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Abstract—The partial differential equation driving level-set
evolution in segmentation is usually solved using finite differences
schemes. In this paper, we propose an alternative scheme based on
radial basis functions (RBFs) collocation. This approach provides
a continuous representation of both the implicit function and its
zero level set. We show that compactly supported RBFs (CSRBFs)
are particularly well suited to collocation in the framework of
segmentation. In addition, CSRBFs allow us to reduce the com-
putation cost using a -tree-based strategy for neighborhood
representation. Moreover, we show that the usual reinitialization
step of the level set may be avoided by simply constraining the
1-norm of the CSRBF parameters. As a consequence, the final

solution is topologically more flexible, and may develop new
contours (i.e., new zero-level components), which are difficult to
obtain using reinitialization. The behavior of this approach is
evaluated from numerical simulations and from medical data of
various kinds, such as 3-D CT bone images and echocardiographic
ultrasound images.

Index Terms—Active contours, collocation, deformable models,
level sets, partial differential equations (PDEs), radial basis func-
tions (RBFs), segmentation.

I. INTRODUCTION

SINCE its introduction in 1987 [1], level-set formulations
have become a well-established and popular tool in the field

of image processing, as shown by recent surveys [2]–[4]. In
image segmentation, level-set-based methods can be seen as a
class of deformable models, where the shape to be recovered
is captured by propagating an interface represented by the zero
level set of a smooth function (usually called the level-set func-
tion). Formally, the evolution of the interface is driven by a
time-dependent partial differential equation (PDE) where the
so-called velocity term reflects the image features characterizing
the object to be segmented.
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The level-set PDE is usually solved using now well-known
finite differences schemes. These numerical schemes have been
developed to obtain accurate and unique solutions, and involve
upwind differencing, essentially nonoscillatory schemes bor-
rowed from the numerical solutions of conservation laws and
Hamilton Jacobi equations [4]. Most of the implementations of
this scheme generally use two more specificities.

• Narrow-banding: In order to lower the computational cost,
the solution is generally not computed on the whole image
domain, but in a narrow band around the interface.

• Reshaping of the level set: In the course of propagation,
the level-set function may develop steep or flat gradients,
which, in turn, yield inaccuracies in the numerical approxi-
mation. This is usually taken into account by reshaping the
level set through periodical re-initialization of the level-set
function as the distance function to the interface.

In this paper, we describe an alternative technique to the
usual finite difference framework, which consists of solving the
level-set PDE through a collocation method using radial basis
functions (RBFs).

Collocation can be seen as a particular case of the residual
method for the computation of a numerical solution of a PDE. It
consists of approximating the solution by a continuous function,
which is, in turn, built as a linear combination of basis functions.
The solution i.e., the parameters of the linear expansion, is ob-
tained by prescribing the PDE to be verified on a particular set
of points, usually called collocation points. In that sense, collo-
cation may, thus, be seen as interpolating the PDE between the
collocation points.

The use of RBFs as basis functions for collocation solution
to PDE has been introduced in 1990 by Kansa in the field of
computational fluid dynamics [5], [6]. RBFs have initially been
introduced for solving multivariate scattered data interpolation
problems because they provide such interpolation without re-
quiring any underlying mesh. The interested reader will find in
[7]–[9] a thorough review about applications and RBF funda-
mental properties. In the framework of collocation, the RBF
meshless property translates into the fact that it yields a very
flexible choice for the location of the collocation points.

Kansa’s seminal paper has started a wealth of applications of
RBF collocation in various fields such as astrophysics [10], heat
transfer modeling [11], surface wind field computation [12], hy-
draulics [13], option pricing [14], magnetic field modeling [15],
structural topology optimization in mechanics [16], and optimal
feedback control [17]. Convergence and stability properties of
the method have been studied in [18] and [19].
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In the framework of our level-set application, the potential
interests of using the RBF collocation strategy are the following.

• In contrast to the conventional finite difference narrow
band implementations, the RBF collocation scheme al-
lows an overall control of the level set (i.e., over the whole
computational domain of the level set) with a reasonable
computational cost.

• This computational cost may be further reduced through
adapted algorithms, by using a particular class of RBFs,
i.e., compactly supported RBFs (CSRBFs).

• Since the RBF representation1 of the level set is parametric,
it is relatively easy to constraint the propagation via con-
straints on the parameters. As it will be shown in the sequel,
such constraints may be used to avoid the usual reinitializa-
tion step of the level set. As a consequence, the solution is
topologically more flexible, since it may develop new con-
tours (i.e., new zero level components), which are difficult
to obtain when the narrow-band/reinitialization strategy is
used.

• The smoothness of the solution is implicitly enforced,
through the intrinsic smoothness of the underlying RBF
representation. The RBF collocation formulation, thus,
does not need to include the usual curvature term in the
propagation equation.

• The obtained solution is continuous, the degree of conti-
nuity being imposed by the type of RBF chosen for the
application. This is of interest for applications requiring
the measure of differential properties of the interface, since
quantities such as normals or curvatures may, thus, be ac-
curately computed from this continuous representation.

The paper is structured as follows. In Section II, we recall
the general form of the level-set propagation PDE and briefly
review representation of shape through RBFs. In Section III,
we give the expression of the numerical solution of the level-set
PDE using RBF collocation and detail the implementation
issues of the method. We discuss in particular the choice of
CSRBF and show how the computational cost may be reduced
using a -tree representation of neighborhoods. We also
show how reinitialization of the level set may be avoided by
constraining the -norm of the RBF parameters. We end this
section by providing and discussing the overall complexity of
the technique. In Section IV, we evaluate the behavior of the
method using simulated images as well as medical images of
various kinds, such as CT and US images. The main conclu-
sions and perspective of this work are given in Section V.

II. THEORICAL BACKGROUND

A. Usual Formulation

The level-set-based segmentation consists of capturing the
shape to be recovered by propagating an interface which evolves
according to the solution of a PDE derived from an energy func-
tional. This energy criterion is designed in such a way that its
minimum corresponds to the solution of the given problem. The
energy functional is then minimized using variational calculus

1In the case of strictly positive definite RBFs (see Section II-B).

Fig. 1. Level-set function for a 2-D domain 
 represented as an elevation map
S , i.e., z = f(ppp) (a). Interface � corresponds to the zero set of the level-set
function, i.e., the intersection of S and the horizontal plane z = 0 (a). Corre-
sponding regions 
 and 
 are represented in (b).

techniques [3] and gradient descent method to get a PDE gov-
erning the motion of the interface.

In the level-set formalism, the interface in is represented
as the zero level set of a Lipschitz continuous function of
dimension , satisfying

(1)

(2)

(3)

where, considering an open region in , is a region in
bounded by . is defined as (see Fig. 1).
For brevity’s sake, in the following, we consider the classical

problem of segmenting one object (possibly having several non-
connected components) from the background2. This problem is
typically handled by the evolution of one level set whose steady
state partitions the image into two regions delimiting the bound-
aries of the object to be segmented. In this framework, a general
expression of the energy functional driving the level set can be
formulated as [21]

(4)

where the first term is an energy criterion attached to the in-
terface (often referred to as contour term). The second and
third terms (often referred to as region terms) are energy cri-
teria attached to the inside and outside regions delimited by the
interface , respectively. and are the Heaviside and Dirac
univariate functions, respectively. and are some positive
hyper-parameters.

Using variational calculus [3], [20], [22], the minimization of
(4) leads to the following general evolution equation:

(5)

where is a regularized version of the Dirac function [22] given
as

(6)
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where is a real positive constant and is a velocity function
which is derived from the variational scheme.

Depending on the specific application, can be a function of
the position , of geometrical properties of the interface and of
images properties reflecting the object to be segmented.

Some authors modified the evolution (5) by substituting
by . This operation does not affect the steady state solu-
tion and removes stiffness near the zero level set [20]. More-
over, the equation becomes independent of the scaling of the
level-set function used and the problem becomes morpholog-
ical. For more details refer to [3] and [23]. The evolution equa-
tion is then

(7)

For clarity’s sake, we use (5) in the following. As mentioned
in the introduction, these evolution equations are commonly
implemented using finite difference methods. These numerical
schemes have been developed to obtain accurate and unique so-
lutions, and involve upwind differencing, essentially nonoscil-
latory schemes borrowed from the numerical solutions of con-
servation laws and Hamilton Jacobi equations.

In traditional level-set methods [4], [24], the level-set func-
tion can develop flat or steep regions leading to difficulties in
both numerical approximation of the derivatives and speed of
convergence. In order to overcome this difficulty, the following
scheme is generally used:

• initialize the level set as the distance function (relative to
the interface);

• reshape the level-set function periodically in order to
ressurect this distance function property.

Indeed, Mulder et al. showed in [25] that initializing to a dis-
tance function and keeping its corresponding properties during
the evolution process leads to more accurate numerical solutions
than initializing to a Heaviside function.

The most straightforward way of implementing the re-intial-
ization operation is to extract the interface and then ex-
plicitly compute the distance function from it. However, this
method is generally time consuming. To overcome this diffi-
culty, a now widely accepted method has been proposed [26]
in order to re-initialize the level-set function by solving the fol-
lowing PDE:

(8)

where is the function to be re-intialized and is the
sign function. However, if is not smooth or much steeper on
one side of the interface than the other [4], the zero level set
of the resulting function can be moved away from that of the
original function. For this reason, Li et al. recently proposed in
[27] to add a new energy term to the general criterion (4)

(9)

This expression corresponds to a regularization term that penal-
izes the deviation of the level-set function from a signed dis-
tance function. This method has the main advantage to keep the

level-set function as a signed distance function without the need
of the re-initialization.

B. Radial Basis Functions

RBFs2 have become a popular approach for solving multi-
variate scattered data interpolation or approximation problems
and is currently an active field of research. We give hereunder
the outline of this approach and we refer the interested reader to
[7] and [8] for more details.

Considering data and their corresponding lo-
cation with and , the in-
terpolation problems consist of finding a (continuous) function

such that for . If data locations,
i.e., , do not lie on a uniform or regular grid, this problem is
called scattered data interpolation. Unfortunately, this problem
is clearly ill posed, i.e., there is an infinity of functions which
can satisfy the respective conditions.

In the scattered data interpolation problem, a well-posed for-
mulation can be achieved by using (conditionally) positive def-
inite kernels [7]–[9]. If we make the assumption that there is no
privileged direction, i.e., invariance under any orthogonal trans-
formations (Euclidean rigid-body transformations), this natu-
rally leads to RBFs.

The two main RBF types are strictly positive definite RBFs
(SPD-RBFs) and conditionally positive definite RBFs (CPD-
RBFs). Depending on the RBF type, the resulting function
and its coefficients have different expressions.

If SPD-RBFs [8, chapter 6] are used, can be expressed as
follows:

(10)

where is a RBF, are called centers, and
are called coefficients.

As shown in [8, chapter 6], SPD-RBFs may have a global
support (i.e., ) or a compact one (i.e.,

for greater than ). We will address this aspect in
more details in Section III-A.

Coefficients are computed by solving

(11)

where is a square matrix of size with

(12)

and is a column vector of size whose elements are .
Since these RBFs are strictly positive definite, is also

strictly positive definite and is, thus, invertible.
In the case of CPD-RBFs [8, chapter 8], can be expressed

as follows:

(13)

2The interested reader will find in [3] and [20] approaches which extend this
method to several regions
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where is a basis in the -dimensional null
space containing all real-valued polynomials in variables

and of order at most , , and we require

, are called polynomial coeffi-
cients.

RBF coefficients and polynomial coefficients are
obtained by solving the following linear system:

(14)

where and , and the second
matricial equation is an additive constraint which
ensures the invertibility of the matrix.

From (10) and (13), a unified representation for the function
may be obtained for SPD- or CPD-RBFs. The evaluation of

for any point is expressed as the product of the one-line vector
and a column vector

(15)

and the associated system linking data and the expansion co-
efficients is noted as

(16)

In the positive definite case, we have

(17)

(18)

(19)

(20)

In the conditionally positive definite case, we have

(21)

(22)

(23)

(24)

C. Implicit Interface

From an implicit function , we can define an
implicit contour, surface or hypersurface depending on the di-
mension , as the zero-set of the implicit function . For conve-
nience, we will say in the rest of this paper implicit interface for
the zero-set of the implicit function (see Fig. 2). An impor-
tant property of implicit interface is the analytic computation of
differential geometric quantities for a given point, such as nor-
mals (25), curvatures [Gauss–Kronecker curvature
(26) and mean curvature for (27)]

(25)

Fig. 2. Representation of the implicit function corresponding to (a) a human
left ventricle and (b) its corresponding implicit interface.

(26)

(27)

with

...
. . .

...

III. SOLVING THE LEVEL-SETS EVOLUTION EQUATION

USING RBF COLLOCATION

RBF collocation follows straightforwardly from the applica-
tion of the RBF decomposition to the implicit function (15),
by assuming that space and time are separable i.e., the time de-
pendence of is only due to the coefficients . In such a case,
this naturally leads to the following decomposition:

(28)

Substituting (28) into (5) yields the following ordinary differ-
ential equations (ODEs)

(29)

Equation (29) applies to every point of the domain . In
order to solve for the coefficients , these equations have to be
sampled at distinct locations, traditionally called collocation
points. In the framework of RBF formulation, the collocation
points are chosen to be the RBF centers, i.e., the , which is
generally referred as unsymmetric collocation. This approach
may, thus, be summarized through the following equation:

(30)
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TABLE I
WENDLAND’S RBF [28] FOR VARIOUS DIMENSION d AND CONTINUITY C .

THE SYMBOL
:
= DENOTES EQUALITY UP TO A MULTIPLICATIVE POSITIVE

CONSTANT AND u IS THE HEAVISIDE FUNCTION. NOTE THAT WENDLAND’S

RBF ARE THE SAME FOR d = 2n AND d = 2n+ 1

Fig. 3. Wendland’s RBF with C continuity and dimension d = 2.

where is the interpolation matrix defined in Section II-B (16),
and is a column vector related to the level-set formalism
used in (29), i.e.,

(31)

From (30), the level-set evolution is now cast into an ODE.
In the next section, we give implementation issues for solving

this ODE with a low computational complexity and obtaining an
efficient evolution of the level set.

A. Choice of Radial Basis Functions

1) Compactly Supported RBFs: From (30), the evolution of
the level set will rely on the matrix , and the evaluation of the
vector , which in turn depends on the choice of the under-
lying RBF (see Section II-B). In order to obtain a sparse interpo-
lation matrix, and the possibility of a fast evaluation of the func-
tion , authors have introduced recently compactly supported
RBFs (CSRBFs) [8], [28]–[30]. While globally supported RBFs
can be used for any dimension , it is not exactly the same with
compactly ones. Indeed, a compactly supported RBF is strictly
positive definite on only for a fixed maximal -value [8].

In [28], Wendland constructs a popular family of strictly
positive definite CSRBFs, expressed with a polynomial form
whose degree is minimal for a given dimension space and
whose continuity is . Whereas in [29], Wu presents another
way to construct similar CSRBFs, but provides higher polyno-
mial degree for a prescribed smoothness and dimension. In [8],
Wendland gives a general formulation about the construction of
strictly positive definite CSRBFs.

In this framework, we choose to build our implementation
upon Wendland’s CSRBFs (see Table I and Fig. 3 for one ex-
ample of such RBF). It is to be noted that since all CSRBFs are
definite positive, the following framework holds for any other
CSRBFs.

The use of CSRBFs imply the choice of the support size. For-
mally, the implicit function is, thus, given as

(32)

where , and is the support size.
The choice of the support size results from a tradeoff: if

the support size is chosen too small, the function will not be
continuous, whereas if the support size is chosen too large, the
interpolation matrix becomes dense and we loose the interest
of using CSRBFs. Our proposal for the support size is directly
related to the so-called fill distance , through the expression

(33)

where and is defined as follows:

(34)

The fill distance can be interpreted as the radius of the largest
ball which is completely contained in and which does not
contain any data site .

2) Data Structure: Because CSRBFs have finite support,
many procedures of our method can be sped up by using effi-
cient data structure for range query searches. Due to this com-
pactness, only few centers should be considered for evaluating
the implicit function at a point , or for computing each term
of the interpolation matrix . In our setting, given a region of
space , this amounts to determining the set of CSRBF centers

contained in .
There has been a considerable amount of work on devising

efficient data structures for range query search, such as [31] and
[32]. In our implementation, we use the -tree data structure
[33], which is based on a recursive subdivision of space into
disjoint axis aligned boxes. The principle of the -tree may be
briefly described as follows. The root node of the -tree is a
box which contains all data points and the whole domain .
Consider an arbitrary node in the tree, with its associated box

and points . As long as the number of points contained in
this node is greater than a prescribed quantity, the bucket size,
this node is split into two new nodes. There are several splitting
method to determine the hyperplane which will split the box
and the points into two. We use the standard method, i.e., the
splitting dimension is the dimension of the maximum spread of
point set , and the splitting value is the median value of the
coordinates of along the splitting dimension.

Detailed procedure to build the -tree can be found in [8,
Algorithm 4, p. 239]. By following this algorithm, -tree can
be constructed in time and requires space
in memory. With such data structure, range query search can be
computed in [8, Algorithm 5, p. 240].

B. RBF Centers Distribution and Velocity Sampling

As mentioned in the introduction, the RBF-based methods do
not require any underlying mesh, or grid, i.e., we can use any
centers spatial distribution adapted to the targeted application.
When no a priori information about the shape to be segmented
is available, the RBF centers may, thus, be simply located on a
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regular grid. Conversely, if some knowledge about this shape is
at hand, an interesting perspective consists of incorporating this
information through an adapted centers distribution. In most ex-
amples given in the next section, no a priori known shape is as-
sumed and regular grids are, therefore, used for RBF centers,
while the interest of using an adapted, nonregular, center place-
ment is illustrated on a particular case.

Once the centers have been placed, the collocation approach
implies the evaluation of the application dependent velocity
term in (31) at each RBF center . This is straightfor-
ward if the velocity is defined for any point in the computational
domain , as it is the case when the velocity term relies on
region-based features [22], [34]. This may be an issue when the
targeted segmentation application yields velocity terms that are
defined only on the interface, i.e., depend on boundary-based
features. As for conventional level-set implementation, this
issue may nevertheless be easily addressed using the velocity
extension methods developed for conventional level-set imple-
mentation [3].

Conventional RBF collocation methods [5], [6], [9] use point-
wise sampling of at RBF centers, which is suitable when
the underlying data are given with a very good accuracy as in
the case of theoretical PDE resolution [5], [6]. Experimental
images may however be corrupted by noise, making this point-
wise sampling inappropriate, since the evolution of the interface
would, thus, be driven by unreliable velocity terms. In such a
case, the velocity is computed as the weighted average of the
neighbooring velocities.

C. Resolution of the ODEs

The resolution of the ODEs obtained through collocation re-
quires the definition of an initial implicit function , i.e., the
initial RBF expansion coefficients . In practice, the initial-
ization may be provided as an interface, available either from
a priori knowledge about the object to be segmented or from
user interaction. In such a case, may be easily built as an im-
plicit function whose zero level interpolates or approximates the
given interface [35]–[37]. In the case where the initialization is
given itself as an implicit function (see [38] and [39]), (11) may
be directly applied to obtain .

Many numerical schemes may be then applied to solve
the ODEs in (30), Euler’s and Runge-Kutta being the most
traditional. Our current implementation uses a simple first order
forward Euler’s method. As shown in the results section, this
scheme yields accurate segmentation results and provides a
fast evolution of the interface. Applying Euler’s method to (30)
yields

(35)

where is the step size.
A straightforward approach for implementing the evolution

(35) would consist of computing as an initial stage and
then performing the propagation by computing the product

at each iteration. This approach is inefficient
since is not sparse and, thus, requires an important space
in memory.

Fortunately, Wendland’s CSRBFs are positive definite func-
tions, and, as a consequence, the associated matrix is also
positive definite. Since is moreover symmetric, we may use
a LDLT or a Cholesky decomposition. In the current implemen-
tation, we use a sparse Cholesky decomposition from MUMPS
library [40], i.e., where is a lower triangular ma-
trix. The Cholesky decomposition (i.e., the matrix ) is com-
puted as an initial stage, and for each iteration we solve the fol-
lowing triangular systems:

(36)

(37)

The RBF coefficients are finally given as

(38)

D. Bounded Implicit Function

As mentioned in Section II-A, periodically reshaping the
level as the interface signed distance function is a common
strategy used for avoiding developing of steep regions in the
implicit function near the zero level. This scheme increases
the computational cost and reduces the topological flexibility
of the method since it prevents the level set from creating new
zero level components far away from the initial interface.

A similar problem appears in our collocation method: the im-
plicit interface reaches a stable solution, however RBF coeffi-
cients can go on increasing. This may be shown as follows.

Proposition 1: In (35) can increase slowly at each step,
depending on .

Proof: By computing , it follows:

(39)

The higher bound of the -norm of (31) is

(40)

from (6) .

Thus, it follows that:

(41)

where . By choosing a

low value, at least a slow increasing of can be obtained.

We propose here to take advantage of the linearity of the RBF
expansion (10) in order to avoid the steep gradient problem and
to preserve the topological flexibility at a low computational
cost. In order to bound the implicit function (hence, the norm
of gradient ), while preserving the global shape of the im-
plicit function and the implicit interface, we bound the expan-
sion coefficients. Note that bounding the norm of the gradient
results in constraining the Lipschitz constant.

As a starting point, we note that the multiplication of an im-
plicit function by a non-null coefficient does not change its
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TABLE II
COMPLEXITY OF THE VARIOUS COMPUTATION STAGES FOR GLOBALLY AND COMPACTLY SUPPORTED RBFS. NOTE THAT THE

MULTIPOLE METHOD CAN BE APPLIED ONLY TO SOME GLOBAL RBFS [8] AND REQUIRES A COMPLEX ALGORITHMIC SETUP

associated interface.3 Since is represented through the coeffi-
cients of a RBF expansion, simply corresponds to .

For SPD-RBFs, especially Wendland’s ones (see Table I), this
provides us an easy way to bound the values of the implicit func-
tion. Indeed, due to the linearity of the SPD-RBF expansion, we
may link this constraint to the -norm of . Formally we have:

(42)

(43)

where , and .

In our implementation, for , 3 we use Wendland’s
function (see Table I and Fig. 3), where and are equal to
1 and 135/64, respectively.

In order to bound the implicit function (hence, its gradient
norm), we apply a normalization on RBF coefficients which
bounds if , where is a positive constant.

The evolution equation becomes

(44)

(45)

(46)

if

else (47)

In our implementation, is set to , so the values of are in
the interval . It is important to notice that the compu-
tational cost of this normalization is in .

E. Complexity

We provide in this section the complexity of the various com-
putation stages of the proposed approach. In order to have a ref-
erence, it is compared to the complexity corresponding to the
use of globally supported RBFs.

3We avoid k = 0 since the zero set of f would be the whole domain 
.

The figures related to globally supported RBFs are provided
by Morse [35] and Wendland [8] and rely on the following fea-
tures.

• The matrix is dense and its computation4 is .
• Using the multipole method implementation [8], solving

the system is and the evaluation of the implicit
function is .

In the case of the proposed CSRBFs, the following applies.
• Using a -tree data structure for the center set (see Sec-

tion III-A2), the matrix computation is and
the implicit function evaluation is .

• The computational complexity of sparse Cholesky factor-
ization cannot be given in general since it depends on how
sparse is . However, according to [41], the factoriza-
tion can be considered to be in , where is the
number of nonzero factors, which depends on the CSRBF
centers distribution and on the CSRBF support size . In
practice, we choose sufficiently small support, so will
be much smaller than .

The complexity of these implementations is given in Table II.
It is to be noted that the multipole method can be applied only
to some global RBFs [8] and requires a complex algorithmic
setup, whereas the -tree data structure used for CSRBFs is
quite general and straightforward to implement.

As noted by Osher [42], [43], the complexity of the usual
narrow band method including reinitialization is
where is the total number of grid points in the narrow band.
A more detailed comparison of the complexity of our method is
not straightforward due to the following.

• It is difficult to relate the number of centers and
the number of points in the narrow band .

• The narrow band implementation provides a local control
whereas our method provides a global control over the level
set. This will yield different segmentation results in most
cases.

IV. RESULTS

In this section we evaluate the proposed approach using simu-
lated and medical images. In all experiments we use the general
evolution equation given in (5) and consequently apply the RBF
collocation framework given in (29), (31) and (44)–(47).

Such an approach implies the choice of the support of
the regularized Dirac measure defined in (6). As noted
by Chan and Vese [22], this parameter has indeed to be large

4Due to the symmetry of H , complexity can be decreased in half; however,
it is still in O(N ).
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TABLE III
TIME IN SECONDS FOR PROCESSING VARIOUS IMAGES

enough so the evolution equation acts on all level curves and
yields a global minimizer. Since is bounded in the interval

from (44), we, thus, simply set to in all exper-
iments.

The use of CSRBF collocation implies a choice of the RBF
support size . As mentioned in Section III-A.I, this parameter
is related to the fill distance as . Unless
otherwise mentioned, we set in our experiments, in order
to ensure continuity of the reconstructed implicit function. A
larger support would provide a smoother implicit function at the
cost of a higher computational cost.

In (35), we use a forward Euler approach for time discretiza-
tion, which implies the choice of the time step . Experimen-
tally, we observe that for varying in the range [0.1, 10], the
segmentation remains unchanged. This result shows the robust-
ness of the proposed method in the choice of the time step. Thus,
we arbitrarily fix to 1 for each experiment.

Finally, in Table III, for each experiment we provide the cpu
time corresponding to each step of the proposed algorithm. Cal-
culations were performed on a 3.6-GHz Pentium IV with 2 Gi-
gabytes of RAM.

A. Numerical Simulations

The segmentation examples given in this part are based on
the Chan–Vese functional [22], which aims at partitioning the
image into regions with piecewise constant intensity. This ap-
proach corresponds to a particular case of the Mumford–Shah
functional [44], known as the minimal partition problem. This
functional is given as

(48)

where , , and are hyperparameters, and are
constant calculated below, and is the image to be segmented.

and are computed at each iteration using the fol-
lowing expressions:

(49)

(50)

Due to the intrinsic smoothness of the RBF formulation, the
smoothness term of the functional is not used (we set ).
The two remaining hyperparameters ( and ) are set to 1.

In this framework, the velocity term used in our examples is
then given as

(51)

1) Simulation 1: Fig. 4 illustrates the application of the
method to an image containing a shape with two holes and
blurred contours. The method has been applied for various
additive noise levels, as shown on Fig. 4(a)–(c). For this sim-
ulation, no a priori knowledge about the shape to segment
is considered and the RBF centers are, thus, positioned on a
regular rectangular grid with 100 100 nodes.

Fig. 4(d) shows the segmentation obtained from the noise-
free image. Our approach detects the shape and automatically
handles the required topology changes. Fig. 4(e) and (f) shows
that in the presence of additional noise (corresponding to a SNR
value of 30 and 20 dB, respectively) the model still provides a
correct segmentation. However, we note that the detected inter-
face is not as smooth as the original shape. As previously men-
tioned, the smoothness of the interface may be adjusted by se-
lecting an appropriate support size . Fig. 5 shows the segmen-
tations obtained with larger supports in the case of a 20 dB SNR.

The influence of the normalization procedure described
in Section III-D is studied using the results corresponding
Fig. 4(b). Fig. 6(a) shows the level set after 100 iterations when
normalization is not applied and illustrates resulting steep
gradient of the implicit function near the zero level. As pre-
viously mentioned, this could be avoided by the conventional
reinitialization of the level set to a signed distance function.
Fig. 6(b) presents the obtained level set when our normalization
(47) is applied: the implicit function is bounded in the range

.
The influence of the normalization may be investigated by

studying the variation of the RBF coefficients versus the itera-
tion step number. We measure here this variation by computing
the -norm of the difference of the RBF coefficients between
consecutive iterations. Without normalization Fig. 7(a) shows
that the variation of the RBF coefficients reaches a constant
nonzero value after 15 iterations, which corresponds to the con-
vergence of the energy criterion (48) [see Fig. 7(b)]. This
illustrates the predicted phenomenon of the Section III-D: the
implicit function keeps on evolving, even though the interface
has reached the desired solution, i.e., convergence may be eval-
uated only locally. Fig. 7(c) gives the variation of the RBF co-
efficients when our normalization (47) is applied. In this case,
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Fig. 4. Segmentation of an image containing a shape with two holes and blurred contours. The method is applied for various additive noise levels; 100� 100
RBFs have been used in the experiment. Top row: Original images and initial interfaces. Bottom row: Corresponding segmentations.

Fig. 5. Segmentation of the image with a 20-dB SNR given in Fig. 4(c) for increasing CSRBF support size. (a) � = 4 �h ; (b) � = 8 �h ; (c) � = 16 �h .

the variation tends to stabilize to zero. This indicates that the
level set globally converges to a stable solution. This observa-
tion suggests a simple way to check whether the implicit inter-
face reached the solution, by looking at the variation of RBF
coefficients. We give in Appendix I a heuristic argument sup-
porting the behavior of the level set observed in Fig. 7(c).

2) Simulation 2: The second simulation addresses the in-
fluence of the number of CSRBF centers on the segmentation
quality, using an image having high local curvature (see Fig. 8).

Segmentation is first performed using a regular rectangular
grid applied on the whole domain with various numbers of cen-
ters (400, 1600, and 22 500). Fig. 8 shows how the accuracy of

the obtained segmentation increases with the number of centers
involved.

As previously mentioned, the spatial distribution of the RBF
centers may be arbitrary (i.e., they need not to lie on a regular
grid) and this feature may be used to incorporate a priori knowl-
edge on shape. This is illustrated in Fig. 9, where the RBF cen-
ters are distributed according to the shape to be recovered. In this
simple example, the density of RBF centers is increased near the
boundary to be detected. Fig. 9(a), (b), (d), and (e) shows the
center location for 5 000 and 10 000 centers, respectively. As in
the previous example, the segmentations presented in Fig. 9(c)
and (f) shows that the number of centers directly influences the
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Fig. 6. Representation of the implicit function f after 100 iterations, (a) without normalization and (b) with normalization.

Fig. 7. Variation of RBF Coefficients versus the iteration step number (a) without normalization and (c) with normalization. Energy J versus the iteration
step number (b) without normalization and (d) with normalization.

accuracy of the result. However, comparison of Figs. 8(c) and
9(f) indicates that the adapted centers distribution yields quali-
tatively the same accuracy using less centers. This example pro-
vides a very simple example of the interest of making the centers
distribution adaptive. More sophisticated strategies could obvi-
ously be considered to improve centers placement, such as:

• Using a priori shape information: The centers distribution
could be constrained through shape training (using ACP
shape analysis, for instance [3], [45]);

• Using image features: The centers location and density
should be linked image regions exhibiting salient shape
features (i.e., gradient maxima, variation of regional sta-
tistical properties, etc. , depending on the application).

B. Experimental Medical Data

1) Calcaneus Bone in 3-D: The proposed segmentation ap-
proach has been applied to 3-D CT images of calcaneus bone,
with a 80 m voxel size. Due to its complex topology, cal-
caneus bone is an attractive example for testing a level-set ap-
proach. As in the simulation section, Chan–Vese functional [22]
and the associated velocity term (51) was used. Because of the
complexity of the shape to be recovered, the RBF centers were
distributed on a regular rectangular grid. Fig. 10 provides a 3-D
visualization of the obtained segmentation as well as two cor-
responding image slices. These results show the ability of the
model to handle complex topology.
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Fig. 8. Segmentation of a shape containing high curvatures for an increasing number of CSRBFs. The CSRBF centers are located on a regular rectangular grid.

Fig. 9. Segmentation of a shape containing high curvatures using irregular CSRBF centers placement. Top row: Results for 5000 RBFs, centers distribution along
with (a) the interface, (b) close-up of the centers distribution, and (c) resulting segmentation (c). Bottom row: Results for 10 000 RBF centers distribution along
with (d) the interface, (e) close-up of the centers distribution , and (f) resulting segmentation.

Fig. 10. Segmentation of 3-D CT images of calcaneus bone; 3-D rendering of the resulting segmentation. (a) Two slices through the original data volume (b)
and (c).

An attractive feature of our approach lies in the fact that it pro-
vides a continuous representation of the implicit function em-
bedding the interface. As mentioned in Section II-C, this fea-
ture provides analytical access to the differential properties of
the interface, such as Gaussian and Mean curvatures. This is

illustrated in Fig. 11, which presents the distribution of these
quantities over the surface of the segmented calcaneus bone.

2) Ultrasound Images: In this section, we apply our ap-
proach to echocardiographic ultrasound images. Segmentation
of echocardiographic images is a difficult task, due to the speci-
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Fig. 11. Distribution of (a) the Gaussian and (b) mean curvature over the surface of the segmented calcaneus bone.

Fig. 12. Segmentation of echocardiographic data corresponding to a parasternal long axis view of the heart. Original image along with (a) the initial interface, (b)
intermediate state of the interface during evolution of the level set, and (c) final segmentation.

ficities of the ultrasound acquisition which yields speckle and
blurred boundaries related to diffuse scattering and attenuation.

In this context, we use the framework initially described by
[34] which relies on evolving the interface in such a way that
the resulting segmentation maximizes a posteriori probability
of distribution of the image intensity in the inside and outside
region. The velocity term may be derived by following the ap-
proach we described in [46], which shows that the statistics of
the ultrasound signal corresponding to blood and myocardial re-
gions may be described by generalized Gaussian distributions.
The velocity term is then given as

(52)

where corresponds to the Generalized Gaussian distribution,
and represent the shape and scaling parameters of the Gener-

alized Gaussian distribution, respectively, computed inside and
outside the moving interface at each iteration, is the size of a
circular window centered at and is the intensity of the image
at pixel location .

For this test, the RBF centers are distributed on a regular rect-
angular grid with 600 nodes. Fig. 12 provides the segmenta-
tion obtained from a parasternal long axis view with a narrow
angle focused on the inferolateral wall. This type of image is
frequently used in clinical routine in order to accurately locate
and track a region of the myocardium during the cardiac cycle.
From an initialization located inside the left ventricle, our ap-
proach yields proper segmentation of all the blood/tissue in-
terfaces in the image. This result shows the ability of the pro-
posed approach to deal with noisy images using a statistical re-
gion-based segmentation.

C. Computation Times

We present in Table III the computation times associated to
the above described experiments. Table III shows that the com-
putation times associated to the Euler steps are reasonable, on
the order of a few seconds for 2-D images and of a few minutes
for the 3-D calcaneaous image. The total time needed to ob-
tain the segmentation is much larger. This time is, however, not
linked to the proposed RBF collocation method, since it mainly
results from the computation of the parameters associated to the
velocity terms (i.e., and for the Chan–Vese method
[22] and and for the generalized Gaussian for the Zhu–Yuille
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method [34]). This computation overhead would, thus, be the
same for a conventional level-set implementation.

V. CONCLUSION

In this paper, we proposed a CSRBF collocation approach for
segmentation using level sets. In contrast to the conventional fi-
nite difference with narrow band implementations, this numer-
ical scheme yields an overall control of the level set over the
computational domain and provides a parametric continuous so-
lution. Due to this overall control and using CSRBF representa-
tion, the level set may be easily constrained. This feature avoids
periodical reinitialization of the level set in the course of its
propagation. In this way, the obtained segmentation is topolog-
ically more flexible, since it may develop new zero level com-
ponents and is, thus, less dependent upon the initialization. As
a further interest, we have shown that both the use of CSRBFs
and -tree based representation of the RBF centers allows a
significant reduction of the computational cost. The flexibility
and performances of the proposed approach have been prooved
from simulations as well as medical image segmentations.

APPENDIX

CONVERGENCE OF THE NORMALIZED RBF COEFFICIENTS

A global convergence of the level set is obtained if the fol-
lowing proposition is satisfied:

(53)

To prove (53), we pursue the following steps.
Lemma 1:

(54)

Proof: The normalization operator used in (47) is a pro-
jection operator onto the convex set of -norm -bounded
vectors.

• Clearly, is a closed convex set, i.e.,

for (55)

To prove (55), we consider , then ,
. It follows

.
It is easy to prove the closure by considering a given se-
quence such that im-
plies .

• Now consider the operator

if
else

(56)

This operator is a projection operator onto the closed set
(POCS). In order to verify this conjecture, it is sufficient to
show that for an arbitrary its projection onto is its
closest point of

(57)

This condition can be easily verified as follows.
Clearly, is minimum if is collinear to , i.e.,

. Then

(58)
According to (56), the left side of (57) can be rewritted as

(59)

That proves the equality of both sides of (57)
A POCS is a nonexpansive operator

(60)

That proves the lemma 1.

We recall (47) .
By combining two consecutive equations, we can write

(61)

The terms and are data dependent. Ac-
cording to (31), with the choice (see Sections III-D
and IV), the term weakly depends on

(62)

where is the velocity function at iteration .
Using the hypothesis of a consistent choice of the velocity,

becomes stationary in the vicinity of the region to be seg-
mented and, consequently, vanishes.

Then, and according to
lemma 1, it demonstrates the convergence condition (53).
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