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ABSTRACT

Magnetic Resonance Imaging (MRI) is a medical imaging
modality that provides structural and functional information.
To improve the contrast of MR images, contrast agents, such
as Ultrasmall SuperParamagnetic Iron Oxide particles (US-
PIO), are more commonly being used. Quantifying and lo-
cating these nanoparticles is of high interest. An efficient
technique consists in images analyzing of the default field in-
homogeneities induced by USPIOs. In a previous work, we
have introduced such a quantification framework. Here, we
improve our approach by deriving from two methods: Wiener
and CLS filtering. Both methods have been evaluated on real-
istic data demonstrating that CLS filtering gives very promis-
ing quantification results.

Index Terms— Filter Noise, image restoration, quantifi-
cation, molecular MRI, magnetic susceptibility

1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a relative contrast-
measurement technique in medical imaging [1]. It allows one
to visualise structure and function of the body. In recent years,
contrast agents are more commonly being used for improving
the observed contrast, for diagnosis or for cell tracking. Con-
trast agents are of two kinds: positive contrast agents and neg-
ative contrast agents. Whereas positive contrast agents appear
as bright spots in the image, negative contrast agents, such
as Ultrasmall SuperParamagnetic Iron Oxide particles (US-
PIOs), produce signal voids. Quantifying and locating US-
PIOs is a fundamental non-trivial problem in molecular MR
imaging [2].

Many techniques have been developed to quantify con-
trast agents, and USPIOs more specifically. As the magnetic
susceptibility of USPIOs is linked to their concentration [3],
analysing USPIOs susceptibility effect on the MR images is
of high interest. Contrast-measurement techniques, such as
T5 (or T3) cartography or positive contrast techniques with
negative contrast agents [4] have been considered. Another
strategy consists in studying the magnetic field inhomo-
geneities [5, 6]. Indeed, USPIOs have a magnetic susceptibil-
ity different from the surrounding media, and this difference

produces magnetic field inhomogeneities, also called default
field.

In this paper, we propose to model the iron oxide parti-
cles quantification problem as a restoration problem. First,
we will detail the proposed quantification framework with
restoration methods, from the method used to analyze field
inhomogeneities, to noise considerations. Secondly, we pro-
pose to derive our approach with two methods of restoration:
the Wiener-Fourier filter and the Constrained Least Squares
(CLYS) filter. Finally, a comparison between these two meth-
ods has been made and applied on realistic synthetic images.

2. USPIOS QUANTIFICATION FRAMEWORK

Fig. 1 presents our USPIOs quantification framework with
restoration methods.
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Fig. 1. Restoration-based quantification framework overview.

It starts by linking the magnetic susceptibility to the
magnetic field inhomogeneities through the linear filter G
described in section 2.1. The obtained default field map A By
is perturbed by Gaussian additive noise. The deconvolution
process is performed in the Fourier domain to retrieve the
magnetic susceptibility x.. Section 2.2 presents the initial so-
lution that is based on the inverse filter of G. And, section 2.3
illustrates the noise effect in the deconvolution process.



2.1. Magnetic field inhomogeneities model

Yoder et al. [7] mathematically describe the magnetic field
inhomogeneities, called default field A By, as follows:
B, B
ABy(v) = =x (V) + = (Ax@D)(v) (1)
3 4
where y is the magnetic susceptibility, Ay the gradient of
the function x (calculated in the direction of the main field
By), By the intensity of the main field, and ® the convolution
product. D is a convolution kernel defined by:

D(v) = ]{ |Z/_Zd BodS’ )

where v = (z,y, z) is the position vector where the kernel is
calculated, v/ = (2,4, 2’) is a voxel of the closed surface
Si. Equation (1) can be written as follows:

ABy=x®G 3)

As an illustration, Fig. 2(b) represents the profile of the de-
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Fig. 2. Profile of the default field induced by 2 spheres (closed
in distance): x; = —5 ppm and Y2 = —8 ppm. The main
field By has an intensity of 1.5 T.

fault field A By obtained by equation (1) from the susceptibil-
ity profile presented in Fig. 2(a).
2.2. Inverse filtering

In [6], we have introduced the inverse filter of G to perform
the deconvolution in the Fourier domain. The estimated mag-
netic susceptibility . is obtained in the Fourier domain by:

X (£) = ABy (f) - H (f) )

The filter H has a transfer function H (f) defined by:
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where f = (f, fy, f») describes the position in the Fourier
domain, N the number of pixels in the direction of By and ~
denotes the Fourier transform.

2.3. Noise issues

In the restoration-based quantification framework (fig. 1),
we make the assumption that Gaussian white noise 7 (o, ) is
added to the default field map A By [8]. It is well known that
direct deconvolution is highly sensitive to noise, as illustrated
in Fig. 3.
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Fig. 3. Inverse filtering result 3(b) from noisy default field
3(a) (0, = 1072). AB] = ABj +1.

Fig. 3 presents the estimated magnetic susceptibility X,
(fig. 3(b)) obtained from a noisy default field map (fig. 3(a)).
The deconvolution fails, and we can not retrieve the profile
of the magnetic susceptibility x presented in fig. 2(a), x. is
useless. Restoration methods have to be considered.

3. RESTORATION METHODS APPLIED TO USPIOS
QUANTIFICATION

To improve the robustness of the deconvolution in presence
of noise, we considered restoration techniques to design the
inverse filter ¢ based on . Equation (4) becomes:

Xe (f) = ABo () - Hopy (f) (6)

where H opt (f) denotes a transfer function associated to
a restoration method. In this paper, two approaches are
compared: Wiener-Fourier filtering and Constrained Least
Squares filtering [9].

3.1. Wiener-based quantifcation

The Wiener-Fourier filter aims to minimize the mean square
error between the uncorrupted volume x and the estimated
volume x.. We replace, in equation (6), H opt (£) by Hy (f)
defined by:

H(f) (7




where, K is a tuning parameter related to noise.
From equations (6) and (7), equation (6) becomes:

2
1

H(f)
2
+K

Xe (F) = H(f) - ABo ®)

1

H(f)

3.2. CLS-based quantifcation

The Constrained Least Squares (CLS) filter, defined in equa-
tion (9), is an optimisation of the Wiener-Fourier filter. We
replace, in equation (6), H,pe by Hers defined by:
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H(f)

Hers (f) = 5
1
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H(f)

where P is the Fourier transform of a 3D Laplacian operator
defined in equation (10) and K a parameter to adjust so that
the noise is reduced. After investigations, we design, in the
spatial domain, the Laplacian operator as a 3x3x3 matrix by:

V(i k) € {=1; 0 1}

o [ 26ifi=j=k=0 (10)
P (i, 5, k) = { —1 otherwise

From equations (6) and (9), equation (6) becomes:

2
1

H(f
X (£) = Ao
1

H(f)-ABy (1)
+K [P (f)[°

H(f)

The results using Wiener-Fourier filtering and CLS filtering
are compared in the next section.

4. EVALUATION

4.1. Materials

Evaluation has been conducted on a x-volume presented in
Fig.4(a). This model is composed of 4 classes that describe
an inflamed artery labelled with USPIOs [10]. The table 1
presents the susceptibility value for each label. Fig. 4(b)
presents the induced default feld for By = 17'.

class 0 1 2 3
X (ppm) | -9.05 | 1.8 | 16.8 | 32.2

Table 1. Susceptibility values associated to label.

We add to the ABgy volume (presented fig. 4(b)), Gaus-
sian white noise characterised by its normalised standard de-
viation 0, = Opoise/HtAB,» Where pia g, is the mean of ABy.
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Fig. 4. Middle-slice of: (a) the test volume - (b) the default
field computed from the test volume with equation (1).

We study the contribution of restoration methods for realistic
noise (1072 < o, < 5.1071).

4.2. Results

In this section, we present the comparison between the two
restoration methods presented in section 3. To quantify the
contribution of each approach, the Peak Signal to Noise Ratio
(PSNR) has been investigated. We calculate the PSNR (in
dB) as follows:

2
PSNR = 10log, (%) (12)

where M SE is the Mean Square Error between the estimated
Xe and the uncorrupted x and defined by:

1
MSE = 5% (x—xe)’ (13)

where C' denotes the pixels number of the volume.
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Fig. 5. Evolution of the max of the PSNR with increasing o,
with the Wiener (green plot) and the CLS (blue plot) filter.



Fig. 5 presents the evolution of the maximum of the PSNR
with increasing noise. For each point of the plot, we have
search the maximum of the PSNR with the Wiener (resp.
CLYS) filter in respect to the tuning parameter K for differ-
ent values of o,, (from ¢,, = 1072 to 0, = 5.1071). Re-
garding Fig. 5, it appears that in any case CLS filter gives a
better PSNR than Wiener filter, for an appropriate choice of
the tuning parameter. For o,, = 0.1, the PSNR is equal to 6
dB without restoration methods. It rises to 20.3 dB with the
Wiener filter and to 38.2 dB with the CLS.

Fig. 6 presents the normalised error maps, defined by
equation (14), between the uncorrupted volume y and the
estimated volume Y. obtained with Wiener filter (Fig. 6(a))
and CLS filter (Fig. 6(b)).

(14)

(a) Wiener-based quantification

(b) CLS-based quantification

Fig. 6. Error map between the uncorrupted x presented
fig. 4(a) and the estimated . obtained with: (a) Wiener filter
- (b) CLS filter at a noise level of o,, = 1072,

The mean squared error is equal to 1.6 10711 with Wiener
filtering, whereas with CLS filtering, the MSE is equal to
1.2 10713, Fig. 6 confirms that CLS approach offers a bet-
ter restoration of a complex and realistic object. The higher
error is located on the borders of the classes that describe the
object.

5. CONCLUSION

We propose a restoration-based quantification framework for
iron oxide nanoparticles that has been tested on realistic syn-
thetic data. CLS filtering appears to be more efficient than
Wiener filtering and allows one to retrieve suceptibility map
from a noisy default field information. Such framework does
not rely on any acquisition parameters (such as TR, TE ...)
or on the MRI sequence. Indeed, we only need default field
maps that can be obtained from two gradient echo images
(or volumes) [11] or by the recent susceptibility gradient map
technique [12]. Based on the proposed framework restoration
methods including a priori are under consideration to improve
the robustness to noise.
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