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In this article, our goal is twofold. First, we propose and compare two methods which process
deformable registration to estimate patient specific lung and tumor displacements and deformation
during free breathing from four-dimensional computed tomography �4D-CT� data. Second, we
propose techniques to quantify the physiological parameters of motion nonlinearity and hysteresis.
A Fréchet distance-based criterion is introduced to measure the motion hysteresis. Experiments
were conducted with 4D-CT data of five patients treated in radiotherapy for non-small cell lung
cancer. The accuracy of deformation fields assessed against expert-selected landmarks was found to
be within image voxel tolerance. The second method gave slightly better results in terms of accu-
racy and consistency, although the differences were not statistically significant between the two
methods. Lung motion nonlinearity and hysteresis are patient specific, and vary across regions
within the lung during respiration. For all patients, motion between end-exhale and end-inhale was
well approximated with a straight line trajectory for the majority of lung points. Hysteresis was
found to be globally correlated with trajectory length. The main limitation to the proposed method
is that intensity-based deformable registration is dependent on image quality and image resolution.
Another limitation is the absence of gold standard which makes the validation of the computed
motion difficult. However, the proposed tools provide patient specific motion information which, in
radiotherapy for example, can ease the definition of precise internal margins. In the future, the
integration of physiological information from multiple patients could help to create a general lung
atlas with different clinical applications. © 2008 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2839103�
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I. INTRODUCTION

Accurate motion modeling within the lung is an important
consideration in different clinical applications. In lung cancer
radiation therapy, for example, the motion is assessed for
determination of planning margins1 as well as four-
dimensional �4D� optimization2 and new delivery
adaptations.3 Respiratory motion has been modeled in a va-
riety of ways for different purposes. The most common mod-
els use either phase, or amplitude, or both, and describe the
motion of either a single point or a surrogate signal. A well
known example is the cosine model of Lujan et al.,4 in which
motion is described by an analytic function of amplitude and
phase. Other models include the average tumor trajectory,5

the piecewise linear model,6 and the five-dimensional �5D�
motion model.7

More precise modeling of lung anatomy during breathing
requires internal detail, which is now available mainly thanks

8,9
to four-dimensional computed tomography �4D-CT� or fast
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magnetic resonance imaging.10–12 Variations of internal mor-
phology over the free-breathing cycle can be observed
thanks to these image modalities. Recent advances in
multidetector-row CT scans make possible even the acquisi-
tion of functional and morphological information.13 The
4D-CT images are among the solutions proposed to deal with
respiratory movement in lung cancer radiotherapy. Four-
dimensional-CT refers to a sequence of three-dimensional
�3D�-CT images indexed by breathing state, acquired using
retrospective sorting �based on respiration amplitude or
phase� of fan-beam or cone-beam images, or by direct cine-
mode acquisition with multi-slice geometries.14,15

In order to fully benefit from the information provided by
4D-CT, this data must be associated with new medical image
analysis tools.3,16 Sluimer et al.17 give an interesting over-
view of image treatment and analysis techniques developed
for CT scans. Among other tools, deformable image registra-
tion is an important topic with direct application to

18,16
radiotherapy because it allows to estimate organ defor-
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mation and displacement. Several surveys provide a general
overview of image registration theory and
implementation.19–21 In the present paper, the deformable
registrations were computed with a method that we proposed
in a previous work.22 It is based on an optical flow
method23,24 with Gaussian regularization. To take into ac-
count lung intensity changes due to air variation during free
breathing, we also proposed a pre-processing technique
called a priori lung density modification �APLDM�.22

APLDM consists in changing lung intensities in the 3D-CT
images of the 4D-CT in order to have lung intensity distri-
butions similar to the end-exhale reference image.

The goal of this study is to propose patient specific mo-
tion computation methods allowing, first, to follow lung and
tumor displacements and deformations along a free breathing
cycle and, second, to extract physiological parameters like
nonlinearity and hysteresis of lung motion. In radiotherapy,
motion knowledge allows to automatically quantify tumor
and organ motion, and would help to define personalized
internal margins. This is an alternative to methods using
fluoroscopy25,26 to set appropriate internal margins, but based
on 3D+t information instead of two-dimensional �2D�+t
and on a single breathing cycle instead of several cycles. An
accurate motion estimation could also help to build specific
patient lung model which could be used to propose a reliable
semiautomatic contour propagation tool in a 4D-CT image. It
can also be used for dose computation at different breathing
states, for dose distribution comparisons, or for helping to
plan gated treatments. It may be also integrated in online
image guidance procedures. In order to cope with any devia-
tions from the 4D-CT derived motion trajectory or hysteresis
during treatment, the model should be coupled with online
monitoring: external markers �e.g., surface based sensors�, or
fluoroscopy, or any other online imagery solution �such as
cone-beam CT, for example�. The 4D-CT model alone could
also be considered for patients with reproducible free breath-
ing cycle, which is probably not the case for the majority of
the patients. Another interesting application for such model
is the simulation of dynamic ventilation images.27

I.A. Notations

This paragraph describes the principal notations used in
the paper. The term state refers to a scalar parameterization
of the geometry in time, phase, or amplitude. In 4D-CT data
available for this study, the states correspond to discrete
breathing phases. To each state X, X� �0,1 ,2 , . . . ,9� corre-
sponds an image of the geometry denoted IX. In some cases
we will refer to states that lie between the discrete states of
the 4D-CT. This will be denoted by � or �, with �, �
� �X ,X+1�. A lung point in 3D will be denoted by p, p
�R3, and its position at state X �or �� will be denoted by pX

�or p��. Given two different states X and Y of the 4D-CT, a
vector field from X to Y is denoted by UXY. The vector field
describes the motion of each point pX to its corresponding
position pY: pY =pX+UXY�pX�. A trajectory Tp describes the
path followed by a single point p as it progresses through

states from X to Y.
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II. MATERIAL AND METHOD

In the first part of this study, we analyzed and compared
two methods which process deformable registration to esti-
mate lung motion from 4D-CT data. The first method com-
putes small deformations estimated between neighboring
phases, whereas the second method computes large deforma-
tions estimated between the end-exhale reference phase and
all other phases. These two estimation methods were vali-
dated against ground truth �landmark points� and for internal
consistency. In the second part of the study, we studied mo-
tion variations across the lung during the free-breathing
cycle. Lung point trajectories were computed from deforma-
tion fields to assess motion nonlinearity and hysteresis. Such
physiological information could be useful to decide if the
motion between end-inhale and end-exhale could be approxi-
mated with a linear motion or if the non-linear motion is
significative and should be taken into account, for example,
for tumors with a motion hysteresis larger than their size. For
hysteresis evaluation we propose a Fréchet distance-based
criterion. Under the assumption of a piecewise constant mo-
tion, hysteresis values are computed based on the distance
between inspiration and expiration trajectories.

II.A. 4D-CT acquisition

In this study, 4D-CT images were acquired �at 140 kVp,
with a tube current of 130–170 mA� using a four-slice fan-
beam CT scanner �GE Lightspeed QX/i; GE Heathcare Tech-
nologies, Waukesha, WI�, and a respiratory surrogate �Real-
time Position Management; Varian Medical Systems, Palo
Alto, CA�. As the patient translates through the scanner, CT
images are acquired in cine mode. A complete breathing
cycle is acquired at each anatomical position. Cine-mode CT
images were acquired at a rate of one image set per 0.4 or
0.5 s, four slices at one time. After the scan is complete, the
images are sorted according to the breathing phase assigned
by the surrogate. The choice of phase sorting was made ac-
cording to clinical procedures. Phase sorting is prone to cer-
tain kinds of artifacts, especially discontinuities in the ap-
pearance when motion amplitude is not regular. Amplitude
sorting algorithms are also prone to artifacts. In particular it
is not possible to reconstruct all inhale states because some-
times the depths of inhalation are not constant. With breath-
ing periods ranging between 3.7 and 4.3 s, the effective res-
olution after sorting is approximately 0.4 s. A total of ten
respiratory correlated images were generated, numbered 0
through 9. All patients were imaged under light free breath-
ing. A complete description of the process is given in Rietzel
et al..28 We considered 4D-CT scans of five patients treated
in radiotherapy for non-small cell lung cancer. The 3D-CT
images of the 4D-CT had an in-plane spatial resolution of
512�512, between 88 and 120 slices, and a voxel size of
0.977�0.977�2.5 mm3. For all patients, the gross tumor
volume �GTV� was manually delineated by an oncologist,
with a two-dimensional �2D� slice by slice contouring pro-
cess, in the end-exhale and end-inhale phases. The contour-

ing variability for the same expert from one image to another
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was comprised between 2% and 9% of the GTV volume of
the end-exhale 3D-CT image. Table I depicts the clinical
characteristics of the patients.

II.B. Motion estimation

The 4D-CT scans are composed of ten 3D-CT images,
numbered from 0 to 9. Image I5 is the end-exhale image, and
I0 the end-inhale 3D-CT image. I1 , I2 , I3 , I4 are successive
expiration states and I6 , I7 , I8 , I9 successive inspiration states.
The states are cyclic, such that I0 follows I9. From n images,
there are n! / �n−2�! possible pairwise registrations. Although
the deformation fields could be computed for all pairs, we
preferred to use fewer registrations to compute the deforma-
tion through a free-breathing cycle.

We considered two different methods, denoted by M1 and
M2, to estimate the motion in a 4D-CT. The first method, M1,
consists in processing deformable registration in both direc-
tions between each neighboring pair of 4D-CT states. For
example, starting from I5, we computed U56,U67, . . . ,U45,
and then we computed U54,U43, . . . ,U65. Thus, with M1 we
estimated a set of 20 deformation fields for each 4D-CT data
set. The second method, M2, consists in processing deform-
able registration between a reference image and all other
phases of the 4D-CT scan. Based on the observation that the
end-exhale state is the most reproducible state of the free-
breathing cycle,29 we considered I5 as reference. Thus, with
M2 we computed a set of 18 deformation fields.

From a vector field set a deformation field between any
arbitrary 4D-CT states can be generated by composition, de-
noted by �. Given two vector fields, UXY and UYZ, the com-
position is the operation which consists of calculating a new
vector field, UXZ, by applying the second vector field, UYZ, to
the mapping obtained with the first one: UXZ=UYZ�UXY�,
UXZ=UYZ �UXY. For example, using the deformation fields
computed with M1, the deformation field U52 was calculated
as U52=U32�U43�U54. The deformation could also be gener-
ated as U52=U12� . . . �U67�U56, but in this method we pre-
ferred to use the shortest path.

Figure 1 illustrates the computation of deformable regis-

TABLE I. Summary of patient clinical characteristics.
end-exhale and end-inhale states. The first patient had

Patient Resp. period

Tumor-loca

Lung

1 �4.3 s �a� left
�b� right

2 �3.9 s right
3 �3.7 s right
4 �4 s right
5 �4 s right
tration with the two methods.
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II.C. Evaluation of estimation methods

The method M1 has the advantage of estimating only
small deformations between pairs of images, which can po-
tentially be more accurately computed than large deforma-
tions. However, vector fields compositions may induce accu-
mulated errors. The advantage of method M2 is that any
deformation field can be formed from the composition of
only two vector fields. We compared M1 and M2 for accu-
racy and consistency in order to decide which method gives
a better estimated motion. Accuracy was assessed using con-
trol points selected by experts. Consistency was assessed by
examining the symmetry and transitivity of vector field com-
positions.

II.C.1. Control points validation

Today, contrary to rigid registration,30 deformable regis-
tration validation is still an area of active research, and a
variety of validation techniques have been proposed �control
points, synthetic deformations, vector field operators�. Nev-
ertheless, in the absence of a gold standard, this remains a
challenging task.

We based our validation on landmark points. For each
patient, about 60 landmark points were manually identified
by an oncology physician within the lung in the end-inhale

motion amplitude has been calculated between the
tumors: �a� in the left lung and �b� in the right lung.
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FIG. 1. Deformable registration scheme between images of the 4D-CT. With
method M1, deformation fields are computed between pairs of neighboring
images. With M2 deformation fields are computed between the reference
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image of the 4D-CT. Then, two additional observers identi-
fied corresponding landmark points on all other 4D-CT
phases. The mean distance between observers’ point posi-
tions was 2.0 mm with a standard deviation of 1.2 mm. For
each landmark and for each phase, a composite reference
location was obtained by calculating the mean value of the
observer positions. These reference locations were used for
vector field validation. They were not used in the registration
process.

For each 4D-CT set, vector fields between pairs of images
were constructed using both M1 and M2. The accuracy of M1

and M2 was estimated by computing the target registration
error �TRE�30 which is the distances between the reference
landmark locations in the first image and the estimated loca-
tions generated using the deformation fields. For example, if
UXY is constructed using method M1, and pX is a reference
location in IX, its estimate in IY is pY� =pX+UXY�pX�. The
accuracy of this estimation was determined by computing the
distances between pY� and the reference position pY. The ac-
curacy for UXY was determined from the mean and SD of
these distances over the complete set of landmark points.

II.C.2. Consistency

Deformable registration methods are inherently
inconsistent;31 a deformation field computed from an image I
to J does not equal the inverse deformation field, computed
from J to I. To overcome this issue, Christensen et al.32

proposed a registration method which jointly estimates the
forward and reverse deformation fields by constraining them
to be the inverse of one other. In future, it would be interest-
ing to extend such method to 4D-CT images, by constraining
the motion fields to be consistent over the breathing cycle
with a temporal regularization, for example.

Here, we evaluated the consistency of vector fields gen-
erated with M1 and M2 as follows. The consistency of a
deformation field UXY, is evaluated by computing the mean
and SD of the vector norms of composite deformation field
UXY �UYX. In the case of M1, this results in a variable number
of compositions, depending on the distance between X and
Y. In the case of M2, it is usually computed with one �if Y
=5� or three �if X, Y �5� vector fields: U5Y �UX5 �U5X �UY5.
For each method we estimated the consistency of vector
fields computed between successive phases and the consis-
tency of vector fields computed between the reference end-
exhale state and all the others. If the two methods were con-
sistent, the composed vector fields would be zero
everywhere.

II.D. Lung point trajectories

II.D.1. Building the trajectories

We considered the lung volume points in end-exhale state
of the 4D-CT as reference positions for trajectory computa-
tion. Point positions through the different states of the
4D-CT could be obtained using the displacements vectors
computed M2. If p5 is a point in image I5, its correspondence

pY in image IY is computed as pY =p5+U5Y�p5�.
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Having the point positions at all breathing states allows to
build a complete trajectory. Between successive states we
will assume that the trajectory follows a straight line, and
that it travels at constant velocity. This assumption is valid if
the 4D-CT has sufficient temporal resolution. Thus, the tra-
jectory of a point p, denoted by Tp, is a piecewise linear
closed curve in 3D, and is described by Tp: ��→R3, where
�� is the set of all possible states. For states �� �X ,X+1�
between X and X+1, the trajectory is given as

Tp��� = Tp�X� + ��UXX+1�p� , �1�

where ��=�−X, ��� �0,1�.

II.D.2. Motion nonlinearity

In our previous work,22 we have made the assumption that
points describe a straight line trajectory between end-exhale
and end-inhale phases. Here, we evaluate the nonlinearity of
the trajectory. For each lung point, at each state X, we com-
puted the distance �X�p�, �X�p�=d�pX ,TL�p�� to the straight
line trajectory TL�p�. Figure 2 illustrates in 2D the computa-
tion of distances to straight line trajectories for two lung
points p and q. We note that due to 2D projection of 3D
trajectories, the trajectory of point q may appear complex
and unrealistic.

We evaluated the nonlinearity of the lung point trajecto-
ries for six cranio-caudal regions. The cranio-caudal decom-
position of the lungs was done as described in Ref. 33. Let
Hp be the distance between the lowest and the highest lung
points in the cranio-caudal direction. The first region �R1� is

(a)

(b)

FIG. 2. Two-dimensional illustrations of nonlinearity evaluation for the tra-
jectories of two points �p and q�. The trajectories are built considering the
intermediate phases of the 4D-CT over exhalation and inhalation. �X denotes
the distance between lung point position and the straight line trajectory
estimated only between end-exhale and end-inhale phases.
composed of lung points situated between 0% and 10% of
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Hp; each of the four �R2 ,R3 ,R4 ,R5� following regions en-
compasses 20% of Hp, and the last region �R6� contains the
last 10%.

II.D.3. Motion hysteresis

Previous works34,35 have studied the hysteresis of 3D tu-
mors motion in patients with lung cancer. The hysteresis was
defined as the maximum distance between inhalation and
exhalation trajectories. In present study, our purpose was to
estimate lung points motion hysteresis from vector fields es-
timated by deformable registration applied between different
phases of the 4D-CT.

The trajectory defined in Eq. �1� is a non-planar polygonal
curve. Computing hysteresis between inhalation and exhala-
tion trajectories comes to calculate the maximum distance
between inhalation polygonal curve and exhalation polygo-
nal curve. In computational geometry, different metrics are
proposed for measuring the distance between two or more
polygonal curves: Hausdorff distance36 and Fréchet
distance,37 for example. A disadvantage of Hausdorff dis-
tance is that it does not take into account how points progress
along the two trajectories. We used the Fréchet distance,
which is well suited to parameterized curves. Each method
consists first of considering a set of points describing the two
curves, and then computing the distance �usually the Euclid-
ian distance� between each pair of points. Let Lexh�p� be the
length of a point trajectory p over exhalation and let Linh�p�
be its length over inhalation. Starting from p5, the point’s
position in phase 5, we construct a sequence of points along
the exhalation trajectory, p�1

,p�2
, . . .p�n

, such that the
length between two successive point positions is constant.
Then, we construct a similar sequence, starting from p5

along the inhalation trajectory: p5 ,p�1
,p�2

, . . .p�n
. For

Fréchet distance calculation, point positions p���t�
,p���t�

are

parameterized as a function of time ��t� and ��t�, ��t�:
�0,1�→ �1,2 , . . . ,n� and ��t�: �0,1�→ �1,2 , . . . ,m�. Finding
the Fréchet distance DF�p� requires finding the parameteriza-
tion of functions ��t� and ��t� that minimize the maximum
distance between inhalation and exhalation trajectories of the
point p as indicated by

DF�p� = min
��t�,��t�

� max
t��0,1�

d�p���t�
,p���t�

�� , �2�

where d�p���t�
,p���t�

� denotes the Euclidian distance be-

tween points p���t�
and p���t�

.

We assume that point motion is uniform over exhalation
and inhalation, namely that ��t�=��t�=k, which simplifies
the measurement of the Fréchet. This simplified Fréchet dis-
tance is used to compute trajectory hysteresis, using the
maximum distance between pairs of points �p�k

,p�k
� as fol-

lows:

Hystp � max
k=1..n

d�p�k
,p�k

� . �3�

We used the same number n �n=100 in our experiments�, to

describe inhalation and exhalation curves. Figure 3 illustrates
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in 2D the hysteresis computation for two point trajectories
with n=9.

We used the six cranio-caudal regions �see Sec. II D 2�
decomposition for lung point hysteresis evaluation.

III. RESULTS

Results are classified in four sections. Section III A pre-
sents accuracy and consistency results for the two motion
estimation methods. Section III B presents nonlinearity re-
sults, Sec. III C hysteresis results. All these results were cal-
culated for lung points, with GTV points not included. GTV
motion results are summarized in Sec. III D.

III.A. Accuracy and consistency of estimation
methods

Table II summarizes the mean �	� and SD �
� values for
accuracy and consistency. The column “Amplitude” indi-
cates the average motion amplitude between end-exhale and
end-inhale states. The last two columns of Table II report
student t-test of comparisons between the two deformation
field estimation methods �M1 and M2� for accuracy and con-
sistency. “�” denotes that the two methods were not signifi-
cantly different. “�” denotes that the two methods were sig-
nificantly different �p values are given�. A 5% confidence
level was adopted.

III.B. Motion nonlinearity

We computed the nonlinearity value of each lung point at
each 4D-CT phase of exhalation and inhalation. Figure 4
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FIG. 3. Illustration of hysteresis computation for two different lung points
�p and q� starting from state 5 point position and considering a sequence of
nine equal distant points positions �p�1

, . . . ,p�9
, respectively, q�1

, . . . ,q�9
�

over exhalation trajectory and nine equal distant points �p�1
, . . . ,p�9

, re-
spectively, q�1

, . . . ,q�9
� over inhalation trajectory. For point p, hysteresis is

well estimated with the metrics we used while it is overestimated for point
q. For better visualization the illustrations are presented in 2D.
summarizes, for each patient, the average lung point trajec-
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tory nonlinearity values over exhalation in the top graphic
chart �a� and over inhalation in the second graphic chart �b�.
In the graphic charts, the height of each vertical bar is the
region average nonlinearity at the corresponding exhalation
or inhalation phase. Nonlinearity could not be estimated for
region R1 of patient 2 because this part was missing from the
4D-CT acquisition. The patient data available for this study
had a 2.5 mm interslice distance. An interesting point was to
evaluate the percentage of lung volume points with a nonlin-
earity greater than 2.5 mm. Values below 2.5 mm may be

TABLE II. Summary of accuracy and consistency results, and differences betw
standard deviation.

Patient

Amplitude
	�
�
�mm�

Accuracy
	�
�
�mm�

M1 M2

1 5.2�2.6� 2.3�1.3� 2.1�1.3�
2 6.7�4.2� 3.2�2.2� 2.9�2.2�
3 5.1�3.7� 2.2�1.2� 1.9�1.2�
4 5.6�3.1� 2.1�1.5� 2.1�1.5�
5 5.4�3.1� 2.7�2.0� 2.4�1.8�

(a)

(b)

FIG. 4. Summary of average point trajectory nonlinearity values for each
patient cranio-caudal region �denoted by R1, R2, R3, R4, R5, and R6� at each
4D-CT exhalation phase in the top graphic chart �a�, and at each inhalation

phase in the second graphic chart �b�.
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considered within image voxel tolerance, and for points with
such values, trajectories can be approximated with a straight
line between end exhale and end inhale. Percentages of lung
volume points with trajectory nonlinearity values greater
than the 2.5 mm slice thickness were comprised between
0.68% and 19.67% during the exhalation phase, and between
2.25% and 29.61% during the inhalation phase. Table III
depicts the percentage of lung volume with a motion nonlin-
earity superior to 2.5 mm at each 4D-CT state for each pa-
tient.

In Table IV the maximum nonlinearity values for each
region are presented.

Figure 5 illustrates a map of the maximum nonlinearity
values for exhalation and for inhalation on transversal,
cranio-caudal and sagittal left lung slices of patient 2. As
indicated by the gray scale, high intensities correspond to
high nonlinearity values �a maximum of 9.4 mm for this pa-
tient� and low intensities to smaller values �0 mm is the
minimum value�. We can note the high nonlinearity values in
the second, third and fourth 20% regions in the cranio-caudal
direction.

III.C. Motion hysteresis

Figure 6 illustrates trajectory lengths over exhalation and
over inhalation, hysteresis and the ratio between hysteresis
and trajectory length. In the two upper charts, we represented
the average trajectory length region by region for the exha-
lation �left image� and inhalation phase �right image�. The
left down graphic chart illustrates the average hysteresis val-
ues, and the right down graphic chart illustrates the average
ratio between trajectory length and hysteresis.

Table V depicts the maximum hysteresis �in millimeters�
for each region.

III.D. GTV motion

A specific region of interest in the lung is the tumor site.
We evaluated the mean and the maximum values of nonlin-
earity and hysteresis of points within the GTV. We also com-
puted the average trajectory lengths over exhalation and in-
halation. Results for these measures are summarized in Table

34

he two deformation field estimation methods. 	 denotes the mean and 
 the

Consistency
	�
�
�mm�

Difference
M1 ,M2

�p value�

M1 M2 Accuracy Consistency

0.8�1.1� 0.8�1.1� +�0.07� =�0.97�
1.1�1.3� 1.2�1.5� =�0.41� =�0.47�
0.7�0.9� 0.8�1.0� =�0.95� =�0.68�
0.9�1.3� 1.0�1.3� =�0.98� =�0.60�
0.9�1.5� 1.0�1.6� =�0.51� =�0.52�
een t
VI. For comparison purposes with previous study the table
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depicts the hysteresis values in 3D and for the three planes:
cranio-caudal �CC�, sagittal �SG� and trans-axial �TA�.

IV. DISCUSSION

IV.A. Evaluation of estimation methods

We studied two patient specific motion estimation meth-
ods, M1 and M2, from 4D-CT data. Although M1 requires
computation of 20 deformation fields, while M2 requires
only 18, computation times were similar: about 2.5 h on a
PC Pentium 4 �3.2 GHz, 2 GiB Ram�. Convergence is
reached faster with method M1 because the deformations
between successive phases are smaller. Approximately 20–50
iterations of deformable registration were needed for one
vector field estimation with method M1, while with M2, the
end-inhale to end-exhale vector field required about 250 it-
erations.

We evaluated the accuracy and the consistency and found
that differences between M1 and M2 were not significant; the
values of the mean and standard deviation were similar. For
consistency, this similarity may be due to the fact that we
proceeded with a global evaluation. It does not mean that
locally, the two methods are always similar. This point needs
further investigation, and a gold-standard validation method
for deformable registration. The accuracy results of the two
methods were not significantly different except for patient 1.
This patient had two tumors, one in the left lung and the

TABLE III. Percentages of lung volume points with nonlinearity greater than
volume points with nonlinearity motion superior to 2.5 mm over exhalation

% Patient 1 Patient 2

Phase 0 �end inhale� 0.00 0.00
Phase 1 0.58 2.99
Phase 2 0.09 8.99
Phase 3 0.01 6.57
Phase 4 0.00 1.11

Phase 5 �end exhale� 0.00 0.00
Phase 6 0.08 0.35
Phase 7 0.13 1.15
Phase 8 1.42 4.33
Phase 9 0.61 11.37

Exhalation 0.64 13.67
Inhalation 2.15 14.80

TABLE IV. For each patient �denoted by P1, P2, P3, P
in each region cranio-caudal region.

Max�mm�

Exhalation

P1 P2 P3 P4

R1 1.8 — 2.2 2.9
R2 2.1 3.3 2.5 1.9
R3 3.7 6.3 3.1 3.3
R4 3.5 8.2 4.2 4.4
R5 4.5 6.8 4.3 3.9
R6 1.9 4.9 5.1 6.4
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other in the right lung. This fact could imply different behav-
iors inside lung, which can lead to differences between the
two methods. Mean values of accuracy were on the order of
the image resolution and comparable to inter-observer vari-
ability �1.9 mm�, with slightly better results for M2: 2.3 mm
versus 2.5 mm.

IV.B. Trajectories

The parameter �� in Eq. �1� models the motion between
successive 4D-CT breathing phases which we supposed to be
uniform, and the trajectory described by a point in a straight
line. The parameter �� could be related to a breathing model
cycle such as the one proposed by Lujan et al.4 by scaling the
time, or to the tidal volume and its temporal derivative in the
five-dimensional model proposed by Low et al.7 allowing to
model different respiration behaviors. As mentioned in Ref.
7, however, the breathing motion is very complex and is not
well modeled as a simple function of time. Ideally, a priori
patient specific physiological information would be needed
to simulate the temporal behavior of point trajectories during
breathing. Under the assumption that the thorax motion is
smooth during free breathing, points in subsequent image
volumes could also be connected with spline functions.
However, the temporal resolution is relatively low, and a
quadratic or cubic spline may over fit. The computation time
would also be more important. Seppenwoolde et al.34 ap-

m at each 4D-CT phase. Last two rows depict the total percentage of lung
over inhalation.

Patient 3 Patient 4 Patient 5

0.00 0.00 0.00
0.64 0.46 3.78
0.30 0.21 9.45
0.44 0.18 6.66
0.00 0.08 1.13
0.00 0.00 0.00
0.08 0.75 1.62
1.76 4.61 11.27
0.56 7.67 13.90
0.25 3.13 2.82
1.23 0.79 8.48
2.43 11.20 16.92

� the table depicts the maximum nonlinearity values

Inhalation

5 P1 P2 P3 P4 P5

.3 1.8 — 2.1 4.2 1.5

.2 2.7 2.9 3.0 3.1 3.2

.9 3.9 8.3 3.5 3.8 4.2

.3 4.3 9.4 5.6 6.6 8.3

.6 4.0 6.4 3.7 5.2 6.7

.2 3.1 4.5 2.6 7.8 4.2
2.5 m
and
4, P5

P

2
3
4
7
9
7
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proximated the inhalation and exhalation trajectories with a
sinusoidal function with varying asymmetry. Another alter-
native solution would be to use a 4D-CT composed of suffi-
cient 3D-CT phases, allowing a very good approximation of
the real movement inside the lung. The disadvantage of this
solution is that for large breathing amplitudes, additional
3D-CT images would be needed resulting in higher dose to
the patient.

IV.C. Motion nonlinearity

Analysis of the nonlinearity data suggests that the upper
lung has nearly linear motion, while the motion in the lower-

ExhalationExhalation InhalationInhalation
Max non-lin.

(9.4 mm)

Min non-lin.
(0 mm)

FIG. 5. Illustration of trajectory nonlinearity values on a transversal, coronal
and sagittal slice for patient 2.
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FIG. 6. Illustration of average trajectory lengths, hysteresis and ratio betwee
Bars correspond to average trajectory length values over exhalation �upper l

down chart�, and to average values of the ratio between hysteresis and trajectory
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middle regions is less linear �see Table IV�. The trajectory
lengths also increased in the lower parts of the lung �see Fig.
6�, which suggests that nonlinearity is correlated with trajec-
tory length. Trajectory lengths were greater over inhalation
than over exhalation, but the difference was not statistically
significant �p=0.19�. The 4D-CT data used in this study
were acquired from five patients presenting a diaphragmatic
respiration. In the future, it would be interesting to analyze
the data of patients with a thoracic respiration.

The majority of the lung �83.1%–97.9%� and GTV vol-
ume points �91.8%–99.9%� had a motion nonlinearity below
2.5 mm inter-slice distance. This suggests that for a scanner
acquisition with a slice thickness of 2.5 mm, these points
trajectories could be approximated with a straight line trajec-
tory over inhalation and over exhalation. The straight line
approximation based on nonlinearity ensures the fact that
along the entire free-breathing trajectory, the distance be-
tween the detailed trajectory and the straight line trajectory is

0
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R1 R2 R3 R4 R5 R6

m
m

Trajectory length over inhalation
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Patient 2
Patient 3
Patient 4
Patient 5
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%

Ratio hysteresis/trajectory length
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R6

(b)

(d)

steresis and trajectory length for each cranio-caudal region of each patient.
art� or over inhalation �upper right chart�, to average hysteresis values �left

TABLE V. The maximum hysteresis values for each cranio-caudal region of
each patient.

Max�mm� Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

R1 2.3 ¯ 2.4 4.8 4.9
R2 4.4 6.1 4.0 3.8 5.6
R3 4.9 9.1 5.7 6.6 9.1
R4 6.7 10.4 5.9 7.8 9.7
R5 6.5 10.6 7.1 10.7 13.7
R6 3.9 5.5 5.7 7.9 13.9
n hy
eft ch
length �right down chart�.
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always inferior to 2.5 mm if the exhalation and inhalation
trajectories are considered separately. The nonlinearity infor-
mation could be integrated in a motion model construction,
and the model could be simplified for regions where the
nonlinearity is within image voxel tolerance. Three patients
�1, 3, and 4� had a very small percentage of points with
motion nonlinearity greater than 2.5 mm, while two patients
�2 and 5� exhibited more nonlinearity. The first group had
significantly different nonlinearity values between exhalation
and inhalation �p-values 0.04 /0.1 /0.001�, while the second
group did not �p-values 0.34 /0.25�. All patients presented
larger lung and GTV motion nonlinearity over inhalation
than over exhalation. Pooled data analysis of the five patients
showed a very highly significant difference between inhala-
tion and exhalation �p=0.001� nonlinearity, most with lower
values over exhalation. Furthermore, in all patients, the high-
est nonlinearity was found in the lower-middle regions of the
lungs. These results are consistent with a respiration process
which involves different exhalation and inhalation mecha-
nisms: exhalation is a passive, smooth process, during which
the diaphragm and the respiration muscles relax, while inspi-
ration is a complex active, less linear process, with dia-
phragm and respiration muscles inducing different con-
straints in lung.

IV.D. Motion hysteresis

For motion hysteresis, we observed relatively large hys-
teresis for the lower-middle regions in all patients. We no-
ticed that longer trajectory lengths may be associated with
greater motion hysteresis. In addition, the upper-middle re-
gions of the lung present small hysteresis, but a large ratio
between hysteresis and trajectory length which suggests that
in the upper regions of the lung the motion is more subject to
hysteresis than in the lower regions. For areas within the
GTV volume, hysteresis was seen with smaller motion am-
plitudes too. For all GTVs, except patient 1�b� right lung
tumor, larger hysteresis values were seen in the coronal
plane, and variations were seen in sagittal and transaxial:
patients 1�a� and 3 presented larger sagittal values, and pa-
tients 2,4, and 5 larger trans-axial values. These observations

34,35

TABLE VI. Summary of trajectory lengths and nonli
values for patients’ GTVs. The �a� row of patient 1 c
�b� row contains values for the right lung tumor. CC d
transaxial plane.

Exhalation �mm� Inhalati

Lexh

Nonlin

Linh	 Max

P1 �a� 10.5 1.7 3.5 9.8 2
�b� 13.1 1.2 2.7 14.1 1

P2 14.6 1.8 5.2 17.6 2
P3 9.8 1.4 3.9 11.5 1
P4 7.0 1.2 4.0 10.7 2
P5 7.0 0.7 2.1 13.6 2
are close to those presented in previous studies.
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We can note with Eq. �3� that hysteresis is overestimated
for some trajectory shapes. An exact hysteresis value could
be computed if point velocity was known for exhalation and
inhalation. This would allow to calculate the functions of
time ��t� and ��t� for the Fréchet distance formula 2. ��t�
and ��t� could be calculated from scaling acquisition times.
By taking into account the acquisition time, we could ob-
serve if the velocities are uniform or not over the inhalation
and exhalation phases. Moreover, by using a respiration
model �for example the one proposed by Lujan et al.4�, it
would be possible to modelize the point trajectories for dif-
ferent breathing behaviors and to analyze hysteresis varia-
tions.

IV.E. Method limitations

Intensity based deformable registration methods are de-
pendent on image quality, and also on image resolution. Im-
age artifacts may induce errors. In this case, trajectories
would be estimated with erroneous intensity differences, and
they would not reveal the real lung motion. For patient 2 we
observed important nonlinearity values for regions 2, 3, and
4. Visual inspection of the image I9 revealed a blur offset
artifact of about 2 mm in the transversal plane in these image
regions. This may explain the number of points with a non-
linearity superior to 2.5 mm in these regions for patient 2.
The blur offset artifact is illustrated in Fig. 7. The left image
shows an artifact in the axial slice of I9, while the right
image shows a blur-free slice from end-exhale image I5. This

ty over exhalation and over inhalation of hysteresis
ns values calculated for the left lung tumor, and the
s the coronal plane, SG the sagittal plane and TA the

m� Hysteresis �mm�

nlin 	

MaxMax CC SG TA 3D

3.9 4.2 2.0 1.5 4.8 7.5
2.8 1.2 0.8 1.7 2.1 3.9
4.9 3.4 1.4 3.2 4.6 9.4
4.8 1.7 1.6 1.0 2.4 5.6
5.5 2.5 0.9 2.4 3.5 7.3
4.0 5.6 2.1 2.2 6.1 9.7

FIG. 7. Left image �a�—illustration of blur-offset artifact on an axial slice of
image I9 for patient 2. Right image �b�—a blur artifact-free axial slice of
neari
ontai
enote

on �m

No
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may explain the high degree of nonlinearity in these regions
for patient 2. In addition, the 4D-CT of patients with irregu-
lar breathing present artifacts that interfere with motion esti-
mation. Improvement of 4D imaging is an area of continued
study.

Landmark based validation is difficult and time consum-
ing even for experts. In homogenous regions no landmarks
can be identified, which limits its applicability. However, by
choosing a large number of points, and distributing their ar-
rangement throughout both lungs, we have mitigated this
problem. With an inter-expert variability of point identifica-
tion of 2 mm, and image inter-slice resolution of 2.5 mm,
accuracy of 2.3 mm was judged acceptable by oncologists.

V. CONCLUSION

In this study, we introduced and compared two methods
for patient specific motion estimation allowing to follow
lung and tumor displacements and deformations during free
breathing. In addition, we proposed techniques to automati-
cally extract physiological parameters of lung motion. Re-
sults demonstrate that lung motion during free breathing is
prone to nonlinearity and hysteresis, and that these physi-
ological effects vary across different regions within the lung.
Even if we identified some characteristics common to all
patients, we do not pretend to extract general characteristics
of lung motion behavior, but provide tools for patient spe-
cific motion analysis. In the future, the physiological infor-
mation may be integrated to build a general 4D thorax atlas,
with different clinical applications. In radiotherapy, for ex-
ample, it could be useful for dosimetry studies, and for on-
line image guidance procedures. It could also allow inter-
patient comparisons for population studies aimed at
extracting common and specific respiratory traits.
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