. For
MRSI to CT image registration, Schreibmann et al. [57] pro-
posed an hybrid method combining contour-based free form
deformation using B-spline and information on pixels con-
tained in narrow bands around the contours. This method
allowed to avoid the use of homologous control points. Inten-
sity-based information was done with normalized correlation

Prostate

as similarity measure and optimization was performed with a
quasi-Newton approach allowing to avoid the computation of
the Hessian by using an iteratively updated approximated
matrix [58].

In each approach, RR was considered ineffcient to retrieve
deformation. Hence, DF was used to warp back MRSI data to
anatomical data obtained from MRI or CT by removing the
deformation, thus allowing image fusion.

4.2 Example n° 2: IGART

Fraction to fraction variations of patient anatomy and setup
lead to dosimetric uncertainties, potentially leading to under-
dosage of the tumor and/or over-dosage of healthy tissues.
It might be even more problematic for intensity-modulated
radiation therapy because of higher gradients and potentially
higher doses. Adaptive Radiation Therapy (ART) [2, 59, 60]
was developed to reduce these uncertainties using information
obtained frequently during the treatment course and making
mid-course adjustments. DR can be used to (semi-)automati-
cally quantify image to image variations and potential dosi-
metric gains, it thus represents a key tool in IGART.

Following the notations proposed in [61], let A(#,) denote
the anatomical representation of one patient at time ¢ = f,
(generally obtained from a CT). Several studies [2, 61, 62,
63, 51, 54] (among others) aimed to adapt the initial treat-
ment plan to accommodate changes in patient anatomical
configuration revealed by a post-treatment follow-up image,
A(t)), acquired for example after one week. To be able to
potentially adapt the treatment according to the current situ-
ation, one needs to compute an estimation of the dose deposit
d; in A(#)) and compare with the previous dose map d, cor-
responding to A(7,) in order to obtain a difference dose map
Ad,. There are two issues when performing this first step of
an ART strategy. First, new shapes and positions of organs
and treatment targets must be estimated in order to estimate
the current dose map d;. Secondly, a cumulative dose map
must be computed, which cannot be done by simply subtract-
ing the dose value of each voxel Adj(X) = dy(x) — d,(x)). For
both issues, DR can provide useful information.

Figure 2 In the left MRS image
the endorectal coil is inflated with
100 cm? of air, while in the right
image the endorectal coil is com-
pletely deflated. From Venugopal et
al. [55].

MDeflated
coil
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4.2.1 Estimation of anatomical variation using DR

Organs and target contours need to be redefined on A(t)).
It is possible to import the contours drawn on A(%,) into A(#,)
and to use them as initial input for additional manual recon-
touring. Instead, DR can be performed between A(z)) and
A(t)), and the resulting DF is used to propagate contours.
Such contours can still be checked and corrected manually
but they are potentially closer to the solution than simple
imported contours. The dose distribution ¢, could then be
computed according to the initial irradiation parameters.

For prostate treatments, several DR methods have been pro-
posed to perform this first step. Yan et al. [19] proposed a
method to estimate organ deformation using a biomechanical
model. The contours of each organ of interest were manually
drawn (then smoothed with a cubic-spline) and a set of fiducial
points was manually selected. A 3D mesh (with tetrahedronal
volume elements) was then generated and deformation was
obtained by FEM solution of the differential equations of the
biomechanical model including mechanical properties of the
tissue. The method was used by Birkner et al. [51] on CT
images of patients with large rectum and bladder motion.
Schaly et al. [20] also used a contour-based dose mapping
technique, but theirs was based on TPS. An automated heuris-
tic technique was proposed to generate homologous control
points on contours, including tumor contour, all surrounding
critical structures and external contours. For each contour, 3D
deformation was propagated to the whole volume by TPS
interpolation. This approach was validated in prostate patients
[64]. Fei et al [65] proposed an almost fully automated DR of
prostate and pelvic MR volumes for image-guided prostate
cancer treatment. They used a semi-automatic method to
detect corresponding pairs of feature points, beginning with a
manual localization of some points (prostate center, two hip
joints, two distal femurs) then automatically creating several
hundreds of other feature points. Local rigid transformations
were optimized using the mutual information similarity meas-
ure computed on each small cubic area centered on points.
Final deformable transformation was obtained by TPS interpo-
lation of corresponding control points. Wang et al [66] pro-
posed an intensity-based DR to register prostate motion on a
daily basis in order to aid dose tracking. The method used an
optical flow-like algorithm inspired from [49] in order to reg-
ister two CT scans. A reverse similarity force taking into
account both image gradients was added to speed up the cal-
culation. Validation of this approach was studied in [67].

It should be noted that several studies have demonstrated
that the deformation of prostate and seminal vesicles during
the course of radiotherapy is small relative to organ motion
[68, 69]. Hence, DR is not strictly required and RR can be
suffcient when performed locally, relatively to other struc-
tures. This can be done using an automated intensity-based
RR method, as proposed in [70]. Most of the studies present-
ed here were focused on the pelvic region, but other localiza-
tions could potentially benefit from the same type of tech-
niques: breast [71, 72] or lung [73, 74] (see section 4.3).
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4.2.2 Dose accumulation computation

using deformation field

The previous step was dedicated to obtaining quantitative
information on organ/target deformation between two
anatomical representations. In order to compare two dose dis-
tributions d,, and d,, respectively estimated according to two
anatomical representations A(7,) and A(t,), a difference dose
distribution Ad,,; should be computed by expressing the dose
in the same spatial reference, A(z,) for instance. By using the
DF ¢ obtained from a DR, the difference dose distribution
can be expressed as Ady(x) = dy(x) — d(¢(x)). Hence, by
integrating several patient descriptions A(;) over the course
of the treatment, several authors proposed formulations of the
planning optimization problem which included dynamic geo-
metrical variations of the organs. Following this principle,
Yan et al. [19, 75] were among the first to propose a model
for accumulating fractionated dose in a deforming organ.
A similar dose warping technique was proposed by Schaly
et al. [76],or Wuetal [61, 62, 63], using the DR method pub-
lished by Lu et al. [22].

4.2.3 Conclusion

Taking into account organ/target inter-fraction motion could
help improve the treatment [2]. Dosimetric consequences of
including fraction to fraction organ motion and deformations
into the treatment is a different matter and has been evaluat-
ed in several studies [77, 78, 79, 76, 80]. The main ideas are
that accounting for daily change in the anatomy would allow
to escalate the prescription dose, but the dosimetric impact is
patient-dependent. Such ART processes require to extract
quantitative information from several images using registra-
tion methods. It is worth noting that rigid motion (patient
setup error) is probably the first cause of uncertainties and
leads to the most dramatic dosimetric consequences. Never-
theless, DR remains required to accurately determine dose
accumulation in the organs (such as in the rectum or the blad-
der. Kupelian et al. [69] also reported infrequent but
significant deformations. Finally, the rigid displacements of
soft tissues are /ocal and can generally not be retrieved using
global RR. Global intensity-based DR methods such as in
[66] or biomechanical models such as in [19] potentially
remain an alternative to take into account both issues (rigid
and deformable motion) at the same time.

4.3 Example n° 3: temporal breathing deformation
(liver and lung)

Accounting for intra-fraction organ motion is an important
challenge in lung cancer radiation treatment [81]. Movement
and deformation due to breathing cause problems with image
acquisition (distorted target volume [82]), treatment planning
and radiation delivery [83]. Motion potentially leads to GTV
underdosage and/or unnecessary irradiation of healthy tis-
sues. As with ART, reducing uncertainties in target position



Deformable registration for image-guided radiation therapy

should result in a decrease in healthy lung irradiation and
should allow tumor dose escalation, which could potentially
lead to better outcome [84]. Motion management [60]
includes several steps [85, 83]: motion limitation (contention,
breath-holding, coached breathing, gated radiation delivery),
residual motion quantification (intra and inter-fraction),
residual motion management (adapted dosimetry) and treat-
ment delivery control (QA). Dealing with breathing motion
in an IGRT context involves several image modalities such
as: blurred, slowly acquired CT image averaging breathing
periods, end-inhale/end-exhale/deep-inspiration (EEX-EIN-DI)
breath-hold CT images, 4D CT images, 2D+t dynamic pro-
jective images (mega-volt portal images or kilo-volt radio-
graphic images acquired with on-board cone-beam, for
instance), etc.

Recovering motion from images representing thorax
anatomy at several breathing states is a process similar to
recovering motion from day to day images (previous section).
However, in the former case, there is a temporal coherence of
the motion between different states. Moreover, motion from
breathing also happens with some degree of regularity:
changes in lung tissue density (due to the inspired air) occur
on a fairly regular basis. The next section deals with the use
of DR to account intra-fraction breathing motion of the liver
and lung.

4.3.1 Breathing deformation of the liver

Kitamura et al. [85] showed that liver tumor motion can reach
10 mm in tidal breathing. Yan et al. [77, 19] showed that lin-
ear (rigid) registration was insuffcient to recover the liver
deformation caused by diaphragm motion. Instead, they
applied their previously described biomechanical model to
the liver. They determined the liver boundary points in rela-
tion to the surrounding anatomic structures. Brock et al. [86]
proposed a linear elastic, small deformation, mechanical sys-
tem to construct a 4D model of the liver during breathing.
The finite-element model was build from two EEX-EIN
breath-hold CT images with a volumetric mesh (6000 tetra-
hedral finite elements) obtained from initial contours using
biomechanical properties. Liver was split into six regions
(segmentation defined from a standard anatomic reference
system) and different initial constraints were applied to each
region. Brock et al. used an equivalent model with six inter-
mediate positions (from ¢, to #5) to study dose accumulation
in the liver deformed by breathing [87]. The model was
extended in [88] into a finite element model-based DR
method named MORFEUS (with MRI). This multi-organ
model (liver, spleen, external surface, stomach and kidneys),
describes the surface interface between organs and assigns
each individual organ material properties that allow accurate
deformation of internal structures. The same authors [26]
proposed another, less time-consuming and user-dependent
method, based on TPS interpolation of control points after
initial rigid alignment using mutual information. The control
points were automatically placed using a probabilistic atlas

(created from 32 patients). Rohlfing et al. [89] also proposed
a model of liver motion during respiratory cycle with an
intensity-based approach. They used a 4D dataset, obtained
with gated MRI, from EEX to EIN, with 8 instants. Motion
was modeled using an intensity-based DR method similar to
the one presented in [27] (on breast). Deformation was para-
meterized with a free-form deformation of cubic B-spline,
and computed between the reference EEX image and each
successive 3D image of the dataset.

4.3.2 DR of the lung

From end-exhale to end-inhale. A first group of studies
have explored DR between EEX and EIN CT images
acquired during breath hold. Several groups used sparse sets
of anatomical features (mostly selected points or extracted
surfaces) in each image, established pairs of correspondence
between features and finally computed dense displacement
fields with an interpolation model based on the paired fea-
tures [90, 17, 18, 74, 25, 91, 73]. In [90, 17, 25], features
were points manually located and paired by experts. In [91],
features were automatically determined with the image gra-
dient and, in [73], using slice by slice segmentation. Warping
models used to compute dense displacement fields were: TPS
[25, 18] with inverse-consistent constraints in [18], radial
basis interpolation with the shift log function [73], and B-
spline [91].

Other groups used dense intensity-based methods. Most
authors [17, 92, 18, 22, 93, 94] used SSD as dissimilarity
measure and neglected the lung density variations due to
breathing. Sundaram et al. [24] used normalized cross-corre-
lation on 2D MRI slices, Coselmon [25] used mutual infor-
mation on right lung images, Weruaga et al. [92] computed a
similarity measure which was a combination of cross-corre-
lation and SSD. We [23] proposed a preprocessing step,
called a priori lung density modification (APLDM), to take
into account changes in lung density due to inspiration.

4D Models. Attempts at building a 4D model have been
made. A 4D model encompassed successive step-by-step
deformations from EEX to EEI, and is not based on a single
deformation from initial to final state. It contains individual
voxel trajectories and could be used to study local hysteresis.
A 4D model is generally (but not necessarily) build with from
4D CT images. 4D CT imaging [95] can be defined as the
acquisition of a sequence of 3D CT image sets over consecu-
tive segments of a breathing cycle. Several 4D CT acquisition
methods have been proposed [96, 97, 98, 99, 100, 101, 102,
103, 104, 105, 104, 106, 107].

Zhang et al. [54] proposed to build a 4D thorax model
with a triangular surface mesh obtained from lung contours
converted into a volumetric tetrahedral mesh. Transformation
from the EEX image to the EIN image was then computed
with a finite element contact-impact analysis allowing to sim-
ulate interactions between the organ of interest and the sur-
rounding body. As described before, Brock et al. [88] used
their finite element model-based multi-organ deformable
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image registration on the thoracic region including the lungs,
the external surface and the breasts. Rietzel et al. [108] used
an open source implementation of an intensity-based free-
form DR based on B-spline interpolation [109]. The similar-
ity measure was SSD. DF was used to combine dose distribu-
tions and a technique based on maximum intensity volume of
lung tumor was proposed for fast contouring of composite
GTV. Kaus et al [94] compared deformable surface (based on
manually drawn 2D contours) and volumetric B-spline DR to
propagate organ models through the image time series. They
concluded that surface DR is not able to handle tumor
motion, but that intensity-based DR was susceptible to
motion artifacts in CT. Keall et al. [110] used large deforma-
tion diffeomorphic image registration from [37, 111] to map
the transformation between a reference CT image (peak-
inhale) to any other CT image in the 4D dataset. The result-
ing DF allows the contours defined on one image to be auto-
matically transferred to other phases images (eight image sets
in total), thus allowing to draw 4D contours. Guerrero et al.
[112] proposed another use of DR in 4D CT images: they
described a method of quantifying regional ventilation with
the goal of developing functional images for treatment plan-
ning and optimization. Optical-flow DR [93] was used to
obtain voxel to voxel correspondence, and local volume
change due to inspiration was computed using corresponding
Hounsfield units. A similar approach was also used by our
team [23] to generate intermediate voxel densities taking into
account the air volume change, for simulating a 4D image
from two EEX-EIN breath hold CT scans.

4.3.3 Conclusion

A spatio-temporal 4D model allows to quantify and analyze
the displacement and deformation of any object (organ,
tumor) as a function of time. Variations of lung density
according to time can be computed. Any (ir)regular breathing
signal can be simulated. When related to a given breathing
signal, Probability Density Function (PDF) of organ/tumor
presence can be computed in order to derive optimal treat-
ment margins. The 4D model can be incorporated into the
treatment plan by dose deformation as in [113] or combina-
tion of dose distributions [108, 87] for lung or liver. Keall
et al. [110] used such a model to perform 4D dose computa-
tion for DMLC-based (Dynamic Multi-Leaf Collimator) res-
piratory motion tracking. Several authors used 4D models
with Monte-Carlo simulations [114, 115, 116]. Ritet al. [107]
simulated dynamic cone-beam image acquisitions. Resulting
4D deformation fields were also used to propagate contours
from one image to the other in a 4D dataset [108, 110].

However, such 4D models are still in their early stages.
They are subject to image artifacts, do not take into account
heart beat variability [117], or respiration deficiencies and
still need validation. Nevertheless, 4D DR are very promis-
ing tools that provide individualized quantitative information
for each patient on organ trajectories or hysteresis, for
instance.
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4.4 Example n° 4: PET (motion compensation)

18F fluorodioxydoglucose (FDG) Positron emission tomogra-
phy (PET) images provide useful functional information
which could lead to improve diagnosis or perform PET-based
radiotherapy planning. However, registering these images to
anatomical CT is diffcult due to the acquisition difference
between the two modalities: the process requires a few sec-
onds acquisition time for CT, about 30 min for PET; motion
artifacts caused by respiration thus degrade PET image qual-
ity and quantification. Moreover, differences in the patient
positions (arms-up posture) cause RR failure, with two major
consequences: it affects the accuracy of quantification, pro-
ducing a reduction of the measured standard uptake value
(SUV) and the apparent lesion volume is overestimated
[118].

Slomka et al. [119] proposed a fully automated algorithm
for DR of whole-body PET and CT images, which compen-
sates for the nonlinear deformation due to breath-hold CT
imaging. After initial affne registration based on mutual
information, they used TPS on a large number (a few hun-
dreds) of automatically derived corresponding point pairs.
Shekhar et al. [120] used DR to register and fuse a whole-
body functional PET with an anatomic CT, in order to differ-
entiate viable tumors from benign masses. They used elastic
intensity-based DR with normalized mutual information, and
the global transformation was derived from a combination of
multiple local rigid body transformations. Mattes et al. [121]
proposed a method to elastically align PET (normal tidal dur-
ing about 30 min, without arms-up posture) and CT images
(acquired in DI breath-hold, with arms-up posture) of the
chest. They used mutual information measure with B-spline
based DR (both for deformation parameterization and image
value interpolation), and limited-memory quasi-Newton opti-
mization algorithm. Schwartz et al. [122] used this technique
for head and neck PET-CT imaging in order to guide head
and neck intensity-modulated radiation therapy planning
[123] and to improve neck staging sensitivity and specificity
in patients with head and neck squamous cell cancer [122].
Reyes et al. [124] proposed a statistical method to correct for
PET motion artifacts based on a 4D motion model. Such
technique require the a priori knowledge of a 4D motion
model such as the ones described in the previous section.

Nehmeh et al. [118, 125, 126] proposed a protocol to
acquire gated 4D-PET/CT im-ages whereas circumventing
breathing motion artifacts in cases where DR could potential-
ly be used. Once the images are registered, the resulting DF
can be applied to the emission or standard uptake value
image for building a fused PET-CT image and improving
PET image interpretation.

4.5

Intra-patient DR is generally used to account for the deforma-
tion of anatomical structures corresponding to a “real”, elas-
tically or plastically deforming material. Inter-patient DR is
used to help transferring contours from one patient in another

Example n° 5: Inter-patient registration (atlas)
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and/or to study the variability of anatomical structures across
different patients. Generally, (semi-)automated organ delin-
eation with inter-patient DR is performed based on an
anatomical atlas, composed of several images which are seg-
mented and represented in a same reference frame system.

Qatarneh et al. [127] constructed a whole body atlas for
optimizing radiotherapy. The atlas contained, among other
information, standardized, segmented organs from several
patients, to be used as a reference. Auto-segmentation was
then performed for each individual patient, first by matching
contours from to whole body atlas to the new image, then by
refining contours using an active contour model. Boes et al.
[128] generated a normalized geometric liver model using
DR with TPS surface warping. Li et al. [18] built a normative
atlas of the human lung for inter-patient thorax images. Bon-
diau et al. [129] used an intensity-based DR technique (SSD,
fluid, optical flow) to register brain MRI to another segment-
ed MRI, allowing automatic delineation of brain structures.
Park et al. [130] proposed a method to construct a probabilis-
tic atlas of an abdomen consisting of four organs: liver, kid-
neys, and spinal cord. They used 32 manually segmented CT
images mapped into a same reference with a quasi-fully auto-
mated DR (using TPS and mutual information). The proba-
bilistic atlas was used to aid the segmentation of low-contrast
organs. Deurloo et al. [68] used a morphing technique [131]
to map manually drawn GTVs (prostate and seminal vesicles)
of several patients to a reference case. Although the tech-
nique used (morphing of 3D surfaces) is not strictly a DR, it
detects deformations between GTV’s, allowing statistical
comparisons.

DF amplitudes are generally higher with inter-patient DR
than with intra-patient DR and thus potentially require a
higher number of degrees of freedom to model the deforma-
tion, and more iterations to converge. However, regulariza-
tion is generally less constrained than with intra-patient DR.
More details on inter-subject DR can be found in [132].

5 Conclusion

Many other examples of DR use in radiotherapy can be
found. Christensen et al. [111] used fluid intensity-based DR
between cervix CT images for planning brachytherapy treat-
ments with intracavitary applicators (which induce complex
ogan deformations). Our group [133] evaluated inter-fraction
reproducibility by comparing 3D CT images acquired from
the same patient at the same breath-hold levels. Bharatha
et al. [134] proposed to recover shape changes between pre-
operative MRI images obtained with an endorectal coil and
intra-operative images obtained with a rectal obturator in
place. The method involved the use of a biomechanical FEM
(with tetrahedral elements) initially obtained from segmented
images [135, 136].

The main diffculty is validation. There is no standardized
means of evaluating the results of a DR method. The most
common evaluation methods are:

 Simulated data: this method involves the generation of an
artificial image deformation with a mathematical transfor-
mation. Its advantage is that the gold standard is perfectly
known. However, these method lacks realism. It is general-
ly only a first step and allows to evaluate the influence of
parameters (noise quantity) on the method. Evaluating the
consistence of the deformation (Invertibility: is ¢; close
to ¢;? Transitivity: is ¢; o ¢ close to ¢;?) could also pro-
vide useful information [45, 137].
* Phantom data: the method is more realistic but still uncer-
tain. The gold standard is evaluated by means of implanted
landmarks. For example, Wang et al. [67] designed a
deformable pelvis phantom containing simulated prostate,
bladder, seminal vesicles, rectum and bony structures.
A rectal balloon could be inflated and seeds were embed-
ded in the prostate structure in order to track the deforma-
tion.
Patient data: the gold standard is unknown. It can be
defined by means of manual selection of homologous land-
marks by experts. However, even if the found transforma-
tion perfectly matches the expert-defined landmarks, this
does not imply that the transformation of points between
the landmarks is correct.

Even if the validation of DR is still uncertain, some applica-
tions can benefit from these techniques. For the propagation
of organs/tumor contours, for instance, the distance between
deformed contours and those defined by experts should
remain in the range of inter-experts variability. However, for
more precise applications such as dose deformation, or organ
deformation studies, the results of DR algorithms should be
used with care. Nevertheless, DF algorithms remain a funda-
mental image analysis tools for radiotherapy, and will proba-
bly be included into all treatment planning systems in the
near future.
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