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A Comparison Framework for Breathing Motion
Estimation Methods From 4-D Imaging

David Sarrut*, Bertrand Delhay, Pierre-Frédéric Villard, Vlad Boldea, Michael Beuve, and Patrick Clarysse

Abstract—Motion estimation is an important issue in radia-
tion therapy of moving organs. In particular, motion estimates
from 4-D imaging can be used to compute the distribution of an
absorbed dose during the therapeutic irradiation. We propose a
strategy and criteria incorporating spatiotemporal information
to evaluate the accuracy of model-based methods capturing
breathing motion from 4-D CT images. This evaluation relies on
the identification and tracking of landmarks on the 4-D CT images
by medical experts. Three different experts selected more than
500 landmarks within 4-D CT images of lungs for three patients.
Landmark tracking was performed at four instants of the expi-
ration phase. Two metrics are proposed to evaluate the tracking
performance of motion-estimation models. The first metric cumu-
lates over the four instants the errors on landmark location. The
second metric integrates the error over a time interval according
to an a priori breathing model for the landmark spatiotemporal
trajectory. This latter metric better takes into account the dy-
namics of the motion. A second aim of this paper is to estimate the
impact of considering several phases of the respiratory cycle as
compared to using only the extreme phases (end-inspiration and
end-expiration). The accuracy of three motion estimation models
(two image registration-based methods and a biomechanical
method) is compared through the proposed metrics and statistical
tools. This paper points out the interest of taking into account
more frames for reliably tracking the respiratory motion.

Index Terms—Deformable registration, radiotherapy, thorax,
validation.

I. INTRODUCTION

ACCOUNTING for organ motion due to breathing in lung
cancer radiation treatment is an important challenge

[1]. Reducing uncertainties on target position should result
in decreasing irradiation of healthy lung areas and should
allow tumor dose escalation, potentially leading to a better
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outcome [2]. Several approaches are currently under investi-
gation (breath-hold treatment, gating [3], etc.) but all require
patient-specific spatiotemporal information about movements
and deformations induced by breathing. Ideally, treatment
planning should not rely on 3-D images only but also on a
patient-specific breathing thorax model, encompassing all
mechanical and functional information available. Some data
can be obtained from 4-D CT imaging [4], but 4-D images
alone are not sufficient and should be associated with new
image analysis tools such as motion estimators and anatomical
structure tracking methods [5]. They can also be used to build
a “4-D model” composed of spatiotemporal trajectories of all
volume elements in the thorax. Using such a model would
make it possible to select the best way to manage organ motion
for each patient and provide helpful information for planning
real-time tracking and dose delivery.

For example, a motion margin can be defined in order to ac-
count for respiratory motion, leading to unnecessary irradia-
tion of large volumes of normal tissues. Zhang et al. [6] have
proposed to incorporate target motion into treatment optimiza-
tion using the displacement vector fields at different breathing
phases, based on patient 4-D CT images; beam targeting is opti-
mized according to the motion. Instructing the patient to breathe
following a visually displayed guiding cycle potentially allows
us to spare larger volumes of normal tissue. Rietzel et al. [7]
have delineated volumes of interest in each phase of a 4-D CT
dataset and used them to determine the maximal displacement
of gross tumor volume (GTV) centroids. Using B-spline de-
formable registrations, they have tried to quantify the impact
of respiratory motion on generated dose distributions. The dose
delivered to a given volume is directly related to the time of ir-
radiation.1 Therefore, motion of the tumors must be taken into
account during the whole respiratory cycle. Brock et al. [8] have
developed an approximation to modulate the weight of dose cal-
culations from the exhale toward the inhale model as breathing
progresses and using time weights obtained via fluoroscopy on
a given population of patients. Keall et al. [5] have extended this
concept to dynamic multi-leaf collimator2 (DMLC)-based respi-
ratory motion tracking. They have used deformable image regis-
tration to automatically transfer contours defined on the peak-in-
hale CT scan to other respiratory phase CT images. Dose distri-
butions at each phase were then computed with phase-adapted

1Dynamic aspect of Intensity Modulated Radiation Therapy (IMRT) may in-
duce more complex behavior, but is not considered here.

2In radiation therapy, a multi-leaf collimator (MLC) is a device used for de-
limiting the radiation beam. It generally consists of two pairs of opposite jaws
reshaping beams to a square or rectangular cross section. Dynamic MLC sup-
poses that leafs can move during irradiation.
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MLC-defined beam, then mapped back to a reference CT image
using estimated deformation fields.

Breathing motion tracking has been a fundamental element in
these recent studies and must therefore be validated. Time-re-
lated issues must also be taken into account. A major chal-
lenge in deformable motion estimation is the validation of the
resulting deformation fields. Today, contrary to the rigid mo-
tion case [9]–[11], there are few evaluation standards for de-
formable motion estimation. A tentative evaluation framework
has been proposed by Hellier et al. [12] which focuses on the
deformable registration of the brains of different individuals. In
the present paper, our goal is to quantitatively compare motion
estimators by taking into account the temporal aspects of the ob-
served motions. Our clinical motivation was related to the use of
deformable motion estimators with 4-D scans to simulate radia-
tion dose delivery inside moving and deforming organs for given
irradiation configurations. We propose a framework and criteria
incorporating temporal information to evaluate the accuracy of
motion estimation methods for the purpose of compensating for
breathing motion in 4-D CT images. The proposed framework
will be illustrated with the evaluation of three different motion
estimation methods in terms of accuracy.

The paper is organized as follows. Section II briefly presents
the experimental 4-D CT data used in the study. Our approach
for the evaluation of motion tracking methods in 4-D CT se-
quences is based on landmark location estimation. Section III-A
and III-B explain how the landmarks have been selected and
tracked by medical experts. Then, two error criteria to evaluate
the accuracy of landmark location estimated by motion tracking
methods are introduced. The first one is the generalization of the
conventional TRE metric to the tracking in successive images
(Section III-C). The second one takes into account the temporal
nature of the motion and is presented in III-D. Section IV de-
scribes three motion tracking methods compared using the pro-
posed strategy. Results are presented in Section V. Section VI
compares the behavior of the motion tracking methods and dis-
cusses the respective properties of the two metrics.

II. MATERIALS

This study considered as input data thoracic 4-D CT
sequences from patients with nonsmall-cell lung cancer
(NSCLC). The 4-D images were acquired according to a recent
protocol, similar to the one described in [13], using a “cine”
scanning protocol: multiple image acquisitions were performed
along the cranio-caudal direction at a time interval greater than
the average respiratory cycle. The acquisition was repeated
until the prescribed volume was completely scanned. During
the entire acquisition, an external respiratory signal, generated
with the Real-Time Position Management (RPM) Respiratory
Gating System (from Varian Medical Systems, Palo Alto,
CA) was recorded. The signal was then used to sort data into
respiratory phases by selecting, for each slice position and for
each phase, the closest image. The resulting 4-D images were
composed of ten 3-D images covering a respiratory cycle from
the end of normal inspiration to the end of normal expiration.

In this paper, we focused on the expiration part of the respi-
ratory cycle (six out of ten frames, including extreme phases).

(a) (b)

Fig. 1. Image artifacts. (a) Several slices were missing at given temporal phase.
(b) Blurred structures inside lung due to unforeseen movement.

TABLE I
LUNG VOLUMES (IN CENTIMETERS AND IN % OF DIFFERENCE

BETWEEN I AND I ) FOR ALL IMAGES

The number of exploitable frames varies from one dataset to the
other and the common maximum number in our series was four
out of six. We thus decided to consider four images: two ex-
treme images (denoted for end-inspiration and for end-
expiration) and two intermediate images denoted and ,
corresponding to intermediate lung volumes. For some reason
(too rapid patient breath, inaccuracy of the external respiratory
signal), selected data at a given phase and slice position may not
be consistent. Hence, the corresponding 3-D images presented
some misaligned slices, generally around the diaphragm (see
Fig. 1). Some other (less frequent) artifacts were probably due
to patient movement during scanning.

At the time when the acquisitions were performed according
to this protocol, three patient datasets (referred to as patients
1, 2, and 3 in the sequel) were found exploitable. Image size
was 512 512 pixels, with 88, 115, and 120 slices for pa-
tients 1, 2, and 3, respectively. In all images, pixel size was
0.97 0.97 mm and slice thickness was 2.5 mm. All tumors
were located in the lower part of the right lung. The tumor
volume was approximately 160, 165, and 37 cm in patients 1,
2 and 3, respectively.

Note also that the same phase can correspond to different
lung volume percentages in different patients depending on each
patient’s breathing pattern. Approximated lung volumes were
computed (see Table I) by automated segmentation using thresh-
olding and morphological operations as described in [14]. Max-
imal displacements close to the diaphragm were estimated to:
23, 25, and 17 mm for patients 1, 2, and 3, respectively. We
want to emphasize that the use of 4-D CT images is relatively
new in the field of radiation therapy and that, although the tech-
nique has already been used in several clinical studies, it is still
under development.
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Fig. 2. Landmark selection by three experts. Mean position corresponds to
pseudo-ground truth landmark. In this example, three positions lie on same slice
but this was not always the case.

III. METHODS

Criteria permitting us to evaluate and compare breathing mo-
tion estimators are proposed. They rely on the comparison of
landmark locations obtained by manual reference selection (see
the following) and landmark locations obtained by applying de-
formation fields obtained using automated motion estimation
methods. Three methods ( and ) will be described
in Section IV to illustrate the proposed evaluation framework.
For comparison purposes, we found it important to compare
results obtained by these methods against the situation where
no compensation was performed (noted ). Methods evalua-
tion was based on two spatiotemporal distances between refer-
ence and observed trajectories and distance to direct straight line
trajectories. Sections III-A and B describes landmark selection
and tracking. Sections III-C and D present the two evaluation
approaches.

A. Landmark Selection

A set of anatomical landmarks was selected and labeled in-
side the lungs in the reference image of each of the three pa-
tients, by three medical experts. The instructions were to select
salient anatomical features; each landmark should be undoubt-
edly identifiable and labeled with a descriptive name allowing
other experts to find it. Examples of salient points are: carina,
calcified nodules, culmen-lingula junction, specific branch of
pulmonary arteries, apical pulmonary vein of the upper lobe,
etc. (see Fig. 2). Actually, there might be some degree of sta-
tistical dependence between landmark point locations. In order
to limit the impact of this dependence onto the statistical anal-
ysis, we asked the experts to select points distributed as evenly
as possible all over the lungs (left/right lung, upper/lower, and
central/peripheral parts of the lungs). The experts were also in-
structed to identify as many landmarks as possible with a min-
imum of 20. However, some experts extracted twice as many
landmarks as the others. Up to 27 points were selected in pa-
tient 1, 41 in patient 2, and 56 in patient 3.

The tracking of initial landmarks across the following frames
was performed by all the experts. They were not authorized to
see other experts’ results so as not to bias the selection. Finally,
all inputs were averaged to obtain mean landmark locations. Let

denote the location of the th landmark in image (with

Fig. 3. (a) Transformations between all images in a sequence and end-inspi-
ration reference image I are estimated. (b) Expert (q ) and estimated (r )
landmark definitions.

Fig. 4. Breathing cycle modeling proposed by Lujan et. al. [17] (n = 2).

and corresponding to end-inspiration and
end-expiration, respectively), selected by expert . The three
point locations issued from the different expert selections were
averaged to define pseudo-ground truth landmarks denoted by

(1)

except for the reference image in which was the result of a
unique selection. In order to estimate the inter-expert variability
associated with manual identification of anatomical landmarks,
we computed the standard deviation of the distances between all

and values.

B. Landmark Tracking

Landmark motion is represented by a trajectory. A physical
point at a given reference time is identified by its geometrical
position: . The mapping stands
for the geometrical position of the same physical point at time

is the function which maps the physical point from time
to time . By definition, . The geometrical

positions of the landmarks are expressed for discrete times of
interest according to the previous definitions. denotes the
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(a) (b) (c)

Fig. 5. Lung volume curves for three patients during expiration. Values are indicated for four time points estimated by the respiratory model introduced in
Section III-D1. (a) patient 1, (b) patient 2, and (c) patient 3.

position of the th landmark in the reference image . We have
the following relation:

(2)

where maps every geometrical point from reference
time to time (with ).

In Section IV, we will introduce examples of methods al-
lowing us to automatically estimate the displacement of the
landmarks. For the three patient datasets, each method will be
used to estimate the transformation between all images in
the sequence (i.e., ) and the reference end-inhalation
image (see Fig. 3). In the following, we will denote the
estimated function which maps image to image .

C. Punctual Accuracy Analysis

The first criterion to assess the accuracy of the motion esti-
mation methods is an extension of the target registration error
(TRE) proposed in [10]. Initially proposed for rigid motion, this
criterion was extended to motion tracking of the sets of land-
mark points. Let us consider , the th pseudo-ground truth
landmark in the reference image ; its estimated geometrical
location in image is calculated as . The dif-
ference between pseudo-ground truth landmark positions and
estimated landmark positions is illustrated in Fig. 3. The TRE
for the transformation between image and image is defined
by

(3)

where for patient for patient 2, and
for patient 3. Error dispersion was represented using “box and
whiskers plots” [15] to highlight the median and mean of each
sample and its spreading and possible outliers. Bland–Altman
diagrams [16] were used to compare the motion estimation re-
sults obtained with the different methods. Finally, paired student
t-tests were performed to check whether two methods behaved
equivalently or not, under the assumptions that the paired differ-
ences are independent and normally distributed (such assump-
tions were verified before applying the test).

D. Analysis of Spatiotemporal Trajectories

1) Respiratory Cycle Modeling: It is generally assumed that
all the points in the volume reach their final position at the same
time and that the temporal behavior along the trajectory is de-
termined by a 1-D breathing signal. Several models of breathing
cycles have been proposed in the literature. We chose the one
proposed by Lujan et al. [17] (4) which models the dynamic
breathing volume curve. It is based on a periodic but asym-
metric function (more time spent at exhalation versus inhala-
tion). In (4), is the volume at exhalation, corresponds to the
tidal volume (TV) which is the amount of air breathed in or out
during normal respiration, is the volume at inhalation,

is the period of the breathing cycle, is a parameter that de-
termines the general shape (steepness or flatness) of the model,
and is the starting phase of the breathing cycle (Fig. 4). Using
the Lujan model, George et al. [18] have studied the correlation
of respiratory motion traces between breathing cycles, based on
331 4-min respiratory traces acquired from 24 lung cancer pa-
tients. They advocated the use of . We followed their sug-
gestion in the present paper. Of course, the period and magni-
tude of the motion due to breathing can vary, even over a short
period of time. This model represents a priori knowledge of a
conventional breathing cycle which will be incorporated into the
validation procedure through the metrics introduced in the next
section. Other models could also be considered. An illustration
of the temporal position of each image in the test sequences ac-
cording to this respiratory cycle modeling and the estimated vol-
umes is given in Fig. 5 (see also Table I). The parameters for
such a model can also be estimated using an external measure-
ment system, such as the RPM

(4)

2) Spatiotemporal Localization Error: The main drawback
of the TRE metric is that it does not take into account the time
spent at the main phases of a trajectory. According to the pre-
viously introduced breathing model (Section III-D1), material
points move along their trajectory at variable speed (determined
by the derivative of the volume curve ). In Section III-A, we
mentioned that the dose deposit was mainly related to the du-
ration of irradiation. Thus, a global and more pertinent metric
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should take into account that more time is spent at the end-inspi-
ration and end-expiration phases than between these extremes.
In other words, estimation errors at an intermediate phase of the
cycle should have lower weight than errors at extreme phases.
This is the purpose of the following metric: for a given tem-
poral interval of the respiratory cycle, we defined the
spatiotemporal error (STE) as

STE

(5)

with dist the Euclidean distance and the curvilinear ab-
scissa. and denoted two trajectories. Let be a parametric
trajectory (which defines the set of the different locations of a
material point during its motion) defined by

(6)

where is the normalized curvilinear abscissa of the trajectory.
This abscissa is a function of time and denotes the curve length
traveled between initial time and time . The relation between
time and abscissa is thus defined by

(7)

where is a strictly increasing function. The breathing cycle a
priori model is incorporated into the STE metrics through the
volume evolution function defined by (4). is thus ex-
pressed by . Fig. 6
illustrates the relation between respiratory cycle modeling
and the curvilinear abscissa. In this figure, the nonlinear relation
is compared to the linear case where .
Practically, a constant time step corresponds to a nonconstant
abscissa step such as because of the relative
breathing velocity . The relation depends on the chosen
breathing model. In our case, the trajectory samples are denser
at phases close to the end-inspiration and end-expiration time
points than at intermediate phases.

The parametric trajectories were chosen such that the elemen-
tary displacements are approximated by linear interpolation be-
tween each pair of phases considered, and the abscissa tra-
verses this piecewise-linear trajectory (see Fig. 3). STE varies
with the respiratory cycle model and the temporal spacing be-
tween images in the sequence (i.e., the relative position at and

during expiration phase). A STE value equal to means that,
over a given portion of the cycle (from to ), using trajec-
tory instead of leads to –mm shift in average. In prac-
tice, (5) was computed by approximating the integral by a sum
over a set (one hundred or more) of regularly temporally spaced
samples. Fig. 7 illustrates the distances between two trajectories
computed with a linear and a nonlinear relation between and .

3) Straight-Linear and Piecewise-Linear Direct Trajecto-
ries: In order to clarify the different trajectories considered in

Fig. 6. Relation between global breathing cycle model and curvilinear abscissa
s of trajectories. Linear case s (t) = t is represented by dashed plot while non-
linear case s computed from breathing cycle model (plain curve) is illustrated
by dashed-dotted plot.

Fig. 7. (a) STE criterion with a linear and (b) nonlinear model.

Fig. 8. Definition of straight-linear/piecewise-linear reference/estimated
trajectories.

the sequel, we introduced a set of acronyms whose meaning is
illustrated in Fig. 8.

1) denotes the straight-linear reference trajectory, that
is the rectilinear trajectory obtained when directly con-
necting the points defined by the experts at the beginning
and the end of expiration.

2) stands for the straight-linear estimated trajectory,
the rectilinear trajectory obtained when directly con-
necting the position of a landmark extracted from the
image taken at the beginning of expiration to the estimated
corresponding point by a given method at the end of
expiration.
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3) corresponds to the piecewise-linear reference trajec-
tory, piecewise linear trajectory obtained when connecting
the reference points issued from all the time points.

4) denotes the piecewise-linear estimated trajectory,
the piecewise linear trajectory obtained when connecting
the estimated points issued from all the time points.

IV. EXAMPLES OF MOTION ESTIMATORS EVALUATED

IN OUR FRAMEWORK

In order to illustrate the use of this evaluation framework,
we selected and compared three available motion estimation
methods. The literature on motion estimation methods is abun-
dant. One approach is to seek a geometric transformation be-
tween two consecutive images in a sequence. This process is
known as image registration and two of the three methods are
based on this concept. Image registration algorithms are cur-
rently described as the combination of several components: a
feature space, a similarity measure, a transformation model, and
an optimization algorithm [19]–[21]. The goal is to find an op-
timal transformation that leads to maximum similarity (or min-
imum distance) between a reference image and a deformable
floating image. Numerous methods have been proposed. Fea-
ture-based methods use landmark points [22], [23], organs con-
tours [24], [25], or segmented surfaces to drive the transforma-
tion search. Intensity-based methods often refer to optical-flow
like methods [22], [26], [27]. In this case, image similarity is de-
fined as a statistical measure between the intensity (gray-levels)
distributions of the two images, and deformable fields are the re-
sult of the optimization of a function establishing a tradeoff be-
tween image similarity and deformation smoothness. Another
approach relies on biomechanical models [28]–[30] which do
not explicitly use a similarity measure. Instead, they simulate
organ deformation based on both physical material properties
and constraints given by the initial and final states of the organs.
They are usually based on the Finite-Element Method (FEM)
and use physically based equations (elastic model for example)
to simulate individual organ deformation (represented by trian-
gular meshes for surface-based models or tetrahedral meshes
for volume-based models). The individual material properties
of each organ have to be described, with parameters such as
Young’s modulus and Poisson’s ratio.

In order to illustrate our evaluation framework, we consid-
ered the three following motion estimation methods: is a
bi-pyramidal free form deformation method, is an optimized
optical flow method, and is a biomechanical method. These
methods constitute rather conceptually different approaches to
the problem of motion estimation. While is a parametric reg-
istration-based method, is a nonparametric one, and is
based on an a priori physiological model of the lung dynamics.
The three methods are therefore representative of different cat-
egories of motion estimation methods and good candidates to
illustrate the proposed comparison techniques and metrics. The
three methods are described hereafter. Let and be two im-
ages to be registered. We denote by the displacement of a
point and by the deformation.

A. Method : Bi-Pyramidal Free Form Deformation-Based
Image Registration

The nonrigid transformation is modeled using multilevel free-
form deformations [31], [32]. The basic idea of the free-form
deformation is to warp an object (a 3-D image in the present
case) by moving an underlying set of control points distributed
over a regular grid [33], [34] (the sets of control points and the
landmarks defined in Section III-A are strictly uncorrelated). An
interpolation function at each node of the grid is used to recover
the final spatial continuous transformation. At any point , the
deformation is computed by

(8)

where defines the set of spatial parameter values, is
a vector which contains the parameters of the transformation to
be estimated (i.e., displacements of the control points), and
is a tensorial product of interpolation functions. We chose cubic
B-Spline functions which are recognized to be the best choice
in terms of computational efficiency, good approximation prop-
erties, and implicit smoothness (minimum curvature property)
[35]. Cubic B-Spline functions have a limited support and are

continuous. Thus, the influence of each control point is local
and the final motion field is continuous. If we consider that the
object to deform belongs to the space and that the warping
grid size is , the transformation is thus defined by
parameters.

The algorithm relies on a bi-pyramidal formulation. In the
first pyramid , a multiresolution decomposition of the orig-
inal image is stored, where each subresolu-
tion level is obtained by first applying a low-pass Gaussian
filter to the current image , then decimating the number of
pixels (or voxels). The second pyramid allows for the multi-
scale decomposition of motion field [35]–[37]. The final map-
ping function belongs to the Hilbert space of finite energy
deformation fields and can be approximated with a set of mul-
tilevel functions. The multilevel formulation of the transforma-
tion is described in [38]. At the coarsest level, is defined by
a few parameters. Once a deformation field has been estimated
for one level of , the next level is initialized using a pro-
jection onto the finer space. The algorithm is organized as fol-
lows: first, the transformation parameters are estimated at the
coarsest image resolution and transformation level. Then, the
image resolution is increased without changing any parameter
of the transformation and a new estimation is performed. After-
ward, the transformation level increases and previous parame-
ters are projected onto the new finer space. These steps are re-
peated until the final image resolution and transformation levels
are reached. The sum of squared differences (SSD) similarity
criterion is used as follows:

(9)

(with the image overlapping domain). This criterion assumes
the invariance of the material point brightness during motion
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which is reasonable in our monomodal case. The optimization
is achieved through a gradient descent search based on the first
derivative

(10)

of the SSD similarity criterion, with respect to the parameters
of the current transformation level

(11)

In (11), the terms on the right are, respectively, the gradient of
at point and the Jacobian of the transformation

with respect to the parameters at point . At each iteration, the
parameters of the current transformation level are updated ac-
cording to

(12)

where is the maximum step of the gradient descent algorithm.
We developed a C++ multithreaded version of the algorithm
where the region of interest of the reference image was split
according to the number of available processors. This consider-
ably reduced the computing time on SMP architectures.

B. Method : Optimized Optical Flow Method

The method is described in detail in [39]. It involved three
main steps: 1) a preprocessing step consisting of segmenting
the 3-D images into three regions labeled as air, patient, and
lung; 2) a priori lung density modification in order to take into
account the density decrease due to inhalation; 3) dense op-
tical-flow like deformable registration.

The intensity conservation assumption implies that an image
point has the same intensity in the other image but at a dif-
ferent location. However, lung densities are known to decrease
from exhalation to inhalation according to the quantity of in-
haled air. Therefore, the second step of this method aimed at
artificially changing the lung density of one image in order to
be closer to the intensity conservation assumption. We called
this method a priori lung density modification (APLDM) [39].
Deformable registration was achieved by optimizing of a crite-
rion composed of the SSD [see (9)] and a regularization measure
by a steepest gradient descent algorithm. Previous works have
shown that elastic and Gaussian regularizations lead to similar
results for thorax CT images [39]–[41]. In this paper, we con-
sidered Gaussian regularization [42]. Gradient of the SSD
criterion was expressed as proposed by Pennec et al. [43]

(13)

which limits the local displacement at each iteration according
to a maximum vector displacement . This criterion is an ap-
proximation of a second order gradient descent of the SSD [44].
The iterative process is given by

(14)

denotes the displacement at point denotes
the gradient of image at point denotes the displacement
field at iteration , and denotes Gaussian kernel of vari-
ance (the higher the value the smoother the vector
field). Gaussian filtering was performed using Deriche recur-
sive Gaussian filter [45]. Images were previously resampled to
an isotropic voxel’s size of 2.5 mm .

C. Method : Biomechanical Method

Various studies have analyzed organ motion with FEM
methods. Some methods have been proposed to reproduce
the lung behavior, such as the one by Grimal et al. [46] that
was used to study thoracic impact injuries. In this paper,
biomechanical parameters were studied in depth but breathing
motion was not included into the modeling. Other methods
focused on the breathing motion [47]. We recently proposed
to apply, as boundary conditions, a normal displacement field
to the external lung surface extracted from limited by the
maximal displacement field of the surface extracted from .
The method proposed has been detailed in [48]. It is based on
a biomechanical approach and aims at physically simulating
the lung behavior with laws of continuous mechanics based
on physiological and anatomical studies and solved by FEM
methods.

1) Model: The mechanical model was composed of: 1) a
geometrical description of the lung which was discretized into
small elements to constitute a mesh; 2) mechanical parameters
to properly describe lung tissue behavior; and 3) boundary con-
ditions to define the muscle actions allowing pulmonary mo-
tion. The initial state was obtained by lung surface mesh ex-
traction from the CT images. The mesh was multilevel: 1) an
external smooth mesh was obtained by a surface reconstruc-
tion method (Marching Cube) [49]; 2) this algorithm was ex-
tended to also provide an accurate tetrahedral mesh of the lung
periphery [50]; and 3) bulk mesh was modeled by hexahedrons
directly extracted from CT scan voxels for better convergence
rate. The mechanical parameters, especially compliance, were
issued from physiological measurements [51]. Compliance rep-
resents the ratio of air volume variation to the related air pres-
sure variation. Each patient’s data are linked to lung tissue elas-
ticity, especially the Young modulus. The boundary conditions
were derived from mechanical pleura action [52]. We computed
the boundary conditions by imposing surface displacements.
The boundaries of the lungs were modeled with a mesh ex-
tracted from CT scan image representing the deformed state.
A uniform normal pressure was applied around the rib cage and
around the diaphragm areas to simulate the pleural elastic recoil
pressure. Adding contact condition constraints to that boundary
allowed us either to block the displacement or to simulate the
slipping skins. Fig. 9 illustrates these constraints. Note that in
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Fig. 9. Boundary conditions defined by diaphragm and rib cage actions for
biomechanical model.

one dataset, the upper part of the lungs was missing. There-
fore, the model could not be applied directly. To overcome this
problem, the missing part of the lung apex (only about 1.5 cm)
was approximated with a semi-ellipsoid. The semi-axe lengths
were manually set.

2) Displacement Estimation: The solution to the problem
was achieved using the FEM [53]. This numerical method con-
sists of approaching the solution by a simple expression based
on the discretization of the space into a mesh. In the present
case, displacements were estimated to minimize the residue

defined by

(15)

where is the stiffness matrix and is the load vector. The
term expresses the rigidity of the lung. It depends both on me-
chanical parameters (Young modulus and Poisson’s ratio) and
on topological relationships between mesh nodes. The term
expresses the external forces applied to the lung, such as neg-
ative pressure. The displacement vector represents the dis-
placement of all the mesh nodes and allows us to estimate the
displacement in the whole lung by interpolation. The space of
such displacements is a subspace of functions and minimizing
the residue is equivalent to finding the best approxima-
tion of the solution to laws of continuous mechanics describing
the behavior of a deformable solid under boundary condition
stresses.

In our FEM approach, this nonlinear problem was solved
using the Newton–Raphson algorithm which is an iterative
method based on the computation of the gradient and the
second-order gradient of . The displacements and strains
were too large to assume that geometrical mesh changes would
not influence the mechanical behavior. Therefore, we employed
the iterative scheme presented in [54]. This method consists
of readjusting the geometrical description at each load step in
order to reevaluate . To account for contact conditions,
we calculated algebraic distances between the nodes of the lung
surface and the triangles representing the target lung surface
(end-inhalation). If a distance remained positive, a negative
pressure was applied to the corresponding node. When this
became zero or negative, a contact between the current and
the target lung surface was assumed. In this case, a restoring
force was applied to ensure that the node was pulled back to
the target surface. The restoring force was set as normal at the
surface in order to allow surface sliding.

Fig. 10. Box and Whiskers plots for TRE criterion obtained for motion esti-
mation methods. First line corresponds to patient 1, second line to patient 2 and
third line to patient 3. First column corresponds to ��� , second to ��� , and third
to ��� . Each subfigure displays box and whiskers plot for four methods: m is
without transformation,m corresponds to bi-pyramidal free-form-based image
registration, m to optimized optical flow method, and m to biomechanical
method.

Until now, we have focused on the technical aspects of the
method: convergence, biomechanical parameters influence, and
the interest of using a multilayer mesh. The fact that the lungs
are composed of different biological tissues was not taken into
account in this paper. As a consequence, mechanical properties
were supposed to be uniform all over the lungs.

V. RESULTS

The two criteria TRE and STE, introduced in (3) and (5), were
used to evaluate the motion estimates obtained by the three pre-
viously described methods applied to the 4-D image sequences
for the three patients presented in Section II. Box and whiskers,
Bland–Altman, and Student paired t-tests analyses were derived
for the two criteria. For methods and , the resulting de-
formation field obtained between images and was used
as the starting deformation field for the subsequent registration
( to ), and so on. It allowed us to save some initial itera-
tions by starting closer to the solution. Method was run on a
1.5-GHz Nonuniform Memory Access Multiprocessor SGI with
64Gb RAM, running Linux OS. The computation time for one
iteration was related to the image resolution and the transfor-
mation level. For all the registrations, four image resolutions
and four transformation levels were used with cubic B-Spline
basis functions. The size of the regular grids were 5 5 5,
7 7 7, 11 11 11, and 19 19 19. Registration time,
using ten processors, ranged from 18 min (patient 1) to 22 min
(patient 2). Method was run on a 2.8-GHz PC with 1 Gb
RAM running Linux OS. The computation time was about 1.5 s
for one million voxels and for one iteration. Registration time
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TABLE II
TRE IN MILLIMETERS FOR EACH METHOD AT EACH TIME POINT. FOR EACH

CASE, FIRST VALUE CORRESPONDS TO MEAN VALUE OF TRE CRITERION.
TWO VALUES IN PARENTHESES CORRESPOND TO FIRST AND

THIRD QUARTILES, RESPECTIVELY

ranged from 5–9 min depending on the image size and the de-
formation to recover. Method was run on a 3.2-GHz PC.
The computation time was about 2 min for a mesh composed of
7000 nodes and 20 000 elements. Method was not applied to
patient 3. Indeed, as the tumor was attached to the diaphragm,
the lung surface was found difficult to extract reliably.

A. First Criterion: TRE

Fig. 10 displays the Box and Whiskers plots for TRE on the
three patients (one line per patient). The three columns corre-
spond to the three transformations and , respectively.
Each plot shows the statistics for the four methods ( stands
for “without registration,” methods were described
in Section IV). Table II gives the TRE statistics obtained with
all the methods. Bland–Altman analysis was performed on each
pair of methods. Only two representative plots are given here as
other plots lead to similar behavior. Fig. 11 compares the land-
mark cranio-caudal coordinates given by the experts to those ob-
tained with method [Fig. 11(a)] and method [Fig. 11(b)] for
the transformation , in patient 1. A Bland–Altman diagram
plots the differences between two methods against their mean.
For each diagram, 95% of differences will lie between the two
straight line limits (or, more precisely, between and

, where stands for the mean difference and for
the standard deviation). Such a representation is very helpful to
identify situations where the results given by two methods are
truly discordant. Table III shows the Student t-test results be-
tween each pair of methods, allowing us to identify whether the
TRE obtained with a method is statistically different from the
TRE obtained with another method. The acceptable significance
value was set to 0.05. The p-value is a probability measure of
the confidence against a null hypothesis . In the present case,
hypothesis was: “the two methods are equivalent according

Fig. 11. Bland–Altman plots for comparing motion estimation methods (trans-
formation ��� , patient 1); (top) comparison of cranio-caudal displacements: ex-
pert’s reference against m estimations. (bottom) comparison of cranio-caudal
displacements: expert’s reference against m estimations.

TABLE III
STATISTICAL TESTS PERFORMED ON EACH PAIR OF METHODS (FOR ALL

PATIENTS, ALL LANDMARKS, AND ALL MOTION ESTIMATION METHODS).
IF P-VALUE IS GREATER THAN 0.1, DIFFERENCE IS NOT STATISTICALLY

SIGNIFICANT (SYMBOL “=”). IF p < 0:1 DIFFERENCE IS SIGNIFICANT

(SYMBOL “+”), AND IF p < 0:001, DIFFERENCE IS

HIGHLY SIGNIFICANT (SYMBOL “+ ++”)

to the computed metric.” The lower the p-value, the more
likely the difference between methods is significant.

B. Second Criterion: STE

Fig. 12 displays the length of the according to the dis-
tance to the lung apex for patient 1. The greater displacements
were observed near the diaphragm. Therefore, the magnitude of
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Fig. 12. Distribution of norm of displacements according to distance to lung
apex for patient 1(PRT).

TABLE IV
STE METRIC (MEAN VALUE IN MILLIMETERS � STANDARD VARIATION), FOR

THREE DATASETS, BETWEEN PPPRT S AND PPPET S, OBTAINED WITH EACH

METHOD. LAST THREE COLUMNS DEPICT MAXIMUM STE VALUES

TABLE V
FOR EACH SEQUENCE, STE METRIC (MEAN VALUE IN MILLIMETERS �

STANDARD VARIATION), BETWEENPPPRT S ANDSSSRT S ON THE ONE HAND AND

SSSET S ON THE OTHER HAND. ALL LANDMARKS ARE TAKEN INTO ACCOUNT

the motion to be recovered by motion estimators was variable
along the thorax (from about 3 mm near the apex to 25 mm close
to the diaphragm). Table IV gives the STE statistics between the

and obtained with each method in order to discuss
spatiotemporal errors. The temporal sampling differed from one
sequence to another as a function of the breathing cycle mod-
eling [(4) and Fig. 5]. The importance of accounting for motion
(through intermediate time points) in radiation treatment is as-
sessed in Table V, which provides the STE statistics between the

and obtained with each registration method. In par-
ticular, these results allow us to discuss whether all the frames
of the sequence are essential or if only a few of them (i.e., the
two extreme phases) are needed. Table VI displays the results of
the student t-test comparing the STE metric obtained with
and , respectively.

VI. DISCUSSION

The proposed framework allows the comparison, in terms of
accuracy, of motion estimation methods from 4-D scans. First,
the punctual accuracy of the three selected methods (

TABLE VI
STATISTICAL TESTS PERFORMED (FOR EACH PATIENT AND EACH POINT) TO

COMPARE SSSET S AND PPPET S FOR EACH METHOD. IF P-VALUE IS GREATER

THAN 0:1, DIFFERENCE IS NOT STATISTICALLY SIGNIFICANT (SYMBOL “=”).
IF p < 0:1, DIFFERENCE IS SIGNIFICANT (SYMBOL “+”), AND IF p < 0:001,

DIFFERENCE IS VERY SIGNIFICANT (SYMBOL “+++”)

and ) was evaluated with the TRE criterion, and the be-
havior of the different methods was studied with the help of
statistical tools (Bland–Altman, Box and Whiskers and student
t-tests). The STE criterion introduces temporal information into
the evaluation framework through a breathing model. This is to
better take into account the dynamics of the organs in our con-
text, which is of particular importance in radiotherapy of the
lungs.

A. Method Accuracy (TRE Criterion)

Overall landmark errors (TRE, Table II) for the two inten-
sity-based methods and (2.1 and 2.0 mm, respectively)
were in agreement with the voxel size (0.9 0.9 2.5 mm )
and the experts variability (1.2 mm). We also observed that
displacements were generally slightly underestimated (mean
difference of the Bland–Altman diagrams below the zero line),
suggesting that the regularizations used in intensity-based
methods (cubic B-splines for and Gaussian smoothing for

) sometimes prevent points to reach their true location. For
the biomechanical method , only a rather rough mesh was
considered (mean hexahedron size is 24 12 3 mm for
patient 1 and 10 10 10 mm for patient 2). The landmark
points were defined in areas of significant intensity gradients
which correspond to materially heterogeneous regions not
yet included into the biomechanical model. Nevertheless, we
observe in Fig. 10 that the estimated average error is approx-
imately less than half the average mesh element size: lower
than 6.5 mm for patient 1 and lower than 5 mm for patient 2.
Bland–Altman diagrams (Fig. 11), revealed one specific land-
mark position for which the location provided by the experts
was not in agreement. After discussion with the experts, this
landmark was discarded from the experiments.

The TRE statistical descriptors (mean, quartiles, Fig. 10, and
Table II) computed from and are similar between pa-
tient 1 and patient 2 despite the overall greater motion magni-
tude in patient 1 (see Table II). The slight differences observed
between and may be related to the transformation model
used. The nonparametric representation of method allows
us to estimate deformation with a precision depending on the
voxel size. For method , the motion field was expressed with
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a continuous model and the accuracy depended on the size of the
grid and of a region of interest (ROI). For example, in patient 1
dataset, the ROI was about 200 200 pixels in the acquisition
plane, corresponding to approximately one control point every
ten voxels (9 mm in native image plane). The ROI was larger for
patient 2 dataset (250 250 pixels) due to morphological differ-
ences between the two patients implying a distribution of one
control point every 14 voxels (12.6 mm in native image plane).
This might explain accuracy differences between the two se-
quences when using method .

Methods and were found to be statistically similar but
significantly different from method , as shown
by results of the student t-tests summed up in Table III.

B. Trajectory Study (STE Criterion)

1) STE As Method Evaluation Criterion: The study of tra-
jectories through the STE metric showed that the mean distance
between reference and estimated piecewise-linear tra-
jectories was around 1.6 mm with methods and

and around 5 mm with method (Table IV). The dif-
ference between methods and was found not statisti-
cally significant. With and , the STE for patient 1 (see
Table IV) was slightly higher than the mean of the three TRE
(2.0 and 2.2 mm compared to 2.2 and 2.3 mm, Table II), while
the STE for patients 2 and 3 was inferior to the corresponding
TRE values. Even if and lead to comparable average re-
sults, the maximum STE was lower using method . Whereas
each time point contributes with an equal weight to the mean
TRE, the STE metric introduces a variable weight according
to the breathing cycle model and displacement speed along the
trajectories. This implies that intermediate time points ( and

) influence depends on their relative location in the breathing
cycle (see Fig. 5). STE values are inferior to the mean TRE
values for patients 2 and 3 (1.7 1.2 mm versus 2.2 1.5 mm av-
erage TRE for method ) because the most influent time point
is . On the contrary, STE values are greater to the mean TRE
values for patient 1 since the first intermediate time point con-
tributes more. In conclusion, the STE metric takes into account
the breathing dynamics and the acquisition time of each of the
sequence frame.

The STE criterion depends on the selected breathing model.
Other breathing models could be considered. The proposed
framework could also be used to study the hysteresis pattern
which is known to occur during breathing (different inhalation
and exhalation pathways), but it would require the definition of
many more landmarks. STE criteria should be well adapted to
compare inhalation and exhalation trajectories and to put the
focus on different parts of the breathing cycle.

2) Taking Intermediate Frames Into Account in Lung Radio-
therapy Treatments: Table V illustrates, through the three se-
quences studied, the importance of taking into account motion
in radiotherapy treatment. compared to represents
the error committed when straight-linear trajectories are con-
sidered instead of piecewise-linear ones. This error was partic-
ularly low for patients 2 and 3 (1.2 and 0.6 mm, respectively).
It suggests that, for the considered trajectories, the observed
motion was almost rectilinear. Indeed, using straight-linear tra-
jectories (one single motion estimation between end-inspiration

and end-expiration images) increased the overall error for pa-
tient 1, whereas errors remain almost equivalent for patients 2
and 3 (in Tables IV and V, STE rises from 2.2 to 3.3 mm for
method ). However, it is not clear at this stage whether such
discrepancies in accuracy results between patients come from
the variablity in patient organ motion or from the 4-D acqui-
sitions. Moreover, methods behave differently: although results
for and lead to similar STE, Table VI shows that the error
difference between straight-linear and piecewise-linear trajec-
tories was highly significant for method for all patients,
whereas, for method , it was significant for patients 1 and 3.
It seems that trajectories estimated with method were more
linear than those estimated with method . The results con-
cerning method called our attention to the contact condi-
tions of the FEM. We observed afterward that this contact condi-
tion had not been properly handled. In particular, the conditions
for surface contact had not been met for some nodes due to the
mesh resolution, thus explaining why some differences could be
observed. Inaccuracy at the contact was of the order of mm,
which explains why the differences were almost constant, what-
ever the displacement, and why the straight-linear process gave
better results. Moreover, even if the method is still under de-
velopment, the current evaluation study has made it possible to
point out some of the problems that should be solved in the fu-
ture. Overall, the benefit of incorporating additional frames for
taking into account the breathing motion appears to depend on
the patient. So, in the absence of a priori information on the pa-
tient breathing pattern, it is certainly better to dispose of more
than the two extreme phase images.

Criteria were computed over the whole image domain. But
it is known that lung motion is not homogeneous during the
breathing cycle and that trajectories are longer and more linear
near the diaphragm than near the lung apex (Fig. 12). In the fu-
ture, by using the same criteria, it should be very interesting to
study motion behavior in the different parts of the lungs (lower
part of the lung versus upper part, tumor areas). The chronology
of the landmark trajectory is globally imposed by the Lujan’s
model: all the landmarks are assumed to have the same temporal
evolution (homogeneous behavior), but it is known that such an
assumption is not rigorously true. However, if information about
the breathing pattern in different lung regions would be avail-
able (for example by means of external or internal markers), it
could be easily inserted into the proposed STE measure; cur-
rently only depends on the time variable, it would switch to

according to a spatiotemporal breathing model. Indeed,
the main reason for using a breathing model is to compensate
for the limited number of temporal frames. The model would
be less necessary if we dispose of more temporally resolved se-
quences. However, there is still a tradeoff between image spatial
and temporal resolutions and the acquisition costs in terms of
dose delivered to the patient, the compatibility of the acquisition
time with the clinical constraints, and the management of large
amounts of data. The acquisitions considered in this paper take
into account those constraints as they have been indeed used for
patient treatment planning.

Motion validation by means of landmarks is intrinsically lim-
ited to the point location with the consequence that no infor-
mation is available in between those points. Landmarks were
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selected as evenly as possible all over the lungs based on vis-
ible anatomical structures. However, in homogeneous regions,
no landmark could be identified and thus the quality of the esti-
mated deformation field could not be assessed within these re-
gions. Moreover, medical experts generally find it difficult and
time consuming to select landmarks. This is the reason why the
number of landmarks was limited to some tens. To our knowl-
edge, this is one of the first times that such an evaluation is
performed on the lungs with such a significant number of land-
marks. More complex primitives (such as 3-D lines following
vessels) would bring higher level information and thus con-
tribute to define a better ground truth for the evaluation. This
would still require patients to be evaluated by experts, which is
a difficult task in 3-D.

VII. CONCLUSION

In this paper, we propose a strategy and criteria in order to
evaluate the accuracy of motion estimators from 4-D CT se-
quences with a limited number of phases between end-inspira-
tion and end-expiration. Such an evaluation is particularly cru-
cial in radiation therapy where estimated motion can be used to
estimate the distribution of the absorbed dose during the ther-
apeutic irradiation of moving organs such as the lungs. The
main contributions of this paper were the setup of test cases
and of a procedure to obtain expert inputs (carefully identi-
fying more than 500 landmarks over four phases and three pa-
tients) and the proposal of spatiotemporal criteria to evaluate
the predictions of landmark displacements through the respi-
ratory cycle. The STE criterion allows us to take into account
the dynamics of the motion by introducing an a priori respi-
ratory cycle model. It can be considered as a specialization of
the TRE metric to the specific context of breathing motion com-
pensation. The proposed comparison framework was illustrated
by the study of three different motion estimation methods (two
registration based methods, and one biomechanical model based
method). The study allowed us to compare the accuracy of those
methods and to highlight some of their limits. The analysis also
demonstrated the interest of incorporating several frames over
the respiratory cycle in view of better adapting the therapy of
lung tumors to the patient. This paper has been conducted on
three 4-D datasets encompassing only half the respiratory cycle.
The study should be pursued by including additional datasets
and extending the tracking over the entire respiratory cycle.
Adding more landmarks, in particular outside the lung region,
could also improve the evaluation of accuracy. Dose deposit
simulations could be performed on 4-D images in order to quan-
tify the influence of the type of motion estimators on dose distri-
bution. Finally, a similar framework could also be used to eval-
uate motion tracking methods in other medical imaging contexts
such as in cardiac motion analysis.
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