
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 9 (2 0 1 0) 172–178

journa l homepage: www. int l .e lsev ierhea l th .com/ journa ls /cmpb

B-LUT: Fast and low memory B-spline image interpolation

David Sarruta,b,c,∗, Jef Vandemeulebrouckea,b,c

a Université de Lyon, F-69622 Lyon, France
b Creatis, CNRS UMR 5220, F-69622 Villeurbanne, France
c Léon Bérard Cancer Center, 28 rue Laennec, F-69373 Lyon cedex 08, France

a r t i c l e i n f o

Article history:

Received 15 July 2009

Received in revised form

24 November 2009

Accepted 24 November 2009

Keywords:

B-spline image transformation

B-spline image interpolation

a b s t r a c t

We propose a fast alternative to B-splines in image processing based on an approximate

calculation using precomputed B-spline weights. During B-spline indirect transformation,

these weights are efficiently retrieved in a nearest-neighbor fashion from a look-up table,

greatly reducing overall computation time. Depending on the application, calculating a B-

spline using a look-up table, called B-LUT, will result in an exact or approximate B-spline

calculation. In case of the latter the obtained accuracy can be controlled by the user. The

method is applicable to a wide range of B-spline applications and has very low memory

requirements compared to other proposed accelerations. The performance of the proposed

B-LUTs was compared to conventional B-splines as implemented in the popular ITK toolkit

for the general case of image intensity interpolation. Experiments illustrated that highly

accurate B-spline approximation can be obtained all while computation time is reduced

with a factor of 5–6. The B-LUT source code, compatible with the ITK toolkit, has been made

freely available to the community.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

B-splines are widely used in image processing for manip-
ulating a continuous version of a discrete image [1]. Using
B-splines, an n-dimensional (n D) image (or signal) can be rep-
resented through a set of n D coefficients. Obtaining the image
value at any continuous coordinate involves a linear combi-
nation of coefficients and basis function (B-spline) weights.
Thanks to its compact support, this involves only a finite and
usually small number of coefficients.

Considering the case of B-spline interpolation, two pro-
cesses can be distinguished. The first one is referred to as the
direct transformation and consists in computing a set of B-spline
coefficients from the initial image. Very efficient digital filter-
ing schemes have been proposed [2,3] to solve this issue. The
second process, called indirect transformation consists in com-
bining the found coefficients and weights for a given position.

∗ Corresponding author at: Léon Bérard Cancer Center, CREATIS, 28 rue Laennec, F-69373 Lyon cedex 08, France. Tel.: +33 478785151.
E-mail address: david.sarrut@creatis.insa-lyon.fr (D. Sarrut).

This latter process remains relatively slow. For example, per-
forming a rotation of a three-dimensional (3D) image with size
512 × 512 × 200 (≈ 50 million voxels) using cubic B-spline inter-
polation takes about 200 s. The computation of coefficients
(the direct transformation) only takes about 10 s (both per-
formed on a 2 GHz PC, using the ITK toolkit [4], see Section
3).

To our knowledge, few studies directly address the indirect
computational time issue. Acceleration of processes which
include B-spline interpolation, such as deformable image reg-
istration, are generally addressed in a parallel framework with
hardware-based methods: with clusters of workstations [5],
with multi-processors shared-memory systems [6], or with
graphical processing units or GPUs [7,8]. Some authors [9]
mentioned the use of precomputed weights, but we do not
find any publication describing such work.

The computational cost of the indirect transformation is
caused by the high number of operations performed for each

0169-2607/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.cmpb.2009.11.013

Author's personal copy

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 9 (2 0 1 0) 172–178 173

interpolated value. For simplicity we will assume in the fol-
lowing that the same spline degree was chosen along all
dimensions. Observations can however easily be extended to
the general case.

During the first step of the indirect transformation we com-
pute the tensor products of the B-spline basis function values
according to the distance between the current position and
each contributing control point in the support region (Eq. (1)).

Step1 ˇr
i (x) =

d∏
j

ˇr(pij − xj). (1)

ˇr is the B-spline basis function of degree r, d is the image
dimension, i is the index of a control point with coordinates pij,
x is the position at which we want to evaluate the function and
xj are its coordinates. For a given position x, (r + 1)d different
tensor products are computed, one for each control point with
non-zero weight at x.

The second step required to compute the interpolated
value v(x) involves the linear combination of the tensor prod-
ucts (ˇr

i) with the corresponding coefficients ci, previously
computed during the direct transformation (Eq. (2)). In the fol-
lowing the term weights will refer exclusively to the B-spline
tensor products ˇr

i .

Step2 v(x) =
(r+1)d∑

i

ci ˇr
i (x). (2)

Evaluating the basis function ˇr(e) involves the computation of
a polynomial of degree r. The initial definition of the B-spline
functions is obtained recursively by convolving ˇ0 (n + 1) times
with itself. An analytic expression can also be obtained by
applying the recursive Cox-de Boor formula (Eq. (3)).

ˇr(e) = uM with

{
u = [er er−1 . . . e 1]
M matrix of sizek × k with k = r + 1

(3)

M = [Mij] =

⎡⎣ 1
(k − 1)!

Ck−1,i

k−1∑
m=j

(k − (m + 1))i (−1)m−j Ck,m−j

⎤⎦ (4)

Ci,j = i!
j!(i − j)!

= binomial coefficient (5)

Step 1 requires about 2 × r operations (additions or multi-
plications) for computing one ˇr, thus 2 × r × d for the tensor
product ˇr. There are (r + 1)d different weights. This leads to
a total complexity of O(r × d × (r + 1)d) operations for step 1,
while only O((r + 1)d) for step 2.

If the interpolation is performed with a regular sampling
rate which is a multiple of the control point spacing, the
required weights will reoccur across the image region due to
symmetry. In this case they can be precomputed, stored and
reused, allowing to avoid most of the computational part of
step 1, without any loss of accuracy. However, as generally this
is not the case (e.g. when performing an image rotation or dur-
ing image warping), the exact weights cannot be precomputed.

We propose to extend the range of applications for
which splines can be efficiently calculated using precomputed
weights. For applications where no exact calculation can be
achieved the approximation error is controlled by oversam-
pling the control point grid. Through efficient design of the
weights look-up table (LUT), memory requirements are kept to
a minimum further extending the use of the method to large
scale problems. As we will show in Section 4, the proposed B-
LUT framework can obtain high interpolation accuracy while
offering considerable reduction in computation time.

2. Method

The method consists in approximating the tensor product (Eq.
(1)) by a precomputed one. At interpolation time, step 1 is
replaced by finding the closest precomputed weights in the
LUT. Step 2 can then be applied in a conventional way by
looping over the coefficients and their corresponding weights.

2.1. LUT computation

The computation of the weights is made only once before the
interpolation. By choosing the (over)sampling rate of the pre-
computed weights with respect to the control point grid, it is
possible to control the trade-off between LUT size and approx-
imation accuracy. Note that the whole image region does not
need to be sampled. Since we are assuming uniform B-splines,
it suffices to sample one n-dimensional B-spline support.

Let �j ∈N be the LUT sampling rate for the dimension j.

The size of the LUT is the size of the B-spline support, (r + 1)d,

multiplied by the sampling rate in each dimension
∏d

j
�j. The

overall computation time of interpolating an entire image
once can only be reduced if the number of weights to precom-
pute is < (r + 1)d times the number of pixels to interpolate.
In practice however, this is often the case. For example, to
interpolate a 2563 3D image having about 1.6 × 107 pixels, the
number of weights to precompute for a sampling rate equal to
20 is 5.12 × 105 (203 × (3 + 1)3), in comparison to 1.024 × 109

(16 × 106 × (3 + 1)3) weights in total. Assuming single preci-
sion, the LUT memory size requirement is 4 bytes × (r + 1)d ×∏d

j
�j, which leads to 2 MB in this case.

2.2. LUT look-up

After computing the weights, step 1 in Eq. (1) is replaced by
finding the optimal precomputed weight in the LUT. The inter-
polation position x is then transformed to its corresponding
position x′ relative to the sampled B-spline support region.

For efficiency, the LUT is indexed such that a single round-
ing operation, denoted �a�, on each of the coordinates of x′

leads to the index in the LUT l of the first element of the list of
all (r + 1)d weights corresponding to the current position, see
Eq. (6). This implies that for each evaluation position a single
look-up replaces step 1, providing all the weights required for
the calculation in step 2 (Eq. (2)).

l =
d∑

j=1

(
kj

j∏
i

�i−1

)
with kj = �x′

j� and �0 = 1 (6)

Author's personal copy

174 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 9 (2 0 1 0) 172–178

Fig. 1 – The two images used for the tests : a CT image of a head (top) and a CT image of heart/thorax (bottom).

3. Design considerations

We implemented the method inside the Insight Segmenta-
tion and Registration Toolkit (ITK1[4]). This toolkit is widely
used in medical image analysis and uses the notion of fil-
ters to represent a process chain. A new filter was created
named BSplineInterpolateImageFunctionWithLUT which
inherits from the original BSplineInterpolateImageFunc-

tion. This way, users only have to change three lines
inside their usual code to use B-LUTs instead of B-splines.
The code and procedure are available on the following
web page http://www.creatis.insa-lyon.fr/rio/b-lut under the
CeCILL open source license2.

4. Experiments

In this work the performance of the proposed B-LUTs is
assessed in the context of image intensity interpolation. Sim-
ilar results can be expected in other application areas (see
Section 5 for an example on deformable image registration). In
addition to a quantitative accuracy evaluation, we provide an
analysis of the time gain over conventional B-splines. The lat-
ter should be considered as an example as the obtained gain
was found to be highly dependent on the computer architec-
ture.

4.1. B-LUT interpolation accuracy

In order to illustrate the inherent loss of accuracy caused by
the use of approximated weights, we performed the following
tests, inspired from [9]. A 3D image was rotated several times

1 http://www.itk.org.
2 http://www.cecill.info/index.en.html.

around an arbitrary axis with a series of 16 different angles3,
resulting in a complete rotation of 360◦. This procedure pro-
vides us with a gold standard to compare the rotated image
with: the original image. Moreover, the image is used at its
intrinsic resolution and the use of different rotation angles
allows to avoid bias due to precomputed weight positions.

The test images were two CT images, the first of the head
and the second of the lungs and heart. Their respective sizes
were 512 × 512 × 222 and 512 × 512 × 403, and their voxel sizes
0.5 × 0.5 × 1 and 0.4 × 0.4 × 0.3. The used images therefore
contained about 58 and 105 million voxels respectively. Exper-
iments were performed for B-spline degrees from linear (r = 1)
to quintic (r = 5), including the popular cubic B-splines (r = 3).
For each degree, we tested different LUT sampling values (�
equal to 1, 2, 4, 5, 10, 20 and 50 for each image dimension).
The rotated image when using B-LUT interpolation was com-
pared to the one obtained with B-spline interpolation and to
the original reference image. Differences were quantified by
computing the Root Mean Squared Error (RMSE) and the max-
imum difference (MAX). Pixels that go out of the image support
during the rotation are discarded and thus not counted into
the RMSE final values, by using a binary image mask.

Fig. 1.
Table 1 summarizes the results for the consecutive rota-

tion experiment described above. In the two first tables we
assess the accuracy of the B-LUT interpolation with respect to
the conventional B-spline method, while in the following two
tables a comparison with the original reference image is per-
formed. Fig. 2 displays RMSE between the two methods (the
RMSE axis is logarithmic) for the first image (similar results
were obtained for the second). Fig. 3 illustrates the resulting
images with the first test image.

Fig. 4.

3 Angles were 0.7◦, 3.2◦, 6.5◦, 9.3◦, 12.1◦, 15.2◦, 18.4◦, 21.3◦, 23.7◦,
26.6◦, 29.8◦, 32.9◦, 35.7◦, 38.5◦, 41.8◦and 44.3◦.

Author's personal copy

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 9 (2 0 1 0) 172–178 175

Table 1 – (Top) RMSE and maximum error (MAX) between fast B-spline and conventional B-spline. (Bottom) RMSE
between reference image without rotation and images rotated by 360◦ with sampled (� from 1 to 50) and conventional
(denoted by ‘Ref’) B-spline interpolations.

RMSE (and MAX) error of B-LUT according to conventional B-spline

� = 1 � = 2 � = 4 � = 5 � = 10 � = 20 � = 50

Linear r = 1 133 (3679) 23 (702) 9 (276) 7 (190) 3 (91) 1 (40) 1 (14)
Quadratic r = 2 138 (4156) 48 (1805) 21 (862) 17 (700) 8 (328) 4 (149) 2 (63)
Cubic r = 3 140 (4216) 53 (2038) 23 (944) 18 (738) 9 (369) 4 (187) 2 (69)
Quartic r = 4 142 (4351) 59 (2422) 26 (1143) 21 (882) 10 (465) 5 (232) 2 (88)
Quintic r = 5 143 (4356) 61 (2635) 28 (1219) 22 (922) 11 (503) 5 (256) 2 (96)

RMSE (and MAX) error according to original image

� = 1 � = 2 � = 4 � = 5 � = 10 � = 20 � = 50 Ref

Linear r = 1 144 (3982) 87 (3059) 89 (3062) 89 (3077) 90 (3105) 90 (3104) 90 (3104) 90 (3102)
Quadratic r = 2 144 (3982) 57 (2933) 33 (1887) 29 (1889) 24 (1593) 23 (1616) 22 (1536) 22 (1542)
Cubic r = 3 144 (3982) 58 (3027) 30 (1840) 26 (1725) 20 (1465) 18 (1484) 17 (1386) 17 (1396)
Quartic r = 4 144 (3982) 61 (3122) 30 (1772) 25 (1600) 17 (1330) 14 (1349) 13 (1216) 13 (1252)
Quintic r = 5 144 (3982) 63 (3168) 31 (1781) 25 (1571) 16 (1281) 13 (1302) 12 (1162) 12 (1206)

RMSE (and MAX) error of B-LUT according to conventional B-spline

� = 1 � = 2 � = 4 � = 5 � = 10 � = 20 � = 50

Linear r = 1 91 (2517) 16 (382) 6 (188) 5 (120) 2 (70) 1 (28) 0 (12)
Quadratic r = 2 94 (2884) 31 (946) 15 (461) 12 (408) 5 (183) 3 (88) 1 (41)
Cubic r = 3 95 (2878) 33 (1084) 16 (474) 13 (419) 6 (196) 3 (98) 1 (44)
Quartic r = 4 96 (2872) 37 (1254) 19 (574) 15 (513) 7 (236) 4 (109) 1 (50)
Quintic r = 5 96 (2870) 39 (1330) 20 (630) 15 (562) 7 (259) 4 (115) 1 (52)

RMSE (and MAX) error according to original image

� = 1 � = 2 � = 4 � = 5 � = 10 � = 20 � = 50 Ref

Linear r = 1 97 (2848) 55 (1154) 56 (1008) 56 (1069) 56 (1053) 56 (1051) 56 (1054) 56 (1054)
Quadratic r = 2 97 (2848) 36 (984) 23 (519) 20 (480) 17 (306) 16 (266) 16 (272) 16 (267)
Cubic r = 3 97 (2848) 37 (1087) 22 (508) 19 (471) 15 (269) 14 (224) 13 (221) 13 (213)
Quartic r = 4 97 (2848) 39 (1211) 22 (565) 18 (477) 13 (283) 11 (189) 11 (167) 11 (162)
Quintic r = 5 97 (2848) 40 (1279) 22 (620) 19 (526) 12 (288) 11 (176) 10 (146) 10 (143)

Fig. 2 – RMSE between image rotated with fast B-LUT and
image rotated with corresponding conventional B-splines,
for various degrees and sampling values. The RMSE axis is
logarithmic scaled.

A sampling equal to � means that the distance between the
position used to compute the approximated weight and the
position of the real weight is at maximum (1/2�) (half the dis-
tance between two samples). In order to illustrate the intrinsic
error of the method, we compute RMSE between an image and
the same image displaced by such maximum distance. Fig. 5
displays the values for cubic B-splines computed with a 2D
slice.

4.2. B-LUT interpolation efficiency

We performed time measurements for both B-LUT and
B-spline interpolation. Tests were performed on the previ-
ously described 3D images for a rotation transformation. We
observed computation time variations when successive inter-
polations were performed due to processor cache effects.
Times were thus measured for 10 different transformations
and averaged. Fig. 6 displays the mean computation time of
image 1 test, for interpolations with different B-spline degrees
(from linear to quintic), for conventional B-spline interpola-
tion and fast B-LUT interpolation with two sampling rates
(� = 10 and � = 20). We also indicate the time due to coeffi-
cient computation (boxes at the bottom). The machine was an

Author's personal copy

176 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 9 (2 0 1 0) 172–178

Fig. 3 – The images show the results of the application of 16 successive rotations around an arbitrary axis (360◦), with
different interpolation methods. Numbers are RMSE errors and computational time of one rotation in seconds (PC 2 GHz).
Initial image is 512 × 512 × 222 pixels.

Fig. 4 – The images focus on a small area having important grey levels gradients (bone, soft tissues, air) in order to compare
the reference image to the interpolated ones with linear, cubic B-splines and cubic B-LUT (with 20 as sample rate)
interpolations.

Intel Core 2 Duo 2.0Ghz. Fig. 7 illustrates the loss of efficiency
when increasing the LUT size for cubic B-LUT interpolation.

5. Discussion

Fig. 2 and Table 1 show that, with a sampling rate � > 10,
the difference between images interpolated with conventional
B-splines and B-LUT is very low (visually they are indistin-
guishable in all tests). The mean of absolute differences was
found to be < 3 Hounsfield units for cubic B-splines with � = 10
or 2 with � = 20. For lower sampling rates, the approximation
became insufficient. For example, cubic B-LUT with � = 5 per-
formed worse than conventional quadratic B-spline. We also
observed that the differences increased with spline degree.

Fig. 6 illustrates the important time gain that can be
obtained using B-LUTs. For equivalent B-spline degrees the
time is reduced by a factor between 5 (quadratic) and 6 (quin-
tic). It can be seen that quintic B-LUT interpolation was more
than twice as fast than conventional cubic B-spline interpola-
tion. For linear interpolation, computational time was greater
(factor 1.15) than conventional linear interpolation and we
thus do not recommend to use the LUT method for a degree
lower than 2. However, it should be mentioned that identical
tests performed on a different computer architecture (AMD
Athlon(tm) 64 bits 2 GHz) gave different results. For degrees 2
up to 5 similar though slightly lower speedup factors between
4 and 5 were found. For linear interpolation a speedup > 3
was in this case also observed. Such differences could be due
to the processor cache size (2 MB for Intel and 512 kB for AMD),
and specific handling of specific arithmetic operations. Finally

Author's personal copy

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 9 (2 0 1 0) 172–178 177

Fig. 5 – RMSE between an image and a translation of the
maximum amount of error (1/2�) for cubic B-spline
interpolation.

we also draw the reader’s attention to the time required for
coefficients computation (direct transformation process using
recursive filters) which is negligible compared to the time
needed by the interpolation.

The influence of the LUT size on the computational time,
controlled by the sampling factor � is illustrated in Fig. 7.
For � ≤ 20, the time is almost unchanged. For � = 10, a light
speedup compared to lower � values was observed, but this
is probably due to processor cache effect. Raising � to 100
increased the computational time by 30%, but the whole com-
putational time remains largely lower than the conventional
implementation.

An important parameter when choosing an adequate value
for the sampling factor � is the relative density of pixels to be
interpolated with respect to the B-spline control point grid dr.
In the presented experiments, dr was equal to 1. When there
are fewer control points than interpolated values (dr > 1), the
sampling rate should be increased accordingly to maintain the
same level of accuracy. The results presented here should thus

Fig. 7 – Computation time for one rotation of the 3D test
image with cubic interpolation and several sampling
values, from � = 1 to � = 150. Total sizes of the LUT for the
different sampling � are indicated in Mb.

be interpreted as guidelines for choosing the relative sampling
factor �r = (�/dr). More explicitly, one can expect to obtain an
accuracy corresponding to the measurements presented in
Fig. 2 for sampling factor �r, when choosing the sampling fac-
tor � such that � = dr�r. The computational efficiency shown
in Fig. 7, will depend however on the actual LUT size, and so
on the choice of �.

The general application of image intensity interpolation
was addressed in this work. The proposed B-LUT frame-
work is however applicable in all areas where B-splines are
used. A particular example is the case of deformable image
registration using free form deformations (FFD) [10] where B-
splines are used to represent the sought spatial transform.
The optimization of the transform is usually done itera-
tively, requiring one image to be repeatedly transformed in
order to evaluate the current solution. During each itera-
tion the splines representing the transform will be evaluated
at the same positions (the voxel positions of the refer-

Fig. 6 – Time (in seconds) for different B-spline interpolations: from linear (r = 1) to quintic (r = 5) degree, with conventional
method and fast methods (� = 10 and � = 20).

Author's personal copy

178 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 9 (2 0 1 0) 172–178

Table 2 – Computation time and memory requirement
for FFD registration with conventional B-spline,
optimized B-spline and the proposed B-LUT method.

FFD methods Computation
time (mn)

Memory
requirement (MB)

Conv. B-spline 73 578
Opt. B-spline 30 2721
B-LUT 17 597

ence image). Their corresponding tensor products can be
computed once and reused in further iterations, provid-
ing considerable acceleration at run-time. Such an approach
has been implemented in the optimized registration frame-
work of the ITK toolkit [6], available in the ITK Review
section. The B-spline weights corresponding to all consid-
ered reference image voxels are precomputed and stored.
The memory requirements of this approach (about (r + 1)d

times the image memory size in double precision) become
very quickly prohibitive, rendering it impossible to run the
method for reasonably sized images. To remedy this, we
implemented a B-LUT FFD, in which the B-spline spatial trans-
form was replaced by a B-LUT spatial transform. Contrary
to the previous approach, the B-LUT deformable registration,
requires only one n-dimensional B-spline support region to
be sampled and stored. By careful choice of the sampling
factor, the B-LUT FFD yields an exact B-spline representa-
tion.

We compared the optimized ITK B-spline FFD registration
method to the B-LUT FFD registration method. Note how-
ever that this comparison does not just assess the impact of
caching all the B-spline weights with respect to the use of a
compact LUT. This because several acceleration mechanisms
are included in the optimized ITK B-spline FFD, also affect-
ing the calculation of the Jacobian of the transform and the
derivative of the cost function. These mechanisms were dif-
ficult and even in some cases impossible to reproduce in the
case of the B-LUT FFD.

We ran both registration methods on image pairs which
have 1283 voxels. We placed 10 control points along each
dimension (7 control points inside the image region placed
every 20 voxels, 3 control points for the required border of
the cubic splines), making a total of 1000 control points and
parameters to optimize. In case of the B-LUT FFD, we set the
sampling factor to 20 along each dimension, obtaining an
exact B-spline representation. We ran both methods for 50
iterations on a single thread and recorded the CPU occupa-
tion time and memory consumption. In case of the B-spline
FFD the method required 30 mn and occupied more than
2.7 GB, while conventional B-spline FFD, without optimization
takes more than twice the time and about 578 MB. The B-
LUT FFD finished in only 17 mn and requiring 597 MB, only 3%
more memory (see Table 2). Tests on 2563 image pairs could
not be performed as the B-spline FFD memory requirements
exceeded the 8 GB of RAM on the host machine. The B-LUT FFD
reported a memory consumption below 2 GB. As mentioned
before, these measurements should be interpreted as indi-
cators of relative performance as the obtained performance

may differ on other architectures or for different parame-
ters.

6. Conclusion

We proposed a method to accelerate B-spline interpolation
using look-up tables of precomputed B-spline tensor prod-
ucts. Depending on the application, the resulting interpolation
will be exact or approximate in which case the accuracy
of the B-spline approximation is fully controllable by the
user, by varying the sampling factor �. We obtained speedup
factors between 5 and 6 compared to conventional method
from quadratic to quintic interpolation, with a very low
error. Attention should be given to the relative density of
interpolated values with respect to the density of control
points when choosing the sampling factor. For applications
where the density of the samples is comparable to the den-
sity of control points, we recommend using � = 20, offering
a good compromise. For other relative densities, � should
be changed accordingly to maintain the same accuracy of
approximation. In the future, this method could be used
together with hardware-based acceleration with GPU [7] to
speed up the processing of time critical applications even
more.

r e f e r e n c e s

[1] M. Unser, Splines: a perfect fit for signal and image
processing, IEEE Trans. Signal Process. 16 (6) (1999) 22–38.

[2] M. Unser, A. Aldroubi, M. Eden, B-spline signal processing:
Part I. Theory, IEEE Trans. Med. Imaging 41 (2) (1993) 821–833.

[3] M. Unser, A. Aldroubi, M. Eden, B-spline signal processing:
Part II. Efficient design and applications, IEEE Trans. Med.
Imaging 41 (2) (1993) 834–848.

[4] L. Ibanez, W. Schroeder, L. Ng, J. Cates, The ITK Software
Guide, 2nd ed., Kitware, Inc., ISBN 1-930934-15-7, 2005,
http://www.itk.org/ItkSoftwareGuide.pdf.

[5] F. Inoa, K. Ooyamab, K. Hagiharaa, A data distributed parallel
algorithm for nonrigid image registration, Parallel Comput.
31 (1) (2005) 19–43.

[6] S. Aylward, J. Jomier, S. Barre, B. Davis, L. Ibanez, Optimizing
ITKs registration methods for multi-processor,
shared-memory systems, Insight Journal
http://hdl.handle.net/1926/566.

[7] G.C. Sharp, N. Kandasamy, H. Singh, M. Folkert, Gpu-based
streaming architectures for fast cone-beam ct image
reconstruction and demons deformable registration, Phys.
Med. Biol. 52 (19) (2007) 5771–5783.

[8] M. Modat, G.R. Ridgway, Z.A. Taylor, M. Lehmann, J. Barnes,
D.J. Hawkes, N.C. Fox, S. Ourselin, Fast free-form
deformation using graphics processing units, Comput.
Methods Programs Biomed., doi:10.1016/j.cmpb.2009.09.002,
in press.

[9] E. Meijering, W. Niessen, M. Viergever, Quantitative
evaluation of convolution-based methods for medical image
interpolation, Med. Image Anal. (2001) 111–126.

[10] D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, D.
Hawkes, Nonrigid, registration using free-form
deformations: application to breast MR images, IEEE Trans.
Med. Imaging 18 (8) (1999) 712–721.

