

Validation of a new GATE module for radiation therapy : simulation of a 6 MV Elekta Precise linear accelerator head.

CENTRE RÉGIONAL

LÉON-BÉRARD Soigner, chercher, vaincre. Ensemble

L. Grevillot^{1,2,3}, T. Frisson^{1,2,3}, N. Zahra^{1,3,4}, J-N. Badel^{1,2,3} & D. Sarrut^{1,2,3}

1 : Université de Lyon, F-69622 Lyon, France.

2 : Creatis, CNRS UMR 5220, F-69622, Villeurbanne, France.

3 : Léon Bérard cancer centre - 28 rue Laennec, F-69373 Lyon cedex 08, France.

4 : IPNL, CNRS UMR 5822, F-69622, Villeurbanne, France.

INTRODUCTION

A scool
12 -49

GATE is the Geant4-based Monte Carlo toolkit initiated by several collaborative international institutions. [S. Jan 2004]

The main assets of GATE are:

- Quicker learning phase for novices.
- Simplicity of simulations : C++, only user-friendly macro files.

GATE : a validated tool for TEP/SPECT simulations

Initialy developed for TEP and SPECT, the new release v6.0 (October 2009) present a new module for radiotherapy and hadrontherapy applications.

n the present work, a set of tools dedicated to conventional radiotherapy has been validated and applied for the simulation of a 6MV Elekta precise Linac.

Gate is a collaboration of several international institutions working together for the common

Dedicated tools for medical physics \bullet SPECT & TEP applications: imaging, Radiotherapy (e^{-} , γ), Hadron therapy (${}^{1}H$, ${}^{12}C$).

Second stage : until the water phantom.

Photon beam

development and validation of the GATE software.

www.opengatecollaboration.org

MATERIALS & METHODS

A two stages simulation :

GATE : a dedicatd toolkit for medical physics

no

Simulation

specifications.

of

the exact geometry according to

First stage: from the electron beam down to the secondary collimator.

- Primary electron beam constructor
 - Gaussian energy distribution adjusted to match depth dose in water.

Dedicated tools for radiothearpy :

• Gaussian spot of electrons (FWHM = 3mm) adjusted to match transverse profiles in water. [Verhaegen 2003]

Instead of one, hundred photons are sampled at once when the following conditions are fulfilled:

• Energy criterion: Electron energy > Threshold (5,7 MeV). • Direction criterion : No backward photons.

• Phase Space (PhS) storage : Stage1

7.10⁷ Photons were stored in the PhS during the patient dependent part simulation. [A. E. Schach von Wittenau 1999] Then, **photon beam properties** were investigated : • Energy spectrum correlated with photon position. • Direction correlated to both: photon position & energy. Finally, PhS was converted into 5,400 representative histograms.

• Multiple source model : Stage 2 [Michael K. Fix 2004]

1. Photon position (r, θ) is sampled in the phase space.

2. Photon energy (E) is sampled according to photon radial position (r).

3. Photon direction (Φ,Ψ) is sampled according to photon energy (E) and position (r). This process is looped until the required number of events is reached.

Energy/Dose scoring tool with statistical uncertainty

A matrix of voxels of dimensions: 20x20x2 mm³ were created to score depth dose and transverse profiles. The lowest dimension (2mm) was in the direction of scoring interest. Statistical uncertainty is also computed. [Indrin J Chetty 2006]

RESULTS & DISCUSSION

Percent depth dose and profile at 10 cm depth simulations :

• 0.5% statistical uncertainty reached in 22 hours (3.10⁸ events). • **Depth dose and profile errors** : 0.5% and 1.1% • **SBS efficiency:** 7.9 times faster than without No significant bias was introduced (difference<0.5%) • 1% statistical uncertainty reached in 6 hours (8.10⁷ events). •Additional investigations at different energies and depth, with different field sizes as well as non-squared fields will follow. In conclusion, the GATE toolkit can be used efficiently for radiotherapy applications.

References

• S. Jan et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol, 49(19):4543-4561, Oct 2004.

- Frank Verhaegen and Jan Seuntjens. Monte carlo modelling of external radiotherapy photon beams. Phys Med Biol, 48(21):R107–R164, Nov 2003.
- A. E. Schach von Wittenau et al. Correlated histogram representation of monte carlo derived medical acceleratorphoton-output phase space. Med Phys, 26(7):1196-1211, Jul 1999.
- Michael K Fix, Paul J Keall, Kathryn Dawson, and Jeffrey V Siebers. Monte carlo source model for photon beam radiotherapy: photon source characteristics. Med Phys, 31(11):3106–3121, Nov 2004.
- Indrin J Chetty et al. Reporting and analyzing statistical uncertainties in monte carlo-based treatment planning. Int J Radiat Oncol Biol Phys, 65(4):1249–1259, Jul 2006. • D. Sarrut and L. Guigues. Region-oriented ct image representation for reducing computing time of monte carlo simulations. Med Phys, 35(4):1452–1463, April 2008.
- Toward a simulation toolkit dedicated for medical physics applications: TEP/SPECT imaging & radiotherapy with beam of electrons, photons and ions.

GATE release V6.0

DICOM RT Plan integartion - CT voxel integration - Fast voxel navigation [Sarrut2008] *Dynamic MLC - Dedicated tools for hadrontherapy (protons and ions).*