
This article was published in the above mentioned Springer issue.
The material, including all portions thereof, is protected by copyright;
all rights are held exclusively by Springer Science + Business Media.

The material is for personal use only;
commercial use is not permitted.

Unauthorized reproduction, transfer and/or use
may be a violation of criminal as well as civil law.

ISSN 1570-7873, Volume 8, Number 2

J Grid Computing (2010) 8:241–259
DOI 10.1007/s10723-010-9153-0

Dynamic Partitioning of GATE Monte-Carlo Simulations
on EGEE

Sorina Camarasu-Pop · Tristan Glatard ·
Jakub T. Mościcki · Hugues Benoit-Cattin ·
David Sarrut

Received: 20 August 2009 / Accepted: 2 March 2010 / Published online: 23 March 2010
© Springer Science+Business Media B.V. 2010

Abstract The EGEE Grid offers the necessary
infrastructure and resources for reducing the run-
ning time of particle tracking Monte-Carlo appli-
cations like GATE. However, efforts are required
to achieve reliable and efficient execution and to
provide execution frameworks to end-users. This
paper presents results obtained with porting the
GATE software on the EGEE Grid, our ulti-
mate goal being to provide reliable, user-friendly
and fast execution of GATE to radiation ther-
apy researchers. To address these requirements,
we propose a new parallelization scheme based
on a dynamic partitioning and its implementa-
tion in two different frameworks using pilot jobs
and workflows. Results show that pilot jobs bring
strong improvement w.r.t. regular gLite submis-
sion, that the proposed dynamic partitioning algo-
rithm further reduces execution time by a factor of

S. Camarasu-Pop (B) · T. Glatard ·
H. Benoit-Cattin
Creatis, Université de Lyon, CNRS, Inserm,
Bat Blaise Pascal, 7 Av Jean Capelle,
69621 Villeurbanne Cedex, France
e-mail: sorina.pop@creatis.insa-lyon.fr

D. Sarrut
Creatis, Université de Lyon, CNRS, Inserm,
Centre Léon Bérard, 28 rue Laënnec,
69373 Lyon cedex 08, France

J. T. Mościcki
CERN, Geneva, Switzerland

two and that the genericity and user-friendliness
offered by the workflow implementation do not
introduce significant overhead.

Keywords GATE · Monte-Carlo simulations ·
Grid computing · EGEE · Dynamic particle
parallelism · Workflows · Pilot jobs

1 Introduction

The OpenGate collaboration has been developing
for many years an open-source software named
GATE to perform nuclear medicine simulations,
especially for TEP and SPECT imaging [10]. A
new GATE module1 focusing on radiation ther-
apy simulations is currently being developed.
Based on the Monte-Carlo toolkit Geant4 [2],
GATE is a collaborative development gathering
researchers from several international institutions
and is used by hundreds of persons worldwide.

The simulation in a particle tracking Monte-
Carlo system consists in the successive stochastic
tracking through matter of a large set of indi-
vidual particles. Each particle has an initial set
of properties (type, location, direction, energy,
etc) and its interaction with matter is determined
according to realistic interaction probabilities and

1Publicly available in GATE v6.0 (beginning of 2010)

 Author's personal copy

242 S. Camarasu-Pop et al.

angular distributions. The simulation can be ana-
lyzed when the number of simulated particles is
large enough, i.e. when a desired statistical uncer-
tainty has been reached. As the physical interac-
tions can also produce other particles that must be
tracked, typical radiation therapy simulations can
take hours or days to complete.

Among radiation therapy simulation methods,
Monte-Carlo approaches like GATE are known
to be the most accurate but they are heavy to use
because of their prohibitive computing time. Re-
ducing their computing time is therefore of great
importance and production Grid infrastructures
are well adapted to this kind of simulations, both
in terms of cost and efficiency. Different paral-
lelization methods for Monte-Carlo simulations
have been proposed for execution on distributed
environments. However, they are mostly cluster-
oriented and still need improvement for Grid us-
age, as reviewed in Section 2.

The EGEE Grid, with its 250 resource centers,
is a good candidate for reducing the running time
of applications like GATE. EGEE is currently
the largest production Grid worldwide providing
more than 40,000 CPUs and several Petabytes
of storage. This infrastructure is used on a daily
basis by thousands of scientists organized in over
200 Virtual Organizations (VOs). EGEE is op-
erated by the gLite [13] middleware, which pro-
vides high-level services for scheduling and run-
ning computational jobs, as well as for data and
Grid infrastructure management.

Such a wide infrastructure is naturally het-
erogeneous and gLite job submission has to be
coupled with other tools in order (i) to ensure
reliability and high performance and (ii) to facil-
itate application porting and to offer high-level
execution interfaces [23]. One possible solution
for (i) is offered by pilot jobs, while (ii) can be
addressed by workflow engines. Pilot jobs have
been introduced during the last years [1, 3, 8,
11, 14, 19, 27, 28] and are now extensively used
to improve performance and cope with the la-
tencies and recurrent errors caused by the Grid
heterogeneity. Much effort has also been put into
workflow technology to facilitate application port-
ing and reusability [5, 7, 12, 15, 21]. Engines now
allow the execution of workflow applications on
various Grid middleware in a generic way.

In this paper, we propose a new dynamic par-
ticle partitioning method for GATE on distrib-
uted platforms, allowing for dynamic load bal-
ancing and ensuring complete results in spite of
the failures that may occur. We also present two
different implementations. The first one is based
on the DIANE [18] pilot-job system. The second
one also uses DIANE but is integrated into the
MOTEUR [7] workflow engine, offering a higher
genericity and better delivery to end-users.

The paper is organized as follows. Section 2 dis-
cusses related work. It presents different methods
of parallelisation of Monte-Carlo simulations on
distributed infrastructures, their limitations in the
context of a large heterogeneous infrastructure
like the EGEE Grid, as well as existing solutions
to some of those limitations. Section 3 describes
the algorithm and the two implementations pro-
posed for the dynamic partitioning of GATE on
EGEE. Experiments and results are presented in
Section 4 and quantify the gain yielded by DI-
ANE pilot jobs w.r.t regular gLite submission for
GATE, the gain of using dynamic parallelization
w.r.t static and the overhead of using a workflow
manager above DIANE pilot jobs. Section 5 con-
cludes the paper.

2 Parallel Monte-Carlo on Distributed
Infrastructures

Based on the Geant4 Monte-Carlo software,
GATE simulations can require a high comput-
ing time, but are naturally parallelizable. Instead
of sequentially simulating a large number (up to
several billions) of particles that may take several
days or even weeks to complete, smaller groups
(bags) of particles can be simulated independently
and eventually merged. This process is valid only
if the sub-simulations are statistically indepen-
dent, which is guaranteed by using the random
number generator integrated in GATE [26].

Previous work has been done on the paral-
lelization of Monte-Carlo simulations in a Grid
environment. In [16], Maigne et al. present results
obtained by running GATE in parallel on multi-
ple processors of the DataGrid2 project (EGEE

2http://eu-dataGrid.web.cern.ch

 Author's personal copy

http://eu-dataGrid.web.cern.ch

Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE 243

predecessor). This approach relies on a pre-
installation of GATE on computing sites and then
on the submission of Grid jobs to these particular
sites. In this case particle parallelism is used, i.e.
the geometry information is replicated on each
processor and particles are distributed equally be-
tween processors.

In [24], Procassini et al. use both particle and
spatial parallelism for the load balancing of par-
allel Monte-Carlo transport simulations. Spatial
parallelism involves splitting the geometry into
domains and then assigning a specific domain
to one processor. This method is usually needed
when the problem geometry has a significant size
so that one processor does not have enough mem-
ory to store all particles/zones. Spatial parallelism
may introduce load imbalance between proces-
sors, as spatial domains will require different
amounts of computational work. In [24], a dy-
namic load balancing algorithm distributes the
available processors to the spatial domains. The
particles are then divided evenly and once and for
all between the processors allocated to the same
domain.

In the two examples mentioned above the num-
ber of particles simulated on each of the N proces-
sors represents a fraction P/N of the total of P
particles. However, this static even distribution of
particles may underexploit resources if adopted
on heterogeneous platforms like Grids. Indeed,
fastest resources would rapidly complete their
tasks and then remain idle until the end of the sim-
ulation. Such a poor load balancing dramatically
slows down the application, in particular when a
task is allocated to a slow resource towards the
end of the simulation [4].

This last task issue is worsened if failures occur
and resubmission must be taken into account.
Indeed, failures are recurrent on large Grid in-
frastructures like the EGEE Grid, where the suc-
cess rate within the biomed VO has been noticed
to be of the order of 80 to 85% [9]. When splitting
one Monte-Carlo simulation into sub-tasks, it is
important that all of them complete successfully in
order to retrieve the final result. Therefore, failed
tasks must be resubmitted, further slowing down
the application completion.

A possible solution to this problem is task
(therefore particle) replication [4]. One replica-

tion method for Grid-based Monte-Carlo calcula-
tions is presented in [17]. It uses the “N out of M
strategy”, i.e. it increases the number of subtasks
from N to M, where M > N. Thus M parallel
computations are submitted to the distributed en-
vironment. As soon as N results are ready, the
final result can be produced. The main drawback
of this solution is that it considerably increases the
computational workload on the Grid. Moreover, a
good choice of M is not trivial since it varies from
one application to another and it depends on the
Grid characteristics.

Consequently, statically partitioning Monte-
Carlo simulations (i.e. assigning a fixed number of
particles to each task at the beginning of the sim-
ulation) and replication have several limitations
in terms of efficacy (the performance delivered
to the application) and efficiency (the amount of
resources wasted) on wide-scale heterogeneous
Grid infrastructures such as EGEE.

Another alternative is the dynamic distribu-
tion and/or reassignment of particles to available
processors during runtime. Dynamic partitioning
is proposed in [6] and in [24] for spatial paral-
lelism. In [6], the parallelization is done using an
MPI implementation and is based on a semaphore
principle under distributed memory conditions.
In [24], communications are generated between
processors in order to transmit changes from the
last state. These two implementations are there-
fore cluster oriented and are not adapted for Grid
usage where communications between processors
are very costly.

Pilot jobs [19] are a computing framework that
provides an intermediate solution, by proposing
a dynamic distribution (and reassignment) of sta-
tically partitioned tasks. In this case, a simula-
tion is statically divided into a large number of
tasks (of a convenient granularity) that are dy-
namically distributed to pilots by the workload
manager (called master in the DIANE pilot-job
framework). Tasks are no longer pushed to the
batch manager but are put in a master pool and
pulled by pilots running on available resources
(Grid nodes). Although pilots are still submitted
through the regular Grid middleware, such a pull
model has several advantages in terms of latency
reduction and fault-tolerance [25]. Latency is re-
duced by taking advantage of the fastest pilots

 Author's personal copy

244 S. Camarasu-Pop et al.

(little queuing time and/or powerful processor)
which will pull a maximum of tasks from the mas-
ter pool, whereas fault-tolerance is achieved by
removing the faulty pilots and resubmitting failed
tasks to a different pilot.

By providing late task binding to resources,
pilot jobs are a way to dynamically balance the
number of particles assigned to computing re-
sources. However, task granularity remains im-
portant. A very fine granularity (e.g. one parti-
cle per task) is equivalent to a dynamic particle
partitioning (each pilot would fetch and execute
one-particle simulations until the whole simula-
tion completes) but introduces a high overhead
(communication with the master, in/output file
transfer, application start-up, etc). Conversely, a
coarse granularity (large number of particles per
task, therefore small number of tasks comparable
to available resources) reduces the overhead but
becomes almost equivalent to a static approach,
leading to poor scheduling in heterogeneous non-
reliable environments such as EGEE. To illustrate
this point, Fig. 1 plots the task flow of a 16-h
simulation split into 75 tasks and executed on
EGEE submitting 75 pilot jobs. Load balancing
is clearly sub-optimal. During the last hour of
the simulation (from time 3,000 to 4,600 s), at
most six tasks run in parallel, which obviously

underexploits the available resources. Since tasks
all correspond to the same number of particles,
heterogeneity has dramatic impact leading to very
long tasks (e.g. task 16) and very short ones (e.g.
task 8). Moreover, errors lead to resubmissions
that further penalize the execution.

We are thus seeking a dynamic task partitioning
strategy that would allow to balance the number
of particles that each resource has to simulate de-
pending on its performance. Given the wide scale
of the target Grid infrastructure, communications
between tasks, between tasks and the master and
between tasks and output storage elements have
to be avoided as much as possible. Moreover,
task replication should not be widely employed
given that EGEE is a shared infrastructure. The
next section presents the algorithm and the two
proposed implementations.

3 Algorithm and Implementations

3.1 Dynamic task partitioning algorithm

The proposed dynamic task partitioning uses pilot
jobs and consists in a “do-while” algorithm with
no initial splitting. Each independent task of a
simulation is created with the total number of

Fig. 1 Example of task
flow obtained with static
partitioning of a GATE
simulation on EGEE and
using pilot jobs. The
simulation was split in 75
tasks but 24 of them
failed for various reasons
(four data transfer issues,
six pilots killed and 14
application errors).
Hatched bars figure the
time during which a failed
task ran before the error
happened. Tasks 76 to 99
are resubmissions, highly
penalizing the
performance. During the
last hour of the simulation
(from time 3,000 to
4,600 s) at most six tasks
run in parallel, which
obviously underexploits
the available resources

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120

T
im

e(
se

c)

Task number

Error
Upload

Execution
Download

Queued
Not Created

 Author's personal copy

Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE 245

particles and keeps on running until the desired
number of particles is reached (with the contri-
bution of all the tasks). Therefore, each task is
liable to simulate the totality if the other tasks
do not manage to simulate anything. The total
number of simulated particles is given by the sum
of all particles simulated by the independent tasks.
Thus each computing resource contributes to the
whole simulation until it is completed. Due to
the statistical properties of GATE simulations,
this does not require any communication between
tasks. Only light communications are performed
between tasks and the master.

It is to note that all the tasks have the same
inputs but a different random seed number which
will allow each task to simulate a unique set of par-
ticles complying with the simulation properties.
Thus, if the different tasks of the same simulation
are statistically independent, they generate inde-
pendent sets of particles that can eventually be
merged. Tasks are rendered statistically indepen-
dent by assigning each of them a seed taken from a
suite of non-correlated seed numbers. These seeds
are generated using the random number generator
as presented in Section 2.

Algorithm 1 shows the scheduling implemented
by the master and Algorithm 2 presents the pi-
lot pseudo-code. The master periodically sums
up the number of simulated particles and sends
stop signals to pilots when needed. Each pilot
executes only a single task, starting as soon as
the pilot reaches a worker node and stopping
at the end of the simulation. Outputs can be
uploaded periodically (DIANE-only implementa-
tion, Section 3.2.1) or at the end of the simu-

Algorithm 1 Master algorithm for dynamic load
balancing of GATE simulations

N = total number of particles to simulate
n = 0
while n < N do

n = number particles simulated by running
and successfully completed tasks

end while
Send stop signal to all tasks
Cancel scheduled tasks

Algorithm 2 Pilot algorithm for dynamic load bal-
ancing of GATE simulations

Download input data
N = total number of particles to simulate
n = 0, lastUpdate = 0, updateDelay = 5min
while stop signal not received AND n < N do

Simulate next particle
n++
if (getTime() − lastUpdate) > updateDelay
then

Send n to master
lastUpdate = getTime()

end if
end while
Upload results to output storage

lation (workflow implementation, Section 3.2.2),
only a single output data transfer per resource be-
ing thus required. Light communications between
tasks and master occurs periodically to upload the
current number of particles computed by the task
and at the end of the simulation when the master
sends stop signals.

Errors are nicely handled by this algorithm.
When a task fails the remaining ones just keep on
running until all the particles have been simulated.
No tasks resubmission is thus required.

3.2 Implementation

The GATE code had to be adjusted to handle
stop signals during simulation. This add-on allows
the application to pause regularly (at a frequency
that can be specified in the configuration macro
file), launch an auxiliary program and wait for its
exit code. Depending on this exit code, GATE
resumes or stops the simulation. In our case, the
auxiliary program checks if the stop signal has
been received and if this is the case the GATE
sub-simulation saves its results and stops. Note
that this implementation may lead to computing
slightly more particles than initially needed.

In the following sections, the implementa-
tion of the dynamic task partitioning in two
different environments is presented. For compari-
son purposes both static and dynamic partitioning
are presented. In all cases, on-the-fly download,

 Author's personal copy

246 S. Camarasu-Pop et al.

installation and execution of GATE on the
worker nodes is performed. The executable and
the necessary shared libraries are packed into one
tarball stored on one of the Grid Storage Ele-
ments (SE) or on the master server and down-
loaded as soon as the job starts its execution. This
approach offers a significant flexibility allowing to
change the software version at each submission
and is not restricted to computing nodes on which
the software is already installed.

3.2.1 Implementation in DIANE Pilot-job
Framework

The implementation in the DIANE pilot-job
framework consists in having DIANE masters and
pilots dedicated to GATE simulations. DIANE
pilots are submitted independently to the Grid
through the Ganga [20] frontend from a User
Interface (UI) machine as shown in Fig. 2. In our
case, the DIANE master is launched on the user’s
computer, where the executable and all input files
are stored. Once launched, the master generates
the GATE tasks and distributes them to the reg-
istered pilots. Pilots download the executable and
the inputs from the master to the Worker Nodes
and upload the results to the master.

In such a dedicated setup meant to be used
by one user (on whose computer the master is
installed) for a particular application (in our case
GATE), no permanent storage on the Grid is
needed. Consequently, in this dedicated environ-
ment files are not stored on EGEE SEs and thus
the transfer time is reduced.

Fig. 2 DIANE master pilots architecture

In the static approach, pilots execute GATE
tasks that are from the beginning assigned a frac-
tion P/N from the total number of particles (where
P is the total number of particles and N the total
number of tasks created). Pilots upload their re-
sults at the end of the simulation. The master reas-
signs tasks if they fail and considers the simulation
finished when all tasks are successfully completed.

The dynamic approach follows the algorithms
presented in Algorithms 1 and 2. Each GATE task
is initially assigned the total number of particles
P. Nevertheless, it will probably (unless in the
unlikely event that none of the other tasks get
executed) be stopped before completing the P
particles. In this case, knowing that one task may
last a rather long time, results are uploaded on the
master periodically (every 5 min) so that the risk
of losing large tasks towards their end is reduced.
This is possible because, as explained previously,
in this dedicated implementation file transfer is
direct between master and pilots, therefore faster
and not cumbersome for the Grid. The master has
a counter for already simulated particles that is
updated every time the pilots upload their cur-
rent status. When the total number of particles is
reached (the simulation is complete) the master
finishes and the pilots die automatically having no
master to connect to.

This integration in the DIANE pilot-job frame-
work is quite straightforward and the results are
encouraging as will be shown in Section 4.2. Nev-
ertheless, it has certain limitations that can be
addressed by integrating it into a workflow envi-
ronment. First, this implementation is application-
specific, i.e. the code of the pilots and the mas-
ter is dedicated to one application. When using
a workflow environment, the specificity can be
handled at the workflow level. Generic pilots
and master can thus be used. More generally,
a middleware-independent workflow description
of the application simplifies migration to other
execution frameworks when pilot jobs are not
the optimal solution. For instance, some resource
providers may restrict network connectivity for
security reasons or the target pilot-job system
may not support some specific resources such as
GPUs or MPI. Last but not least, delivery to end
users may be difficult. Deployment of this solution
requires individual handling of pilot submission

 Author's personal copy

Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE 247

gLite
WMS

glite WMS,

GATE–Lab

ARC client, etc.
WN

Agent
Controller

DIANE masterMOTEUR
server

VBrowser

Lab serverUser host EGEE grid

Fig. 3 Workflow environment. VBrowser and GATE-Lab plugins offer GUI for data management and experiment
description. MOTEUR enacts application workflows and submit tasks to a DIANE master offering pilot-job execution

and other technical actions (e.g. port opening
for the DIANE master) that are not straight-
forward for all users. GATE execution on the
Grid should be provided as a service to radiation
therapy researchers. Therefore, a higher level ex-
ecution environment as described in Section 3.2.2
has been implemented. The next section presents
our workflow implementation to address these
requirements.

3.2.2 A Workf low-Based Implementation

GATE has been integrated in the workflow sys-
tem supporting Grid applications in use at the
Creatis laboratory.3 It extends the system de-
scribed in [23] to include DIANE. As illustrated in
Fig. 3, it complies to a three-tier architecture com-
posed of (i) a client offering a GUI for Grid data
management and GATE simulation preparation
(ii) a service managing DIANE master setup, pilot
submission and task submission, monitoring and
error handling and (iii) the Grid itself, externally
administrated and accessible through gLite.

The user interacts with a client made of the
VBrowser (GUI to Grid storage resources [22])
and a specific plugin (GATE-Lab) performing pa-
rameter checking, input files bundling and upload-
ing, GATE release selection and history manage-
ment. A “one-click” GATE simulation is made
possible for the user who does not have to be
aware of Grid internals.

The server hosts DIANE and the MOTEUR
workflow engine [7]. It has the gLite clients in-
stalled and ports opened to allow pilot connec-
tions. MOTEUR generates Grid tasks from a

3http://www.creatis.insa-lyon.fr

Taverna [21] workflow description and submits
them to a DIANE master using a generic task
manager. DIANE pilots download and run tasks
on worker nodes (WN), periodically uploading
standard output and standard error to the master.
Using this setup, any workflow run with MO-
TEUR is able to benefit from DIANE pilot jobs
with no additional porting effort. Error handling
is implemented by MOTEUR by resubmitting
tasks up to a maximal number of times when they
fail. To ensure basic security, user credentials are
delegated to the MOTEUR server, which starts
a new DIANE master for every user. Therefore
jobs run with personal user credentials. Pilot jobs
are submitted by an agent controller using Ganga,
as for the DIANE-only implementation. Alter-
nately, MOTEUR can submit tasks to other Grid
middleware such as gLite WMS (e.g. to run MPI
jobs) or ARC client (e.g. to access NorduGrid
resources).

All the files are stored on EGEE Storage El-
ements (SEs) and registered in the Logical File
Catalog (LFC). Results are thus available per-
manently for post-processing (e.g. merging) and
important data volumes can be stored with no
maintenance costs for the application.

The static GATE workflow is shown in
Fig. 4. Component gate is the most important.
The others are auxiliary components used for
monitoring and simulation steering purposes. The
corresponding workflow document in available
online on the myExperiment4 website. It builds
GATE tasks and submits them to the DIANE
master. It takes as input the GATE input files

4http://www.myexperiment.org/workflows/766

 Author's personal copy

http://www.creatis.insa-lyon.fr
http://www.myexperiment.org/workflows/766

248 S. Camarasu-Pop et al.

Fig. 4 Static GATE
workflow. In/output files
and parameters are
figured by triangles.
Ellipses denote locally
executed components and
the box figures a Grid
job. Labels with no shape
are string constants.
Arrows are data links and
the circle-terminated line
is a precedence constraint

Workflow Outputs

Workflow Inputs

GATEConfig

gate

generateArrayFromNumbermonitorNParticles

stopNParticlesMonitoring

monitoringFileName

partitioning

outputDirectory

getNGateTasks

macFileName inputArchive GATEReleasetimeEstimationnParticles

(macro simulation description file and input
archive), an archive containing the GATE
release, the total number of tasks to simulate,
the partitioning method (static or dynamic)
and it iterates on an array containing all task
numbers. Components getNGateTasks and
generateArrayFromNumber are executed
locally and determine the total number of
GATE tasks to generate, given an estimation
of the total workload (timeEstimation).
Components monitorNParticles and
stopNParticlesMonitoring also run locally.
They produce files exploited by the GATE-Lab
client to provide monitoring information to the
user.

The dynamic workflow shown in Fig. 5 only
implements minor additions to the static. A com-
ponent is added to kill gate tasks (i.e. send stop
signals to running tasks and cancel scheduled
ones) when the total number of particles has been
simulated. Besides, once all tasks complete (i.e.
they have received a stop signal and uploaded

their results), the number of particles simulated
is counted again and another set of tasks is gen-
erated if the desired number of particles is not
reached. This is an extension to Algorithm 1
meant to avoid particle loss due to output transfer
errors.

Experiments conducted with both implemen-
tations (DIANE-only and workflow-based) for
each of the static and dynamic approaches are
presented in the next section.

4 Experiments and Results

4.1 Conditions

Experiments reported in this section aim at iden-
tifying the gain provided by pilots and dynamic
load balancing for GATE, as well as the overhead
of using a workflow manager above DIANE pilot
jobs. To address these questions several execu-
tion scenarios are considered (see Table 1). We

Workflow Outputs

Workflow Inputs

monitorNParticles

killAllJobs

GATEConfig

gate

monitoringFileName generateNewNumberOfTasks

countParticles

generateArrayFromNumber partitioning

getNGateTasks

outputDirectory

macFileName inputArchive GATEreleasetimeEstimation nParticles

Fig. 5 Dynamic GATE workflow. Additional components have been added to the static workflow (Fig. 4) to kill GATE
tasks once the total number of particles to simulate is reached and to resubmit tasks in case of output data transfer errors

 Author's personal copy

Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE 249

Table 1 Experiment
scenarios. ∗Tasks
ressubmission only in case
of output transfer errors
(see Section 3.2.2)

Scenario Execution mode Splitting File Resubmission
approach storage

1: gLite Standard WMS Static SE No
2: DS DIANE only Static Local Tasks only
3: DD DIANE only Dynamic Local No
4: WS Workflow + DIANE Static SE Tasks only
5: WD Workflow + DIANE Dynamic SE No∗

tested standard static parallelization with gLite-
only submission, static and dynamic paralleliza-
tion within the DIANE-only framework, as well
as static and dynamic parallelization within the
workflow framework.

The first scenario implements static paral-
lelization with standard WMS submission, i.e.
job descriptions created with the JDL (Job
Description Language) and submitted with the
glite-wms-job-submit command. In this sce-
nario the executable and input files are stored on
one SE and downloaded by the running job on
the WN. Outputs are uploaded to the same SE by
each job at the end of the GATE execution.

The second and third scenarios use the
DIANE-only implementation. The second corre-
sponds to the static parallelization (DS) and the
third to the dynamic (DD). In both cases the exe-
cutable and all input files are stored on the same
computer on which the DIANE master is running
and where output results are also uploaded. The
upload of results is done once at the end of each
task for the static approach and regularly (once
every 300 s) during the execution of the simulation
for the dynamic approach.

The forth and fifth scenarios use the workflow
framework. The forth corresponds to static paral-
lelization (WS) and the fifth to the dynamic (WD).
In both cases, the executable and all input files are
stored on one SE and downloaded by the running
task on the WN. Outputs are uploaded on the
same SE by each task at the end of the GATE exe-
cution for both approaches. Stdin/stdout files (of a
size of a few KB only) are uploaded/downloaded
every minute between the WN and the DIANE
master for monitoring.

Each experiment consists in executing a 16-h
simulation of 450,000 particles. All simulations
are split in turn into 25, 50 and 75 tasks. For
comparison reasons (between the gLite and the

pilot-job frameworks) the number of submitted
pilots for each experiment corresponds to the
number of tasks created for that experiment. For
the three scenarios that implement the static ap-
proach (gLite, DS, WS) simulations run with 25
jobs/pilots have tasks approximately three times
longer (average of 40 min on EGEE resources)
than those run with 75 jobs/pilots (average of 14
min on EGEE resources). Note that for the two
dynamic approaches (DD and WD), each task is
initially assigned the total of P particles. Therefore
the performance is only influenced by the number
of registered agents and the performance of the
machines on which they run.

We would like to draw the reader’s attention to
the distinction between what we call a job and a
task. The notion of a job in this context is associ-
ated to a gLite submission, i.e. the total amount
of work that can be executed by a standard gLite
job or a DIANE pilot (that has been submitted
on the Grid as a gLite job). On the contrary, the
notion of task refers to a partial amount of work
that has been defined at the application level and
is executed by DIANE pilots. It is to note that a
pilot, which is associated to a single job, can exe-
cute more than one task during its lifetime. In the
pilot-job model, the application is split into a given
number of tasks that are progressively assigned
to registered pilots. In this context, failed jobs
(DIANE pilots or gLite jobs) are not resubmitted.
On the contrary, for pilot-job implementations,
failed tasks are reassigned to registered pilots.
Faulty pilots (i.e. pilots running a task that fails)
are removed from the master pool to avoid new
failures and are not resubmitted. Therefore, as ini-
tially the number of tasks is equal to the number of
submitted pilots, task resubmission does not make
sense for the dynamic implementation. In realistic
conditions job resubmission is essential for the
classical gLite job submission approach and can be

 Author's personal copy

250 S. Camarasu-Pop et al.

highly desirable for the static pilot-job scenario in
order to replace the faulty pilots. In our case we
chose not to do it for comparison reasons.

In all cases a single WMS is used. No require-
ment is used for job submission, i.e., jobs are
sent to the whole EGEE biomed VO. This is
convenient in our case as the application has been
packaged so that it does not have any specific
requirements. However, this may not be the case
for other applications.

To ensure that the scenarios compared here are
run in similar Grid conditions, experiments from
scenarios 1, 2 and 4 are submitted simultaneously
(batch 1) and experiments from scenarios 2, 3
and 5 (batch 2) as well. Scenario 2 (DS) was
therefore repeated twice and we will refer to it
as DS1 for the first batch and DS2 for the second
one. Each scenario consists of three experiments,
each with 25, 50 and 75 tasks respectively. More-
over, each experiment is repeated three times.
In total, 54 GATE simulations are conducted
(3 repetitions × 3 job numbers × 3 scenarios ×
2 batches). In the following, each simulation
has a unique ID of the form Scenario.
ExperimentRepetitionNb-NbOfTasks. For
example, WS.2-50 is the second repetition of the
50-task experiment of the WS scenario.

Data is handled using the gLite data manage-
ment services. Data is stored on a Grid SE and
registered in the biomed logical file catalog (LFC).
It can be uploaded or deleted using the regular
gLite command-line applications or the VBrowser
GUI. Space usage and quotas on the SE are man-
aged by local site administrators according to the
their policy. For comparison reasons, we use the
same biomed SE for all experiments. This SE has
been selected arbitrarily among a list of reliable
biomed SEs.

Results presented in the next section aim at
quantifying:

– The gain from using DIANE pilot jobs w.r.t
regular gLite submission for GATE, as pre-
sented in Section 4.2.1

– The gain from using dynamic parallelization
w.r.t static, as presented in Section 4.2.2

– The overhead of using a workflow manager
above DIANE pilot jobs, as presented in
Section 4.2.3

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
un

ni
ng

 p
ilo

ts
/jo

bs
 o

ut
 o

f 2
5

time(s)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
time(s)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
time(s)

WD.2-25
DD.1-25
DD.2-25

DS2.2-25

(a) 25 pilots

 0

 10

 20

 30

 40

 50

R
un

ni
ng

 p
ilo

ts
/jo

bs
 o

ut
 o

f 5
0

WD.3-50
DD.3-50

DS2.3-50

(b) 50 pilots

 0

 10

 20

 30

 40

 50

 60

 70

 80

R
un

ni
ng

 p
ilo

ts
/jo

bs
 o

ut
 o

f 7
5

(c) 75 pilots

Fig. 6 Registered jobs/pilots. Dashed lines plot runs for
which the evolution of the number of registered jobs/pilots
is similar. Overall no scenario is favoured by the Grid
scheduler

 Author's personal copy

Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE 251

4.2 Results and Discussion

Figure 6 displays the number of registered DI-
ANE pilots (for scenarios 2, 3, 4 and 5) and
the number of running gLite jobs (for scenario
1) along time. Overall, it shows that no scenario
was favored by the Grid scheduler although there
is some variability among repetitions. In Fig. 6a
most of the runs have similar behavior, with about
half of the submitted jobs/pilots registered in less
than 15 min (900 s). We notice however a group of
three singular runs: DS2.2-25, DD.2-25 and WD.2-
25. They correspond to three different scenarios
executed simultaneously at a moment when the
Grid must have been more loaded than for the
other runs. This illustrates the fact that experi-

ments run simultaneously are subject to similar
Grid conditions. DD.1-25 is clearly an outlier with
very few registered pilots, which penalizes the
overall performance of the experiment as will be
discussed in Section 4.2.2. In Fig. 6b there is an-
other group of three singular runs corresponding
to simultaneously executed experiments: DS2.3-
50, DD.3-50 and WD.3-50. In Fig. 6c the evolution
of the number of registered jobs is overall very
homogeneous among runs.

Figures 7, 8a–c, 10a–c and 11a–c plot the evolu-
tion of the simulation along time, i.e. the number
of simulated particles out of the total of 450,000
particles. Each scenario is drawn with a different
line style and experiments conducted in parallel
are plotted with the same symbols (star, circle or

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

DS1.1-25
DS1.2-25
DS1.3-25
gLite.1-25
gLite.2-25
gLite.3-25

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

DS1.1-50
DS1.2-50
DS1.3-50
gLite.1-50
gLite.2-50
gLite.3-50

(a) 25 pilots (b) 50 pilots

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

DS1.1-75
DS1.2-75
DS1.3-75
gLite.1-75
gLite.2-75
gLite.3-75

(c) 75 pilots

Fig. 7 DIANE-only implementation vs regular gLite-WMS implementation. gLite performance degrades drastically after
66% and never manages to reach 100% of the simulation

 Author's personal copy

252 S. Camarasu-Pop et al.

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

DD.1-25
DD.2-25
DD.3-25

DS2.1-25
DS2.2-25
DS2.3-25

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60

M
ak

es
pa

n

Average number of registered pilots

DD.1-25
DD.2-25
DD.3-25

DS2.1-25
DS2.2-25
DS2.3-25

(a) 25 submitted pilots (d) 25 submitted pilots

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

DD.1-50
DD.2-50
DD.3-50

DS2.1-50
DS2.2-50
DS2.3-50

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60

M
ak

es
pa

n

Average number of registered pilots

DD.1-50
DD.2-50
DD.3-50

DS2.1-50
DS2.2-50
DS2.3-50

(b) 50 submitted pilots (e) 50 submitted pilots

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

DD.1-75
DD.2-75
DD.3-75

DS2.1-75
DS2.2-75
DS2.3-75

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60

M
ak

es
pa

n

Average number of registered pilots

DD.1-75
DD.2-75
DD.3-75

DS2.1-75
DS2.2-75
DS2.3-75

(c) 75 submitted pilots (f) 75 submitted pilots

Completed particles along time Makespan w.r.t registered agents

Fig. 8 DIANE-only dynamic implementation vs DIANE-only static implementation. The dynamic parallelization brings
significant performance improvement as the makespan is considerably smaller

 Author's personal copy

Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE 253

Table 2 Total transfer
times (upload +
download) and errors for
DIANE-only
implementation
(left-hand side columns)
vs Workflow
implementation
(right-hand side columns)

DIANE-only Transfer Errors Workflow Transfer Errors
scenario time(s) Scenario time(s)

DS1.1-25 1,156 5 WS.1-25 2,488 7
DS1.2-25 1,842 1 WS.2-25 2,198 8
DS1.3-25 648 3 WS.3-25 2,114 4
DS1.1-50 3,064 2 WS.1-50 5,395 11
DS1.2-50 1,332 6 WS.2-50 6,027 12
DS1.3-50 3,492 6 WS.3-50 4,650 9
DS1.1-75 3,245 13 WS.1-75 6,063 18
DS1.2-75 3,551 11 WS.2-75 7,229 24
DS1.3-75 5,200 7 WS.3-75 8,692 14
DD.1-25 3,418 1 WD.1-25 1,682 0
DD.2-25 2,537 1 WD.2-25 1,848 6
DD.3-25 2,125 3 WD.3-25 2,016 6
DD.1-50 1,957 2 WD.1-50 4,935 6
DD.2-50 2,010 8 WD.2-50 4,953 8
DD.3-50 1,910 7 WD.3-50 5,373 4
DD.1-75 2,676 5 WD.1-75 7,956 6
DD.2-75 2,562 1 WD.2-75 4,872 9
DD.3-75 2,098 2 WD.3-75 6,183 13

square). On each graph three horizontal lines are
drawn at 33%, 66% and 100% of the running jobs
and of the simulated particles respectively.

The application makespan (i.e. the time needed
to complete 100% of the simulation) can be con-
sidered as a measure of the performance. How-
ever, variations in the Grid conditions (e.g. in the
number of errors) can have a significant impact
on the makespan. To have more insight about
our experiments, we also measured data trans-
fer times and the number of errors as reported
on Table 2. Moreover, in Figs. 8d–f, 10d–f and
11d–f we also plotted the makespan5 as a function
of the average number of registered pilots during
the simulation. These figures show that, even if
the makespan is influenced by the number of reg-
istered pilots (dependent upon Grid conditions),
overall the difference in performance can indeed
be attributed to the different implementations and
splitting methods.

Although special care was taken to ensure that
experiments are run in similar conditions, Grid
conditions on a production system like EGEE
cannot be entirely controlled. For a reliable inter-

5In Fig. 8d due to an experimental problem (temporary
connectivity issues with the master) we were unable to
determine the makespan of DS2.1-25

pretation of our results, each experiment was re-
peated three times and measurements were done
on multiple factors that could have influenced the
results. Nevertheless further benchmarking needs
to be envisaged for a finer (quantitative) analysis
of the presented approaches. In the following we
compare the scenarios two by two by analyzing
their performance and reliability.

4.2.1 Pilots Impact

In order to evaluate the gain of pilot jobs w.r.t.
regular gLite WMS submission, we compare sce-
nario 1 (gLite) with scenario 2 (DS1). Figure 7
shows that the two scenarios are roughly equiva-
lent for the first third of the simulation regardless
of the number of pilots. At the beginning of the
simulation the two scenarios benefit equally from
the fastest EGEE resources. From 33% to 66%,
scenario 1 begins to worsen and after 66% it
degrades drastically both in terms of performance
and in terms of reliability. This is due to the fact
that the pilot jobs continue exploiting resources by
reassigning new tasks to them, whereas the gLite
scenario releases resources as soon as they finish
their unique task. Scenario 1 (gLite) never man-
ages to complete 100% of the simulation. Indeed,
the success rate is in most of the cases between
70% and 80%. These results are confirmed for

 Author's personal copy

254 S. Camarasu-Pop et al.

all three cases (25, 50 and 75 jobs/pilots). As
expected, pilot jobs bring dramatic improvement
w.r.t. default gLite, both in terms of reliability and
performance.

For the DS scenario, the simulation comple-
tion rate begins to significantly slow down around
400,000 particles (90%). This is due to late resub-
mission of failed tasks or assignment of tasks to
slow resources towards the end of the simulation.
This corresponds to the issue of the last tasks as
presented in Section 2 and will be addressed by
the dynamic partitioning method as the results in
the next section show.

4.2.2 Dynamic Parallelization Impact

A comparison between the dynamic and static
partitioning approaches can be seen in Fig. 8
where DS2 and DD experiments are plotted. The
dynamic parallelization brings significant perfor-
mance improvement, the makespan being on av-
erage two times smaller for the experiments with
75 pilots. Indeed a significant amount of time is
saved on the completion of the last tasks. Thanks
to the lack of resubmission and better resource
exploitation, no slowdown is observed towards the
end of the simulation for the dynamic approach.

In Fig. 8a, the poor performance of the DD.1-25
experiment is due to the small number of regis-
tered pilots as noticed in Section 4.2.

In Fig. 8d–f we can observe the makespan vari-
ability with respect to the number of registered
pilots. The latter mainly depends on the Grid
conditions, but also on the simulation makespan.
Given the same simulation, but different Grid
conditions, the simulation will finish faster if the
Grid conditions are favorable, i.e. if the largest
number of pilots are available as soon as possible.
Given the same number of pilots available along
time (and knowing that pilots register progres-
sively as shown in Fig. 6) and two different split-
ting approaches, the faster approach will finish
earlier, and thus fewer pilots have the chance to
register. In Fig. 8d–f we see clearly that despite
the variations in the number of average registered
pilots, the makespans for the dynamic partitioning
approach are (much) lower than for the static
approach. This proves that the difference in per-
formance is mainly determined by the splitting
method and not by the Grid conditions. We also
notice that for the same splitting method, perfor-
mance is better (makespan is smaller) when more
pilots register. This rule applies less for the static
approach, where the simulation makespan highly

Fig. 9 Example of task
flow obtained with
dynamic partitioning of a
GATE simulation on
EGEE with 75 submitted
pilots. Available
resources are all exploited
until the end of the
simulation. Errors are
compensated without any
resubmissions. The
scheduling obviously
outperforms the one
obtained with static
partitioning (Fig. 1)

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60 70 80

T
im

e(
se

c)

Task number

Cancelled
Error

Upload
Execution
Download

Queued
Not Created

 Author's personal copy

Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE 255

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

WS.1-25
WS.2-25
WS.3-25

DS1.1-25
DS1.2-25
DS1.3-25

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60

M
ak

es
pa

n

Average number of registered pilots

WS.1-25
WS.2-25
WS.3-25

DS1.1-25
DS1.2-25
DS1.3-25

(a) 25 submitted pilots (d) 25 submitted pilots

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

WS.1-50
WS.2-50
WS.3-50

DS1.1-50
DS1.2-50
DS1.3-50

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60

M
ak

es
pa

n

Average number of registered pilots

WS.1-50
WS.2-50
WS.3-50

DS1.1-50
DS1.2-50
DS1.3-50

(b) 50 submitted pilots (e) 50 submitted pilots

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

WS.1-75
WS.2-75
WS.3-75

DS1.1-75
DS1.2-75
DS1.3-75

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60

M
ak

es
pa

n

Average number of registered pilots

WS.1-75
WS.2-75
WS.3-75

DS1.1-75
DS1.2-75
DS1.3-75

(c) 75 submitted pilots (f) 75 submitted pilots
Completed particles along time Makespan w.r.t registered agents

Fig. 10 Workflow implementation vs DIANE-only static approach. Workflow implementation provides a generic frame-
work with no significant performance loss

 Author's personal copy

256 S. Camarasu-Pop et al.

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

WD.1-25
WD.2-25
WD.3-25
DD.1-25
DD.2-25
DD.3-25

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60

M
ak

es
pa

n

Average number of registered pilots

WD.1-25
WD.2-25
WD.3-25
DD.1-25
DD.2-25
DD.3-25

(d) 25 submitted pilots(a) 25 submitted pilots

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

WD.1-50
WD.2-50
WD.3-50
DD.1-50
DD.2-50
DD.3-50

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60

M
ak

es
pa

n

Average number of registered pilots

WD.1-50
WD.2-50
WD.3-50
DD.1-50
DD.2-50
DD.3-50

(e) 50 submitted pilots(b) 50 submitted pilots

 0

 100000

 200000

 300000

 400000

 500000

 0 1000 2000 3000 4000 5000 6000 7000

C
om

pl
et

ed
 p

ar
tic

le
s

ou
t o

f 4
50

00
0

time(s)

WD.1-75
WD.2-75
WD.3-75
DD.1-75
DD.2-75
DD.3-75

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60

M
ak

es
pa

n

Average number of registered pilots

WD.1-75
WD.2-75
WD.3-75
DD.1-75
DD.2-75
DD.3-75

(c) 50 submitted pilots (f) 50 submitted pilots
Completed particles along time Makespan w.r.t registered agents

Fig. 11 Workflow implementation vs DIANE-only dynamic approach. Workflow implementation provides a generic
framework with no significant performance loss

 Author's personal copy

Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE 257

depends on the slower tasks and failures, being
thus very sensitive to Grid conditions and less
predictable.

Figure 9 plots a task flow obtained with dy-
namic partitioning. The scheduling obviously out-
performs the one obtained with static partitioning
(see Fig. 1). Tasks complete almost simultane-
ously and errors are compensated without any re-
submissions. The dynamic partitioning succeeds in
compensating the problems (errors, spare or slow
resources) of the static approach by exploiting
available resources until the end of the simulation.
The result is outstanding in terms of scheduling as
tasks complete almost simultaneously.

4.2.3 Workf low Overhead

Figure 10 compares the workflow versus the
DIANE-only implementation for static task par-
titioning and Fig. 11 compares the workflow ver-
sus the DIANE-only implementation for dynamic
task partitioning. The two implementations have
similar performance, with no significant difference
for 50 and 75 pilots. For 25 pilots (longest
tasks) DIANE-only has better makespan than the
workflow implementation in the static case. In this
case, the time to 33% is almost identical but the
workflow is then slowed down by a higher number
of errors as can be seen in Table 2. Reliability is
very good in both cases, but the workflow imple-
mentation has overall more errors than DIANE-
only because of SE usage. Output transfer errors
are very penalizing because they are detected late.
These results are confirmed for all three cases (25,
50 and 75 jobs/pilots).

Transfer time, also available in Table 2, is sig-
nificantly smaller in the DIANE only approach as
compared to the workflow approach because of
the use of SEs. However, this difference does not
seem to have a measurable impact on the over-
all performance. Overall, we conclude that the
workflow implementation does not significantly
penalize the execution.

5 Conclusion

This paper presented dynamic partitioning and
execution of GATE, an open-source software for

nuclear medicine and radiation therapy simula-
tions, on the EGEE Grid. As a particle tracking
Monte-Carlo system, GATE is naturally paral-
lelizable and different parallelization methods can
be found in the literature for its execution on
distributed environments. However, these meth-
ods are not perfectly adapted for large-scale pro-
duction infrastructures like EGEE. Moreover, the
heterogeneity of EGEE leads to recurrent er-
rors and high latencies which lead to reduced
performance.

To address these problems, we proposed a new
dynamic splitting method for GATE and two im-
plementations for its integration on EGEE. Re-
sults show that the proposed algorithm brings
significant improvement w.r.t conventional static
splitting. Indeed, by using our dynamic method,
simulations complete up to two times faster than
with the static partitioning. The dynamic approach
achieves significantly better scheduling, all tasks
completing almost simultaneously. Also, the two
proposed implementations largely outperform the
classical gLite job submission, by achieving 100%
of the results without job/pilot resubmission and
by significantly lowering the completion time.
The workflow implementation provides a generic
framework for the integration of new applications
with different computing models and their exe-
cution on other systems. Results show that this
generic framework is not penalizing in terms of
performance.

The work presented is already in production for
the (non-clinical) radiation therapy researchers at
Creatis. As future work we plan to make it avail-
able for other research teams worldwide. More-
over, we want to extend the algorithm and imple-
mentations proposed here to other Monte-Carlo
applications. We also envisage investigating the
possibility of a multi-platform parallelization on
clusters and GPUs and dynamically distribute the
charge among these heterogeneous platforms.

Acknowledgements This work is co-funded by the
European Commission through the EGEE-III project,6

contract number INFSO-RI-222667, and the results

6www.eu-egee.org

 Author's personal copy

http://www.eu-egee.org

258 S. Camarasu-Pop et al.

produced made use of the EGEE Grid infrastructure. This
work is also supported by the French national research
agency (ANR), HGATE project under contract number
ANR-09-COSI-004-01. It also falls into the scope of the sci-
entific topics of the French National Grid Institute (IdG).
The authors would like to thank the EGEE site administra-
tors and the ggus support for their work, Fabrice Bellet for
his help with application compiling and customization for
the Grid, as well as the reviewers for their sharp and useful
reviews which helped improving the paper.

References

1. Ahn, S., Namgyu, K., Seehoon, L., Soonwook, H.,
Dukyun, N., Koblitz, B., Breton, V., Sangyong, H.: Im-
provement of task retrieval performance using AMGA
in a large-scale virtual screening. In: 4th Conference
on Networked Computing and Advanced Information
Management, pp. 456–463 (2008)

2. Allison, J., Amako, K., Apostolakis, J., Araujo, H.,
Arce Dubois, P., Asai, M., Barrand, G., Capra, R.,
Chauvie, S., Chytracek, R., Cirrone, G., Cooperman,
G., Cosmo, G., Cuttone, G., Daquino, G.,
Donszelmann, M., Dressel, M., Folger, G., Foppiano,
F., Generowicz, J., Grichine, V., Guatelli, S.,
Gumplinger, P., Heikkinen, A., Hrivnacova, I.,
Howard, A., Incerti, S., Ivanchenko, V., Johnson, T.,
Jones, F., Koi, T., Kokoulin, R., Kossov, M., Kurashige,
H., Lara, V., Larsson, S., Lei, F., Link, O., Longo, F.,
Maire, M., Mantero, A., Mascialino, B., McLaren, I.,
Mendez Lorenzo, P., Minamimoto, K., Murakami,
K., Nieminen, P., Pandola, L., Parlati, S., Peralta, L.,
Perl, J., Pfeiffer, A., Pia, M., Ribon, A., Rodrigues, P.,
Russo, G., Sadilov, S., Santin, G., Sasaki, T., Smith,
D., Starkov, N., Tanaka, S., Tcherniaev, E., Tome,
B., Trindade, A., Truscott, P., Urban, L., Verderi, M.,
Walkden, A., Wellisch, J., Williams, D., Wright, D.,
Yoshida, H.: Geant4 developments and applications.
IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006)

3. Bagnasco, S., Betev, L., Buncic, P., Carminati, F.,
Cirstoiu, C., Grigoras, C., Hayrapetyan, A.,
Harutyunyan, A., Peters, A.J., Saiz, P.: Alien: Alice
environment on the Grid. J. Phys. Conf. Ser. 119(6),
062012 (2008)

4. Cirne, W., Brasileiro, F., Paranhos, D., Goes, L.,
Voorsluys, W.: On the efficacy, efficiency and emer-
gent behavior of task replication in large distributed
systems. Parallel Comput. 33, 213–234 (2007)

5. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B.,
Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a
framework for mapping complex scientific workflows
onto distributed systems. Sci. Program. J. 13(3), 219–
237 (2005)

6. Galyuk, Y.P., Memnonov, V., Zhuravleva, S.E.,
Zolotarev, V.I.: Grid technology with dynamic load
balancing for Monte Carlo simulations. In: PARA ’02:
Proceedings of the 6th International Conference on

Applied Parallel Computing Advanced Scientific Com-
puting, pp. 515–520. Springer, London (2002)

7. Glatard, T., Montagnat, J., Lingrand, D., Pennec, X.:
Flexible and efficient workflow deployment of data-
intensive applications on Grids with MOTEUR. Int. J.
High Perform. Comput. Appl. (IJHPCA) 22(3), 347–
360 (2008)

8. Jacq, N., Salzeman, J., Jacq, F., Legré, Y., Medernach,
E., Montagnat, J., Maass, J., Reichstadt, M.,
Schwichtenberg, H., Sridhar, M., Kasam, V.,
Zimmermann, M., Hofmann, M., Breton, V.: Grid-
enabled virtual screening against malaria. J. Grid
Computing (JGC) 6(1), 29–43 (2008)

9. Jacq, N., Salzemann, J., Jacq, F., Legré, Y., Medernach,
E., Montagnat, J., Maass, A., Reichstadt, M.,
Schwichtenberg, H., Sridhar, M., Kasam, V.,
Zimmermann, M., Hofmann, M., Breton, V.: Grid
enabled virtual screening against malaria. J. Grid
Computing 6, 29–43 (2008)

10. Jan, S., Santin, G., Strul, D., Staelens, S., Assi,
K., Autret, D., Avner, S., Barbier, R., Bardis,
M., Bloomfield, P.M., Brasse, D., Breton, V.,
Bruyndonckx, P., Buvat, I., Chatziioannou, A.F.,
Choi, Y., Chung, Y.H., Comtat, C., Donnarieix,
D., Ferrer, L., Glick, S.J., Groiselle, C.J., Guez, D.,
Honore, P.F., Kerhoas-Cavata, S., Kirov, A.S., Kohli,
V., Koole, M., Krieguer, M., van der Laan, D.J.,
Lamare, F., Largeron, G., Lartizien, C., Lazaro, D.,
Maas, M.C., Maigne, L., Mayet, F., Melot, F., Merheb,
C., Pennacchio, E., Perez, J., Pietrzyk, U., Rannou,
F.R., Rey, M., Schaart, D.R., Schmidtlein, C.R., Simon,
L., Song, T.Y., Vieira, J.M., Visvikis, D., de Walle,
R.V., Wiers, E., Morel, C.: GATE: a simulation
toolkit for PET and SPECT. Phys. Med. Biol. 49(19),
4543–4561 (2004)

11. Kacsuk, P., Farkas, Z., Fedak, G.: Towards making
BOINC and EGEE interoperable. In: 4th eScience
Conference, pp. 478–484. Indianapolis (2008)

12. Kacsuk, P., Sipos, G.: Multi-Grid, multi-user workflows
in the P-GRADE Grid portal. J. Grid Computing
(JGC) 3(3–4), 221–238 (2005)

13. Laure, E., Fisher, S., Frohner, A., Grandi, C., Kunszt,
P., Krenek, A., Mulmo, O., Pacini, F., Prelz, F., White,
J., Barroso, M., Buncic, P., Byrom, R., Cornwall,
L., Craig, M., Meglio, A.D., Djaoui, A., Giacomini,
F., Hahkala, J., Hemmer, F., Hicks, S., Edlund, A.,
Maraschini, A., Middleton, R., Sgaravatto, M.,
Steenbakkers, M., Walk, J., Wilson, A.: Programming
the Grid with gLite. Comput. Methods Sci. Technol.
12(1), 33–45 (2006)

14. Maeno, T.: Panda: distributed production and distrib-
uted analysis system for atlas. J. Phys. Conf. Ser. 119(6),
062,036 (4 pp.) (2008)

15. Maheshwari, K., Missier, P., Goble, C., Montagnat, J.:
Medical image processing workflow support on the
EGEE Grid with Taverna. In: Intl Symposium on
Computer Based Medical Systems (CBMS’09). IEEE
(2009)

16. Maigne, L., Hill, D., Calvat, P., Breton, V., Lazaro, D.,
Reuillon, R., Legré, Y., Donnarieix, D.: Parallelization
of Monte-Carlo simulations and submission to a Grid

 Author's personal copy

Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE 259

environment. In: Parallel Processing Letters Health-
GRID 2004, vol. 14, pp. 177–196. Clermont-Ferrand
France (2004)

17. Mascagni, M., Li, Y.: Computational infrastructure
for parallel, distributed, and Grid-based Monte-Carlo
computations. In: Large-Scale Scientific Computing,
pp. 39–52 (2003)

18. Moscicki, J.T.: Diane—distributed analysis environ-
ment for Grid-enabled simulation and analysis of
physics data. In: Nuclear Science Symposium Confer-
ence Record, 2003 IEEE, vol. 3, pp. 1617–1620 (2003)

19. Moscicki, J.T.: Distributed analysis environment for
HEP and interdisciplinary applications. Nucl. Instrum.
Methods Phys. Res. A 502, 426–429 (2003)

20. Moscicki, J.T., Brochu, F., Ebke, J., Egede, U.,
Elmsheuser, J., Harrison, K., Jones, R., Lee, H., Liko,
D., Maier, A., Muraru, A., Patrick, G., Pajchel, K.,
Reece, W., Samset, B., Slater, M., Soroko, A., Tan,
C., van der Ster, D., Williams, M.: Ganga: a tool for
computational-task management and easy access to
Grid resources. Comput. Phys. Commun. 180, 2303–
2316 (2009)

21. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M.,
Greenwood, M., Carver, T., Glover, K., Pocock, M.R.,
Wipat, A., Li, P.: Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinfor-
matics J. 17(20), 3045–3054 (2004)

22. Olabarriaga, S., de Boer, P.T., Maheshwari, K.,
Belloum, A., Snel, J., Nederveen, A., Bouwhuis, M.

(eds.): Virtual Lab for fMRI: Bridging the Usability
Gap. IEEE, Amsterdam (2006)

23. Olabarriaga, S., Glatard, T., de Boer, P.T.: A virtual
laboratory for medical image analysis. IEEE Trans. Inf.
Technol. Biomed. (TITB), in press (2010)

24. Procassini, R., O’Brien, M., Taylor, J.: Load balanc-
ing of parallel Monte Carlo transport calculations. In:
Mathematics and Computation, Supercomputing, Re-
actor Physics and Nuclear and Biological Applications.
Palais des Papes, Avignon, Fra (2005)

25. Germain Renaud, C., Loomis, C., Moscicki, J., Texier,
R.: Scheduling for responsive Grids. J. Grid Computing
6, 15–27 (2008)

26. Reuillon, R., Hill, D., Gouinaud, C., El Bitar, Z.,
Breton, V., Buvat, I.: Monte Carlo simulation with
the GATE software using Grid computing. In: Pro-
ceedings of NOTERE 2008 8ème Conférence Interna-
tionale sur les NOuvelles TEchnologies de la REparti-
tion, NOTERE 2008. Lyon France (2008)

27. Sfiligoi, I.: glideinWMS—a generic pilot-based work-
load management system. J. Phys. Conf. Ser. 119(6),
062,044 (9 pp.) (2008)

28. Tsaregorodtsev, A., Bargiotti, M., Brook, N., Ramo,
A.C., Castellani, G., Charpentier, P., Cioffi, C., Closier,
J., Diaz, R.G., Kuznetsov, G., Li, Y.Y., Nandakumar,
R., Paterson, S., Santinelli, R., Smith, A.C., Miguelez,
M.S., Jimenez, S.G.: Dirac: a community Grid so-
lution. J. Phys. Conf. Ser. 119(6), 062,048 (12 pp.)
(2008)

 Author's personal copy

	Dynamic Partitioning of GATE Monte-Carlo Simulations on EGEE
	Abstract
	Introduction
	Parallel Monte-Carlo on Distributed Infrastructures
	Algorithm and Implementations
	Dynamic task partitioning algorithm
	Implementation
	Implementation in DIANE Pilot-job Framework
	A Workflow-Based Implementation

	Experiments and Results
	Conditions
	Results and Discussion
	Pilots Impact
	Dynamic Parallelization Impact
	Workflow Overhead

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

