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Summary

We report a tumor tracking
method for intrafraction
moving lesions based on
a patient-specific adaptive
breathing motion model,
which is estimated a priori
from time-resolved planning
CT images. At each treat-
ment fraction, model param-
eters are updated relying on
in-room radiography acqui-
sition and optical surface
imaging. The proposed
approach was evaluated on 7
lung cancer patients, obtain-
ing a median tumor tracking
accuracy of 1.5 mm in each
spatial direction.
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Purpose: To develop a tumor tracking method based on a surrogate-driven motion model, which
provides noninvasive dynamic localization of extracranial targets for the compensation of
respiration-induced intrafraction motion in high-precision radiation therapy.
Methods and Materials: The proposed approach is based on a patient-specific breathing motion
model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model
parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment
fraction according to in-room radiography acquisition and optical surface imaging. The baseline
parameter is adapted to the interfractionvariations obtained from the daily cone beam (CB)CT scan.
The respiratory amplitude and phase are extracted from an external breathing surrogate, estimated
from the displacement of the patient thoracoabdominal surface, acquired with a noninvasive surface
imaging device. The developedmethodwas tested on a database of 7 lung cancer patients, including
the synchronized information on internal and external respiratory motion during a CBCT scan.
Results: About 30 seconds of simultaneous acquisition of CBCT and optical surface images were
analyzed for each patient. The tumor trajectories identified in CBCT projections were used as refer-
ence and compared with the target trajectories estimated from surface displacement with the a priori
motionmodel. The resulting absolute differences between the reference and estimated tumormotion
along the 2 image dimensions ranged between 0.7 and 2.4 mm; the measured phase shifts did not
exceed 7% of the breathing cycle length.
Conclusions: We investigated a tumor trackingmethod that integrates breathingmotion information
provided by the 4-dimensional planning CTwith surface imaging at the time of treatment, represent-
ing an alternative approach to point-based externaleinternal correlation models. Although an
in-room radiograph-based assessment of the reliability of the motion model is envisaged, the devel-
oped techniquedoes not involve the estimation and continuous update of correlation parameters, thus
requiring a less intense use of invasive imaging. � 2014 Elsevier Inc.
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Introduction by a respiratory surrogate obtained from markerless surface
The issue of intrafraction organ motion is becoming increasingly
important in high-precision extracranial radiation therapy and
even more demanding in charged particle therapy because it
severely frustrates the accuracy and effectiveness of radiation dose
delivery (1, 2). The most relevant source of intrafraction motion is
respiration, which affects tumors in the thorax and abdomen, such
as lung, liver, and pancreas cancer. Different methodologies have
been proposed to compensate for the geometric uncertainties that
result from intrafraction organ motion. The most efficient motion-
compensated strategy for continuous irradiation in free-breathing
is real-time tumor tracking, which is based on the dynamic
steering of the radiation beam according to the instantaneous
target position (3).

Tumor localization, required for tracking techniques, can be
achieved through direct or indirect approaches (1). Direct locali-
zation methods rely on the imaging of the lesion or of implanted
clips by means of in-room radiography imaging systems. Even if
the direct approach can be very accurate (4, 5), its invasiveness
because of ionizing radiation restricts the applicability to a limited
temporal window of the treatment session. Conversely, indirect
localization methods infer target motion from respiratory surro-
gates, such as the displacement of the thoracoabdominal surface.
Noninvasive optical tracking devices can be used to acquire
external surface motion by reconstructing the trajectory of passive
markers placed on the patient skin (6) or through the markerless
imaging of the entire surface (7). The noninvasiveness of this
approach allows the continuous monitoring of intrafraction organ
motion during the whole treatment course. However, the use of
external surrogates to predict target position entails the definition
of appropriate externaleinternal correlation models, which need
to be frequently verified to cope with intrafraction modifications
of respiratory patterns and to reduce residual uncertainties (8, 9).

In conventional photon radiation therapy, indirect tumor
tracking techniques have been already introduced in clinical
practice with commercially available solutions (10, 11). Tumor
localization is obtained by combining optical tracking of multiple
surface markers with x-ray imaging of internal anatomy (12). In
case of low-contrast lesions, such as in the liver or lung, radio-
opaque clips are usually implanted near the tumor to facilitate its
detection in radiograph projections. The externaleinternal corre-
lation model is initialized before treatment by simultaneously
acquiring optical surface displacement and x-ray-based target
motion. Radiography imaging is also periodically captured
throughout the whole treatment duration, typically every 1-2
minutes, to continuously update the correlation model. The
externaleinternal correlation accuracy, assessed in retrospective
clinical studies, proved to be within 2.5 mm in the anteroposterior
direction and 1.9 mm in the superoinferior and mediolateral
directions (13, 14). Errors in target position estimation were re-
ported to vary greatly as a function of breathing irregularities (0.5-
11.3 mm range), with a reduction above 6 mm when using
correlation models with a higher level of complexity than line-
arepolynomial correlation (15).

The aim of this study is to develop and investigate an alter-
native approach for indirect tumor tracking, which does not
require the estimation and verification of externaleinternal
correlation parameters. The proposed technique relies on
a breathing motion model derived a priori from time-resolved
planning computed tomography (CT) and driven during treatment
imaging.
Methods and Materials

Tumor tracking technique

The proposed tumor tracking approach is based on the integration
of different imaging modalities, which are conventionally oper-
ated in extracranial radiation therapy treatments, such as (1) time-
resolved planning CT; (2) in-room radiography imaging systems;
and (3) optical devices for dynamic surface imaging. As illustrated
in Figure 1, the developed method relies on a patient-specific
breathing motion model, which is estimated from the
4-dimensional (4D) CT images acquired for treatment planning.
The a priori motion model describes the anatomical changes
because of breathing over the entire respiratory cycle and is
parameterized as a function of 3 main parameters: baseline,
amplitude, and phase. The respiratory baseline is described by the
midposition (MidP) CT image, consisting of a time-weighted
average of all 4D CT phase volumes (16). Similarly to previous
works (17-19), the motion model is expressed in terms of the
deformation vector fields obtained by applying B-spline deform-
able image registration (20) between the MidP image and each 4D
CT phase, focusing on a volume of interest around the tumor.

As depicted in Figure 1, the 4D CT motion model is updated at
each treatment session according to the anatomical and motion
information obtained from in-room radiography imaging and
optical surface systems, to compensate for the inter- and intra-
fraction variations (21, 22). Baseline shifts between treatment
planning and the daily treatment session are corrected by non-
rigidly registering (20) the MidP image on the free-breathing cone
beam (CB)CT volume acquired for patient setup verification, thus
generating an adapted baseline image. The updated tumor posi-
tions at each phase of the 4D CT breathing cycle are obtained by
mapping the adapted baseline according to the deformation vector
fields of the a priori motion model (Figure 2a). The breathing
amplitude and phase parameters are retrieved from the displace-
ment of the patient external surface, which is continuously
acquired during dose delivery by means of noninvasive optical
imaging devices. The intersection of the optical surfaces with the
patient portion scanned in the planning CT is tracked as region of
interest, including the thorax and the upper part of the abdomen.

Because markerless surface models provided by optical
tracking systems lack spatial correspondence, a deformable mesh
registration algorithm, based on a locally affine regularization, is
applied to extract the 3-dimensional (3D) trajectories of corre-
sponding surface points, as described elsewhere (23). For each
registered point, a monodimensional motion signal is obtained by
computing the time series of the 3D distance from its most
posterior position occurred during the optical surface acquisition.
The motion trajectories of all surface points in the thor-
acoabdominal region of interest are then summarized in a single
breathing surrogate signal through k-means clustering techniques
(24). The respiratory surrogate is obtained by averaging the signal
of the first 2 clusters associated to the patient thorax and abdomen
to take into account both the thoracic and the abdominal breathing
patterns. The instantaneous values of the respiratory amplitude
and phase parameters associated to each optical surface image are
then estimated from the extracted breathing surrogate.



Fig. 1. Schematic representation of the proposed tumor tracking method (the representation of the motion model was extracted from
previous work (19)). 3D Z 3-dimensional; 4D Z 4-dimensional; CT Z computed tomography; CBCT Z cone beam CT.
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To compensate for possible differences in respiratory motion
patterns between planning and treatment sessions (25), the
displacement of the patient surface optically acquired during
treatment is compared to surface motion exhibited during the 4D
CT scan. The triangulated meshes corresponding to the thor-
acoabdominal surface region are extracted from each 4D CT phase
image. Deformable mesh registration and k-means clustering are
applied to the triangulated 4D CT surfaces to obtain the breathing
surrogate during the planning scan. For both treatment and planning
surrogate signals, the phase angles of the corresponding analytic
signal obtained through Hilbert transform (26) are computed. As
shown in Figure 2b, the respiratory phase parameter associated to
each optical surface image acquired during treatment is estimated
as the interpolated percentage position between 4D CT frames that
corresponds to the same phase angle. The breathing amplitude is
parameterized according to a scaling factor, computed as the ratio
between the amplitudes of treatment and planning surrogate signals
at corresponding phase angles. The estimated breathing parameters
are then integrated to the a priori 4D CT breathing motion model to
obtain the 3D tumor trajectory during the whole course of surface
acquisition (Figure 2c). Target coordinates associated to each
surface frame are obtained by linearly interpolating the updated
tumor positions of the 4D CT motion model at the instantaneous
value of the phase parameter. The vector difference between the
interpolated lesion coordinates and the adapted tumor baseline is
then multiplied by the amplitude scaling factor to amplify or reduce
tumor motion with respect to the planning CT scan.
Experimental testing

The developed tumor tracking approach was tested on a clinical
database of 7 early-stage non-small cell lung cancer patients with
upper-lobe tumors, treated with stereotactic body radiation therapy
at Centre Léon Bérard, Lyon, France. Data collected for each
patient include a 10-phase 4D CT image set acquired with the
Philips Brilliance CT Big Bore scanner (Philips Medical Solution,
Cleveland, OH) and the synchronized information on internal-
eexternal breathing motion acquired during a CBCT scan (Elekta
Synergy System, Elekta, Crawley, UK). For each patient, the
displacement of the thoracoabdominal surface was continuously
captured with the GateCT optical system (Vision RT, London, UK)
during the first 120� of CBCT rotation. For the remaining projection
angles, in fact, the rotating gantry and CBCT units occluded the
patient surface to the GateCT imaging pod, suspended from the
room ceiling on the right side of the treatment couch. CBCT
projections were acquired with a frequency of about 5.5 Hz,
whereas the acquisition speed of the optical surface images varied
from 7.9 and 9.1 Hz, depending on the number of reconstructed
surface points. CBCT and GateCT data acquisitions were
synchronized in order to retrieve the temporal correspondence
between 2-dimensional projections and optical surface images.

The accuracy of the proposed tumor tracking method was
evaluated by comparing the reference target trajectory directly
identified in CBCT projections with the lesion trajectory estimated
from the external surface motion combined with the a priori 4D
CT model. The position of lung tumors in CBCT images was
identified through the method described previously (27), based on
template matching algorithms applied to contrast-enhanced
projections. A similar approach for target detection in CBCT
images showed a tracking accuracy of about 1 mm in moving
phantoms and 2 mm in lung cancer patients (28). To increase
target identification rates and accuracy, a manual refinement of the
automatically detected lesion coordinates was added by overlying
and manually translating on the contrast-enhanced images the
tumor contours projected at the corresponding angle. The



Fig. 2. A 4-dimensional (4D) computed tomography (CT) breathing motion model, defined by tumor centroid positions in the mid-
position (MidP) image (baseline) and in each 4D CT phase volume. (B) Phase and amplitude parameters derived from the comparison
between the breathing surrogates extracted from surface motion during treatment and during the 4D CT scan. (C) Tumor centroid
trajectories estimated along the 3 spatial directions. AP Z anteroposterior; ML Z mediolateral; SI Z superoinferior.

Table 1 Number of CBCT images considered per patient for
the assessment of the tumor tracking accuracy, with the cor-
responding evaluated period of time and number of breathing
cycles. The median values (25th-75th percentiles) of the
absolute errors between the real and estimated tumor trajec-
tories along the horizontal and vertical image directions are
also reported in the table

Patient

No. of

CBCT

projections

Period

of time

(sec)

No.

of breathing

cycles

Horizontal

tracking

error (mm)

Vertical

tracking

error (mm)

P1 166 30.3 9 2.2 (1.2-3.8) 1.6 (0.9-2.7)

P2 175 31.9 5 1.7 (0.8-3.0) 1.2 (0.6-1.9)

P3 105 19.2 9 1.2 (0.6-1.7) 2.0 (1.6-2.4)

P4 189 34.5 8 0.7 (0.4-1.0) 1.4 (0.9-1.9)

P5 144 26.3 5 1.7 (0.8-3.1) 2.4 (1.4-3.5)

P6 159 29.0 6 1.3 (0.8-1.9) 1.5 (0.7-2.0)

P7 135 24.6 5 1.5 (0.9-2.3) 1.4 (0.6-2.2)

Abbreviation: CBCT Z cone beam computed tomography.
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reference tumor motion identified in CBCT images was compared
with the target trajectory estimated from the surrogate-driven
motion model and projected on the 2-dimensional plane of the
CBCT flat-panel detector, after correcting for the flex map values
at different rotational angles (29).

Results

Table 1 lists for each patient the number of CBCT projections
considered for the testing of the developed tumor tracking method,
represented by the images acquired without surface occlusion in
which lung lesion could be correctly identified. About 20-35
seconds of synchronized CBCT/GateCT acquisition could be
analyzed per patient, corresponding on average to 7 breathing
cycles. The absolute difference between the reference and esti-
mated target trajectories are reported for all patients in Table 1.
The median values of the tracking errors ranged between 0.7 and
2.2 mm for the horizontal image dimension, representing the
projection of anteroposterior and mediolateral components of
tumor motion, and between 1.2 and 2.4 mm for the vertical image
dimension, corresponding to target motion projection along
superoinferior direction. The exemplifying results on tumor
motion tracking for 2 patients in the database are depicted in
Figure 3. The developed tumor tracking method exhibited good
performance, even in presence of breathing irregularities. As an
example, despite the evident intercycle variations of the respira-
tory amplitude and phase parameters for patient P2 (Figure 3), the
tumor trajectory estimated from external surface displacement
correctly followed the reference target motion identified in CBCT
projections, with median tracking errors of 1.7 and 1.2 mm for the
horizontal and vertical directions, respectively (Table 1).
Figure 4 depicts for each patient the total tracking error in
estimating tumor position in CBCT projections, computed as the
root sum squared of the errors along the 2 image dimensions. To
assess the effectiveness of the proposed respiratory modeling
approach, based on phase, amplitude, and baseline parameters, the
total error was also computed separating the contribution of each
single parameter (Figure 4). The median value of the total errors
computed over all patients was 5.4 mm when only the breathing
phase was considered, setting to 1 the amplitude factor and taking
as baseline the planning MidP CT image. These inaccuracies are
partly associated with patient positioning errors, which have not



Fig. 3. Comparison between reference tumor trajectories identified in cone beam computed tomography (CBCT) projections along the
horizontal and vertical image dimensions (red stars) and target trajectories estimated from surface motion and interpolated at the CBCT
timestamps in which lung tumor was detectable (blue stars).
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yet been compensated during the pretreatment CBCT scan. The
median tumor tracking error was reduced to 2.6 mm after cor-
recting for the baseline shifts between planning and treatment
phases, and to 2.4 mm when also including the amplitude scaling
factor. Except for patient P6, the baseline update allows a signifi-
cant improvement of the tracking errors (Wilcoxon rank-sum test,
P< 0.05). Instead, the introduction of amplitude correction did not
significantly change the tracking results, although the total median
error slightly decreased for 5 of 7 patients.

The residual influence of the different respiratory variables on
tumor tracking accuracy when considering all 3 model parameters
was also investigated. The following variables were computed for
each complete respiratory cycle identified in the reference and
estimated tumor trajectories:

� baseline, represented by the mean value of the tumor trajectory
in the breathing cycle;

� amplitude, obtained from the difference between the maximum
and minimum tumor coordinates in the cycle;

� period, estimated as the temporal difference between the 2
inspiratory peaks at the beginning and at the end of the cycle; and
Fig. 4. Tumor tracking errors (median � quartiles) obtained by consid
baseline shift correction (orange bars) and the amplitude scaling factor
� phase, computed as the mean acquisition timestamp of the 2
inspiratory peaks of the cycle, also expressed as percentage of
the corresponding cycle period identified from CBCT images.

The median absolute difference between the reported respira-
tory variables computed for the reference and estimated breathing
cycles along the horizontal and vertical image dimensions are
reported in Table 2. The median errors of the cycle baseline and
amplitude did not exceed 2.2 mm and 2.6 mm, respectively. The
differences in the cycle periods varied from about 70 to 200 msec.
The measured phase shifts were lower than 7% of the cycle length,
corresponding to a maximum of 170 msec of delay. The linear
correlation between the mean tracking errors associated to each
identified cycle and the corresponding differences in the breathing
variables was also computed. For 5 of 7 patients, the tracking
errors proved to be correlated (Pearson coefficient > 0.8) with the
baseline differences measured for tumor trajectories along at least
1 of the 2 spatial directions. Only for 1 patient we found a corre-
lation between the tracking errors and the amplitude differences,
whereas no correlation was measured for the phase and period
variables.
ering only the phase parameter (red bars) and after introducing the
(yellow bars).



Table 2 Median differences (25th-75th percentiles) between the respiratory variables computed for each breathing cycle identified on
the real and estimated tumor trajectories

Patient Baseline error (mm) Amplitude error (mm) Period error (msec) Phase error (msec) Percentage phase error (%)

P1 1.6 (0.7-2.0) 1.3 (0.7-3.9) 130 (49-213) 110 (73-216) 2.9 (1.5-5.9)
P2 0.7 (0.5-1.3) 2.6 (0.9-4.7) 129 (80-231) 70 (40-130) 1.0 (0.4-1.9)
P3 1.7 (0.7-2.0) 1.0 (0.3-1.4) 71 (16-190) 111 (85-235) 6.7 (3.9-14.0)
P4 0.8 (0.1-1.5) 1.7 (0.9-2.0) 170 (73-213) 136 (69-274) 3.3 (0.7-4.8)
P5 2.2 (1.3-2.6) 0.9 (0.5-1.9) 203 (73-370) 170 (69-285) 3.7 (1.8-4.0)
P6 1.2 (0.8-1.5) 1.0 (0.4-1.8) 74 (41-272) 107 (34-270) 2.7 (1.2-4.7)
P7 1.2 (0.9-2.0) 1.2 (1.1-2.6) 198 (95-254) 156 (89-279) 5.7 (4.5-6.1)
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Discussion

A novel approach for the indirect tracking of intrafraction moving
tumors was proposed and investigated, exploiting a patient-
specific motion model derived from time-resolved planning CT
and driven during treatment by an external surrogate obtained
from noninvasive optical surface imaging. The experimental
testing was based on real clinical CBCT data acquired from lung
cancer patients. Although the proposed method allows estimating
tumor motion along all 3 spatial directions, as shown in Figure 2c,
the tracking accuracy could be quantified only in 2 dimensions,
represented by the horizontal and vertical axes of the CBCT
imager panel (Figure 3). However, the greatest amplitude of lung
tumor motion is generally found in the superoinferior direction
(1), which is visible on the vertical axis regardless of the panel
rotational position. An average tracking error of 1.5 mm was
measured along each image dimension, which is comparable to
the state-of-the-art tracking techniques currently applied in
conventional x-ray radiation therapy (13-15). The obtained error
can be partly associated to the inaccuracies in localizing lung
lesions in CBCT projections, featuring an intrinsic spatial reso-
lution of 0.8 mm/pixel. The measured shifts in the identification of
the breathing phase can be partly related to the temporal resolution
of CBCT scans, requiring about 180 msec for the acquisition of
a single projection.

In most patients in the database, tumor tracking inaccuracies
proved to be correlated to errors in the estimation of the breathing
baseline, for which only interfraction variations are compensated
in the present approach. In particular, baseline shift corrections are
estimated by nonrigidly registering the noise-free MidP CT image
with the free-breathing CBCT volume, which is affected by
blurring from breathing motion. A possible improved solution
might be the use of a motion-compensated CBCTwith image-blur
reduction (18) for baseline correction. Another future develop-
ment can be represented by the introduction of intrafraction
baseline updates, by retrieving its instantaneous values from the
surface-based surrogate signal, as currently performed for the
breathing amplitude and phase parameters. Major concerns are
associated with the computational cost of the developed tumor
tracking algorithm, which does not currently provide real-time
performance. The most time-consuming process is represented
by the deformable mesh registration algorithm (23), which can,
however, be optimized based on the work proposed elsewhere
(30), demonstrating the feasibility of a real-time nonrigid surface
registration.

Surrogate-driven motion models built from Cine-CT or CBCT
data have already been proposed for tumor tracking applications
(21, 31, 32). Differently from the method developed previously
(32) based on rigid-translation motion models, we employed
a nonrigid deformation-based approach that allows accounting not
only for tumor motion but for the entire patient anatomy. We also
introduced specific strategies to compensate for the day-to-day
variations in the respiratory motion parameters, which are not
taken into account in the modeling approach proposed previously
(31, 32). In particular, amplitude changes are compensated though
a scaling factor obtained by comparing motion amplitudes during
planning and treatment phases. Baseline shifts are corrected using
deformable registration, which can potentially improve the
tracking accuracy in different lung regions with respect to the rigid
alignment performed previously (21). The effectiveness of the
proposed respiratory modeling approach was demonstrated on the
tested data. As depicted in Figure 4, the use of only the breathing
phase parameter led to tumor tracking errors up to 16.3 mm,
which were significantly reduced by the introduction of the
baseline update and slightly further decreased by including also
the amplitude scaling factor.

The proposed tumor tracking method provides substantial
benefits with respect to the state-of-the-art technique based on
externaleinternal correlation models (12-15). The presented
approach exploits the anatomical, motion-correlated information
provided by the 4D planning CT through a patient-specific
adaptive motion model, which is combined to the noninvasive
optical imaging of patient surface at the time of treatment for the
update of breathing parameters. Although an x-ray-based assess-
ment of the reliability of the motion model is envisaged, our
technique does not involve the estimation and frequent verification
of externaleinternal correlation parameters by means of repeated
radiographs, thus requiring a less intense use of in-room invasive
imaging. Only an initial CBCT scan, which is already commonly
acquired for patient setup, is needed for interfraction baseline
corrections. In addition, the developed approach does not require
implanted fiducial clips, neither in case of low-contrast lesions
such as liver or lung cancers, thus avoiding possible drawbacks
associated to clip implantation, such as the risk of pneumothorax
or fiducial migration (33).

Differently from the current marker-based applications
employing a limited number of surface fiducial points (12-15), the
proposed tumor tracking method makes use of the redundant
motion information of the entire thoracoabdominal surface
provided by markerless imaging systems. This allows capturing
the complex and detailed aspects of the different breathing
patterns involved in external surface motion, overcoming also the
issue related to the variation of externaleinternal correlation from
marker locations on the patient surface (34, 35). Moreover, current
correlation-based tracking techniques only allow predicting the
position of single internal points from the external surrogate.
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Conversely, our approach can be potentially extended to track the
entire patient anatomy included in the CT scan, thus providing the
daily dynamics because of breathing motion of all structures and
organs at risk in the thoracoabdominal region. This information
can be particularly useful in particle therapy for obtaining the
density and radiological variations of beam path length associated
to organ motion, required to adapt the depth range of particle
beams (36).
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