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Abstract
Real-time optical surface imaging systems offer a non-invasive way to
monitor intra-fraction motion of a patient’s thorax surface during radiotherapy
treatments. Due to lack of point correspondence in dynamic surface acquisition,
such systems cannot currently provide 3D motion tracking at specific surface
landmarks, as available in optical technologies based on passive markers.
We propose to apply deformable mesh registration to extract surface point
trajectories from markerless optical imaging, thus yielding multi-dimensional
breathing traces. The investigated approach is based on a non-rigid extension
of the iterative closest point algorithm, using a locally affine regularization.
The accuracy in tracking breathing motion was quantified in a group of
healthy volunteers, by pair-wise registering the thoraco-abdominal surfaces
acquired at three different respiratory phases using a clinically available
optical system. The motion tracking accuracy proved to be maximal in the
abdominal region, where breathing motion mostly occurs, with average errors
of 1.09 mm. The results demonstrate the feasibility of recovering multi-
dimensional breathing motion from markerless optical surface acquisitions
by using the implemented deformable registration algorithm. The approach
can potentially improve respiratory motion management in radiation therapy,
including motion artefact reduction or tumour motion compensation by means
of internal/external correlation models.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Motion tracking is a key aspect in external beam radiotherapy, especially when applied to
extra-cranial sites where breathing motion is relevant (Keall et al 2006). Accuracy in motion
tracking is crucial in order to ensure accurate dose delivery to a moving target. The required
accuracy level strictly depends on the applied motion mitigation strategy, and it is maximal
when the target is tracked continuously over its trajectory (Verellen et al 2010).

External motion tracking in radiotherapy typically relies on non-invasive infrared devices
to capture the motion of the patient surface (Meeks et al 2005). External motion is used for
patient setup, to monitor breathing motion and to check that a patient does not move excessively
during irradiation (Baroni et al 2006). It can be utilized as a surrogate for internal motion for
accurate 4D CT reconstruction, or with modern radiation therapy delivery technologies for
motion compensated treatments (Gianoli et al 2011, Hoogeman et al 2009, Depuydt et al
2011).

Many different methods have been proposed to monitor the external surface motion.
Perhaps the most widespread clinical solution is the Real-time Position Management (RPM)
system from Varian Medical Systems (Palo Alto, CA), which monitors the motion of a single
object placed on the patient’s abdomen (Ford et al 2002). Such a method does not accurately
depict the complexity of patient motion: breathing motion, whole body motion, thoracic or
abdominal breathing. In order to give more detailed information, systems requiring the use
of several passive markers placed on the patient have been proposed (Meeks et al 2005,
Baroni et al 2006, Wagner et al 2007). Even though these systems feature good accuracy and
yield motion tracking at specific anatomical landmarks, they typically involve long patient
preparation and may not be repeatable due to inaccuracy in marker placement (Wang et al
2001). The Cyberknife Synchrony system (Accuray Inc., Sunnyvale, CA) relies for example
on the use of three optical markers attached to a wearable vest for the estimation of the external
respiratory signal (Kilby et al 2010), requiring however additional equipment for the patient,
which may also imply relative motion between the skin and the tracking markers.

Optical systems that do not require markers exist, such as the AlignRT/GateCT (VisionRT
Ltd, London, UK), the Sentinel system (C-RAD AB, Uppsala, Sweden) and the Galaxy system
(LAP Laser, Lüneburg, Germany) (Bert et al 2005, Brahme et al 2008, Moser et al 2011).
These devices provide the 3D reconstruction of the external surface of the patient as a function
of time. However, the geometrical representation of the surface changes over time, meaning
that vertices and edges of the meshes acquired at different time stamps vary. This is due to the
fact that surface detection is performed by projecting structured light over a moving surface
from a fixed point of view. Therefore, such systems do not provide a direct measure of local
motion at specific surface landmarks. External surface motion can be derived by applying a
surface registration procedure in order to establish the correspondence between a source and
a target mesh. When surface registration is applied to the thoraco-abdominal patient surface,
registration procedures need to account for a deformation model to adequately describe the
motion due to breathing. This means that the transformation that warps each vertex of the
source surface onto its corresponding point on the target is not rigid. The existing optical
tracking systems currently implement rigid surface fitting procedures which provide a global
surface motion, without taking deformation effects explicitly into account. This approach does
not allow us to capture local surface transformations and complex breathing motion patterns,
which generally vary for different regions of the thoraco-abdominal surface.

One of the most well-known algorithms for surface registration is called Iterative Closest
Point (ICP) and was introduced by Besl and McKay (1992). This algorithm is limited to
rigid or affine transformations. Feldmar and Ayache (1996) were among the first to propose
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a method that allows for deformable transformations. They initially perform regular ICP to
get a rough alignment between the source and target surfaces. They then relax the rigidity
constraint by computing affine transformations for spherical subsets of the source surface.
Regularization is performed by geometrically smoothing the resulting affine transforms. Allen
et al (2003) proposed a regularization term based on connectivity rather than spatial proximity.
Assuming the source surface is represented as a mesh, each vertex is attributed a different affine
transformation, with a global constraint penalizing large differences between transformations
of connected points. Amberg et al (2007) showed that this problem can be solved directly
using a least-squares approach. The resulting algorithm resembles ICP in that it optimizes
correspondences and transformations sequentially, with the difference that it searches for one
affine transformation per vertex of the source mesh instead of a global transformation.

In this paper we investigated the potentiality of deformable mesh registration to track
breathing motion over the thoraco-abdominal surface at specific landmarks, making use of
current technologies for real-time surface imaging in radiotherapy. We analysed the method
performance as a function of the main structural parameters of the algorithm and quantify the
accuracy in multi-dimensional respiratory tracking.

2. Methods and materials

2.1. Deformable surface registration algorithm

In order to extract the multi-dimensional breathing motion of the thoraco-abdominal surface
from markerless optical imaging, we implemented a non-rigid surface registration algorithm.
Therefore, we were able to provide a point by point mesh correspondence by taking into
account the surface deformation induced by respiration. The implemented approach is based
on the non-rigid ICP method developed by Amberg et al (2007).

The standard ICP algorithm consists of an iterative optimization of a global transformation:
at each step, each vertex vi of the source surface S is matched to the closest vertex on the target
surface T, and the corresponding displacements are used to estimate a global rigid or affine
transformation, using a linear least-squares approach. The extension of this process to cope
with deformation implies the estimation of one affine transformation Xi (3 × 4 matrix) for
each vertex in S. Minimizing the distance between the deformed source Xivi and the target
surface leads us to consider the following first term of a general cost function:

Ed (X ) =
∑

vi∈V

wi dist2(T, Xivi), (1)

where V is the set of source vertices and wi are the weights attached to each vertex. The
weight wi is set to 1 if a minimal distance correspondence is found and 0 otherwise. In
order to ensure the convergence of the algorithm towards the correct solution and to avoid
false registration, specific constraints are introduced, choosing reasonable thresholds for the
proposed application. Unrealistic surface point correspondences are excluded by verifying the
following criteria:

• the estimated displacement should not be too tangent to the surface, with a maximum
deviation angle from the surface normal of 30◦;

• the displacement norm should not exceed a fixed limit, equal to 10 cm;
• the angular difference between the source and target surface normals should be lower

than 30◦.

The issue of assigning an affine transform to each vertex makes the cost function under-
constrained and the optimization problem ill-posed. In order to overcome this drawback,
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an additional regularization term is considered in the overall cost function, by adding up
constraints to the free variables in the Xi transform set. This constraint represents the transition
smoothness across adjacent transforms which can be modelled as

Es(X ) = α
∑

{i, j}∈ε

‖(Xi − Xj)‖2
F , (2)

where ε is the set of edges of S and α is the stiffness factor that modulates the capabilities of the
surface to deform. This term is used to penalize the difference between the transformations of
neighbouring vertices under the Frobenius norm ‖ ‖F, thus regularizing the surface deformation
and correctly constraining the equation system. The general cost function is derived by
summing equations (1) and (2). This can be rearranged to obtain the linear equation system:

E(X ) = ‖AX − B‖2
F (3)

which is solved directly using a least-squares approach. In order to obtain an efficient solution
for the resulting linear system, the matrix A is factorized using the Cholesky decomposition.

The implemented non-rigid ICP algorithm consists of two iterative loops. In the outer
loop, the stiffness factor α is gradually decreased with uniform steps, starting from higher
values, which enables recovery of an initial rigid global alignment, to lower values, allowing
for more localized deformations. For a given value of α, the problem is solved iteratively
in the inner loop. At each step, the closest point on the target mesh is computed for each
point in the source surface and the optimal set of affine transforms for this correspondence
is estimated. The inner iterative process stops when the norm of the difference between two
consecutive transforms X is lower than a threshold δ. The convergence threshold is adapted
for each outer loop step, setting δ equal to a constant fraction of the norm of the transform
difference computed in the first inner iteration.

2.2. Experimental validation

The accuracy of the proposed deformable registration method in tracking external breathing
motion from markerless surface imaging data was assessed in five male healthy volunteers,
reproducing the realistic clinical setting of the proposed application. Static surface acquisitions
were performed by means of the AlignRT optical system (figure 1(a)), with the subject
lying in supine position on a standard treatment couch. For each volunteer, the thoraco-
abdominal surface (figure 1(b)) was acquired at three different phases of the breathing cycle:
maximum inhale, maximum exhale and an arbitrarily chosen intermediate position. Two
subjects repeated the experiments twice, resulting in seven full data sets for method validation.
For each acquisition session, the three surfaces corresponding to different respiratory phases
were pair-wise registered, acting alternately as source and target mesh. This allows us to
increase the number of registrations available as validation data set, leading to 6 registrations
per subject experiment, for a total of 42 registrations. The AlignRT software was used only
for data acquisition, whereas the implementation and evaluation of the deformable registration
algorithm were realized through our own software developed in C++. Eigen libraries were
used to solve the linear system for the estimation of surface point transformations, while all
other computations regarding surface processing and method evaluation were based on Insight
Toolkit (ITK) and Visualization Toolkit (VTK) libraries (Ibáñez et al 2005, Schroeder et al
2006).

The accuracy of the implemented registration algorithm was quantified in terms of residual
surface distance, by evaluating the Euclidean distance between each point of the deformed
source mesh and the closest point on the corresponding target surface. We also estimated
the registration error based on the known position of multiple surface control landmarks.
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(a) (b)

Figure 1. (a) AlignRT optical system installed in the radiotherapy treatment room where subject
acquisitions were performed. The system is composed of two imaging pods placed symmetrically
with respect to the treatment couch. Data from both pods are merged to form an integrated surface
model (b).

(a) (b)

Figure 2. (a) Star-shaped black markers placed on the thoraco-abdominal surface of a test subject.
(b) Corresponding textured mesh acquired with the AlignRT optical system, showing the structured
light pattern projected on the subject surface. Due to the presence of holes in the reconstructed
mesh, the marker on the rightmost part of the abdomen could not be identified.

Ten black star-shaped markers were placed on different parts of the thorax and abdomen of
the subjects (figure 2(a)). The texturing capabilities of the AlignRT system, providing the
grey level representation of the reconstructed meshes, were used for the visualization and
identification of the control points (figure 2(b)). Such textured information is available only
for static mesh acquisition. The vertices of the star-shaped markers were manually selected on
the acquired textured surfaces, and the centroids of each marker were computed by averaging
the corresponding vertices. Depending on the marker location for the different subjects, the
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number of visible vertices that could be identified in all three breathing phases ranged between
26 and 40, with an average number of 36.4. In order to assess the intra-operator variability in
marker identification, the manual clicking of the star vertices on a reference textured surface
was repeated ten times by a single operator. The inter-operator variability was instead evaluated
by comparing the positions of the star vertices selected by five different operators on the three
surfaces acquired for a test subject.

The registration error was computed as the difference between the real displacement of
the control points selected on the textured surfaces and the motion estimated through the
deformable registration algorithm. In order to account for the discretization of the acquired
meshes, the landmarks selected on the source and target surfaces were projected on the
respective meshes. The real marker motion was computed from the projected points, whereas
the estimated marker motion was obtained by considering the three neighbouring vertices
of the source mesh triangle that includes the projected landmark. The displacements of the
neighbouring vertices derived from deformable mesh registration were linearly interpolated
to estimate the landmark motion.

The performance of the implemented algorithm was separately evaluated for the markers
located in the abdominal and thoracic regions, that were manually distinguished using the
costal margin as the separation line. The error components for each spatial direction were
estimated, and the correlation between the overall registration accuracy and the direction of
marker motion was established. The accuracy of deformable mesh registration in localizing
surface control markers was compared with the performance of rigid surface registration based
on a standard ICP algorithm (Besl and McKay 1992). A sensitivity analysis of the structural
parameters of the developed algorithm was also carried out by analysing the registration errors
computed over the entire acquisition data set as a function of the following variables: (a) start
and final values of the stiffness factor α; (b) number of iteration steps in the outer loop; (c)
value of the convergence threshold δ. The computational cost of the implemented deformable
registration algorithm was finally evaluated for all data sets, assessing the correlation with the
mean number of vertices in the acquired surfaces.

2.3. Method evaluation on patient data

The implemented deformable registration algorithm was applied to real patient data in order
to evaluate the method feasibility in recovering multi-dimensional breathing motion from
markerless optical surface acquisitions. The VisionRT system in the single pod-based modality
(GateCT) was used to continuously acquire the dynamic thoraco-abdominal surface of selected
patients during lung cancer radiotherapy treatments (figure 3(a)). The implemented deformable
surface registration was applied to obtain the correspondence between an arbitrarily chosen
reference surface, represented by the first mesh of the sequence, and the following surfaces.
The estimated 3D trajectories of the surface points included in the thoraco-abdominal region of
interest (figure 3(b)) were used to derive a multi-dimensional breathing signal. The respiratory
surface motion along the three spatial directions was obtained by averaging the individual
coordinates of the extracted corresponding surface points. Principal component analysis (PCA)
was applied for each direction and the first principal component scores associated with each
point were used to evaluate the surface regions that mostly contribute to the breathing signals
extracted along the different directions. The estimated motion of the thoracic and abdominal
surface regions was also compared to the respiratory signal provided by the GateCT system.
This signal is computed as the mean anterior–posterior trajectory of the surface points included
in a region of interest selected by the user.
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(a) (b)

Figure 3. (a) Patient surface acquired with the GateCT optical system. The reconstructed mesh
is not symmetric, since only a single imaging pod is used for the dynamic surface acquisition in
order to achieve a higher frame rate (∼7 Hz). (b) Thoraco-abdominal region of interest obtained
with the deformable registration algorithm, which is able to smoothly fill the surface holes.

3. Results

3.1. Experimental validation

3.1.1. Intra- and inter-operator variability in marker selection. Figures 4(a) and (b) show the
results related to the intra-operator variability in the repeated identification of the star-shaped
markers on a reference textured surface. The intra-operator variability in the selection of the
star vertices (figure 4(a)) was computed as the difference between the vertex coordinates
manually clicked by the operator and the reference positions defined in the first test. The
variability in the identification of the star centroids from the corresponding vertices is also
reported (figure 4(b)). The 75th percentile of the error distribution computed for all repeated
tests proved to be 0.43 mm for vertex selection and 0.22 mm for centroid identification.

The variability in marker selection performed by five different operators is reported in
figures 4(c) and (d). The positions of the star vertices identified by the first operator on the three
acquired surfaces of a selected subject were taken as reference to compute the inter-operator
variability. The 75th percentile of the resulting errors was 0.80 mm in the case of vertex
selection and 0.46 mm in the case of centroid identification. According to the obtained results,
the accuracy of the registration algorithm was estimated using the identified position of the star
centroids, featuring a lower intra- and inter-operator variability. Since the centroid coordinates
defined by the different operators did not prove to be significantly different (Kruskal–Wallis
nonparametric test, p-value = 1), the registration errors were computed by considering the
centroid position identified by a single operator as ground truth.

3.1.2. Sensitivity analysis of algorithm parameters. Figure 5 depicts the results of the
sensitivity analysis performed on the main structural parameters of the implemented algorithm.
The registration error, expressed as the median error in the identification of the marker position
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(a) (b)

(c) (d)

Figure 4. Intra- and inter-operator variability in the manual selection of the marker vertices on the
textured surfaces (a)–(c) and in the identification of the star centroids from the corresponding
vertices (b)–(d). Boxplots depict the 25th, 50th (median) and 75th percentiles of the error
distribution for the repeated tests. Whiskers extend from both sides of the box up to 100% of
the quartile range and symbols (+) denote outliers.

for all test subjects, was computed by varying one parameter at a time. The analysed variables
include the start and final values of the stiffness factor α (figures 5(a) and (b)), the number
of iteration steps in the outer loop (figure 5(c)) and the threshold δ for the convergence of
the inner iterative processes (figure 5(d)). The registration errors resulting from the sensitivity
analysis ranged between 1.61 and 1.69 mm. In the next section, the outcomes of the algorithm
corresponding to the best registration accuracy will be analysed in detail. These results were
obtained by using 25 outer iteration steps, with a stiffness factor ranging from 150 to 1 and a
convergence threshold of 1/100.

3.1.3. Accuracy and computational performance of deformable surface registration. Table 1
summarizes the results related to the computational cost of the implemented deformable surface
registration algorithm, applied to the acquired data set of healthy subjects. For each acquisition
session, the table reports the number of surface vertices averaged over the three acquired
breathing phases and the mean time associated with a single iteration of the registration
algorithm in the outer loop. The computational performance of the developed application was
evaluated using a 2.53 GHz Intel Core 2 Duo processor. The CPU time required per outer
iteration ranged between 6.1 and 11.9 s and proved to be linearly correlated with the number
of vertices in the registered meshes (Pearson correlation coefficient = 0.9, p-value <0.01).
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(a) (b)

(c) (d)

Figure 5. Registration errors (median ± quartile) in the identification of the marker centroids for
the entire data set, as a function of the start stiffness factor (a), final stiffness factor (b), number of
iterations in the outer loop (c) and convergence threshold for inner iterations (d).

Table 1. Computational performance of the implemented deformable surface registration algorithm.
The acquisitions of the two subjects who performed the test session twice are identified by A1, A2
and M1, M2.

Mean number Mean computational
Acquisition ID of points/surface time/outer loop iteration (s)

A1 9922 9.5
A2 9896 8.8
JA 9820 8.8
JO 10 854 10.1
MA 14 457 11.9
M1 8427 6.1
M2 8410 6.8

The accuracy of the implemented deformable registration algorithm is reported in
table 2. For each subject, the table shows the 95th percentile of the residual distance between
the deformed source and the target surface after performing mesh registration, as well as the
median value of marker localization errors, computed by using as ground truth the position of
the control points derived from the textured information. Surface and marker distances in the
initial condition and after rigid mesh registration are also listed in table 2. The 95th percentile
of the residual surface distance with the developed deformable approach did not exceed
1.20 mm, whereas the median errors on marker localization ranged between 1.05 and
2.27 mm. By applying rigid registration procedures, the median error computed over the
entire acquisition data set proved to be 4.21 mm, with residual surface distances ranging from
3.40 to 8.10 mm.
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Table 2. Residual surface distance (95th percentile) and marker localization errors (median value)
for the implemented deformable registration algorithm, compared to the performance of rigid mesh
registration and to the initial surface and marker distances.

Initial condition After rigid registration After deformable registration

Surface Marker Surface Marker Surface Marker
Acquisition distance distance distance distance distance distance
ID (mm) (mm) (mm) (mm) (mm) (mm)

A1 7.53 5.33 8.10 6.43 0.76 2.07
A2 7.20 3.80 6.07 5.65 0.78 2.27
JA 4.08 2.75 3.40 2.92 0.48 1.39
JO 5.59 3.40 3.67 3.68 0.40 1.05
MA 3.91 2.45 3.41 2.14 1.08 1.36
M1 6.70 3.26 4.35 4.15 1.20 1.52
M2 7.53 4.05 4.65 4.22 1.14 1.84

Total value 6.13 3.59 4.18 4.21 1.08 1.61

Figure 6 shows the surface overlap computed for different breathing phases of a test
subject before and after deformable registration. The greater surface distances are localized
along the central line that merges the surface models reconstructed by the two imaging pods
of the AlignRT optical system. The merging process generates disconnected components
near the mesh boundaries, resulting in higher registration errors. Optimized surface stitching
algorithms can be used to increase mesh connectivity, thus improving the regularization step
of the registration method.

The spatial variability of the registration accuracy on the thoraco-abdominal surface is
illustrated in figure 7. The error in marker localization introduced by the registration algorithm
is separately plotted for the control points located in the thoracic and abdominal surface regions.
The median value of the registration errors computed for all control points over the entire data
set was 1.61 mm, whereas it varied from 2.13 mm considering only the thoracic markers to
1.09 mm for the landmarks in the abdominal region. The error distributions estimated for the
thoracic and abdominal control points proved to be significantly different (Wilcoxon rank sum
test, p-value <0.01).

The accuracy of the implemented registration algorithm was also evaluated as a function
of the anatomical direction. The median error in the localization of all control points measured
1.12, 0.66 and 0.29 mm in the superior–inferior (SI), right–left (RL) and anterior–posterior
(AP) directions, respectively. Figure 8 shows the registration errors computed along each
anatomical direction as a percentage of the total summed error. The SI component is
predominant (59%) for the localization error of the thoracic markers, whereas the landmarks
in the abdominal region feature a higher registration error in the RL direction (43%). The
percentage error in the AP direction proved to be lower than 20% for all control points.
Finally, a significant linear correlation was found between the total registration error and the
marker motion in the SI direction (Pearson correlation coefficient = 0.7, p-value < 0.01).
The correlation results between the registration accuracy and the motion direction for an
exemplificative subject acquisition are depicted in figure 9.

3.2. Method evaluation on patient data

Figure 10 shows the multi-dimensional breathing signal extracted from the dynamic thoraco-
abdominal surfaces of a lung cancer patient using the implemented deformable surface
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Figure 6. Surface overlap at different breathing phases before and after deformable registration.
The colour-based intensities represent the surface distance in the initial condition (left panels)
and after performing deformable registration (right panels). As can be noticed in this figure, the
implemented registration algorithm is also able to recover head rotations.

registration algorithm. The signals depicted in the lower panels of the figure represent the
mean surface motion in the three spatial directions, obtained by averaging the SI, RL and AP
coordinates of the corresponding surface points generated by the algorithm. Twelve breathing
cycles of the patient could be identified, for a total acquisition time of 40 s. The contribution of
each surface point to the respiratory signals in the different anatomical directions is represented
in the upper panels of the figure. This contribution is computed through PCA analysis, by
projecting in the principal component space the surface point motion along different directions.

Figure 11 shows the respiratory signal acquired with the GateCT system during a lung
cancer treatment, compared to the AP motion estimated with deformable registration for three
surface points selected in the thoracic and abdominal regions. While the GateCT system
provides the respiratory information on a limited surface patch, the proposed method yields
the 3D motion of any points on the thoraco-abdominal surface. This approach allows us to
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Figure 7. Spatial variability of the registration errors (median ± quartile), separately estimated
for markers located in the thoracic and in the abdominal surface regions.

Figure 8. Localization errors for thoracic and abdominal control points along different anatomical
directions, expressed as a percentage of the summed error.

Figure 9. Registration errors computed for subject acquisition MA as a function of the marker
motion in the three different spatial directions. The linear regression line is overlaid the sample
data.

capture the patient specific respiratory patterns of the thorax and abdomen, which generally
feature different amplitude and phase shifts.

4. Discussion

The performance of deformable mesh registration in tracking multi-dimensional breathing
motion from markerless optical surface acquisition has been specifically investigated. The
implemented method was adapted from the optimal step non-rigid ICP algorithm proposed by
Amberg et al (2007), adding further optimization criteria to increase efficiency and robustness,
such as the Cholesky factorization and the exclusion of bad correspondences specifically
designed for the proposed application. The accuracy and the computational performance of
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Figure 10. The lower panels depict the breathing motion of the patient’s thoraco-abdominal surface
along SI, RL and AP directions, computed from the 3D average coordinates of the estimated
corresponding surface points. The upper panels show the spatial representation of the multi-
dimensional surface motion in the principal component space, depicting for each surface point the
first principal component score obtained by applying PCA analysis on the point trajectories in the
three directions. Surface points with high scores strongly contribute to the breathing motion in that
specific direction.

Figure 11. Comparison between the acquired GateCT signal and the estimated AP motion of three
surface points selected on the thorax and on the central and lateral areas of the abdomen. The
central abdominal signal correctly follows the GateCT signal, which was obtained by choosing the
surface patch on the central part of the abdomen. The lower correlation between the GateCT and
the lateral abdominal signal shows the potential variability of the external surface motion.

the developed registration algorithm were evaluated on five healthy subjects, using a state of
the art surface imaging system to acquire the thoraco-abdominal surface at different breathing
phases. Due to specific technical limitations of the employed optical system, tracking errors
could be assessed only on static surface acquisitions. For meshes dynamically acquired at
high frame rates, the AlignRT system does not provide the textured information used to
compute the ground truth position of the control points. The designed static validation of the
registration algorithm covered however the whole range of surface motion for each test subject,
since surfaces were acquired by sampling the breathing cycle at the extreme and intermediate
phases.
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The implemented algorithm showed a residual distance between the deformed source and
the target meshes, expressed as 95% confidence intervals for the measured distance, below
1.20 mm for all subjects. A further analysis of the registration accuracy was performed using
star-shaped markers placed on the thoraco-abdominal surface of the subjects. The ground
truth position of the landmarks was manually identified on the acquired textured surfaces.
The median errors in motion tracking by means of deformable mesh registration proved
to be 1.61 mm. The performance of the developed deformable approach was significantly
superior to rigid procedures, both in terms of surface overlap and marker localization errors.
Rigid surface registration yielded in fact an increase in the distance between corresponding
landmarks on the source and target mesh with respect to the initial condition, although the
overall surface distance was slightly reduced. These results support the need for non-rigid
registration procedures when dealing with thoraco-abdominal surfaces, in order to adequately
account for the deformation due to breathing motion.

A critical aspect that may negatively influence the accuracy of surface registration applied
to the thoraco-abdominal area is the low spatial frequency of the surfaces due to lack of
geometrical features. Mesh registration was therefore performed without selecting any region
of interest, since the decrease of spatial constraints due to the smaller patch sizes can lead
to surface fitting degeneration, thus reducing registration accuracy. The measured errors in
corresponding landmark localization may be partly related also to the intrinsic imprecision
of the optical imaging system in 3D surface reconstruction and to the inaccuracies in the
identification of the marker position on the textured meshes. An analysis of the intra- and inter-
operator variability in the manual selection of the control points was performed. According
to the obtained results, we used the position of star centroids as reference variable for method
validation, since it featured lower intra- and inter-operator variability with respect to the
localization of star vertices. Due to high reproducibility in centroid identification between
different operators, the registration errors were computed by considering the ground truth
position of the control points defined by a single operator. A sensitivity analysis of the main
structural parameters of the registration algorithm was also performed, showing no significant
influence on the overall registration accuracy. Slightly worse results were obtained for low
numbers of outer iterations and for high final values of the stiffness factor, both contributing to
a reduced ability of the surface to deform, i.e. to recover the breathing-induced deformation.

A more detailed analysis of the registration performance as a function of marker positions
revealed that localization errors are significantly different for the thoracic and the abdominal
regions, featuring a high correlation with the surface motion in the SI direction. As depicted
in figure 12, the implemented registration algorithm can correctly estimate the AP motion of
the abdominal surface portion but mostly fails to recover the thoracic breathing motion in the
SI direction. The registration errors in localizing markers on the abdominal regions were 1.09
mm, with the most relevant component along the RL direction, whereas thoracic control points
showed localization errors of 2.13 mm, mainly associated with the SI direction.

The limited ability of the registration algorithm in estimating the SI surface motion can
be partly explained by the acquisition procedure with the commercial surface imaging system
used for the analysis. Since surface motion along the SI and RL axes is normal to the direction
of the projected structured light pattern, it causes the relative slipping of the pattern with
respect to the underlying surface. Displacements in SI and RL directions are consequently
more difficult to capture, as confirmed by the separate error analysis for each anatomical
direction (figure 8). On the other hand, surface motion in the AP direction may result in
apparent displacement in the other two directions, as shown in figure 10 for the clinical data
analysis. In this case, the PCA analysis incorrectly suggests that the contribution of surface
points to the SI breathing motion is mainly focused in the abdominal region, whereas ground
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Figure 12. Comparison between the actual motion of the thoracic and abdominal surface regions,
and the displacement estimated through deformable mesh registration.

truth motion occurs in the AP direction. As a matter of fact, the orientation of the structured
light projector with respect to the patient results in sliding of the incident pattern when the
surface moves in the AP direction. As can be seen in figure 12, breathing surface motion
features larger amplitude in the abdominal region along the AP direction, whereas the thoracic
motion component along the SI direction is limited. We can therefore suggest that the reduced
accuracy of the implemented registration algorithm in recovering SI surface motion does not
represent a critical aspect for clinical applications.

Major concerns are associated with the computational cost of the algorithm, which does
not currently provide real-time performance. The mean time required for a single outer iteration
is about 9 s, depending on the number of vertices in the registered meshes. The most time-
consuming step is the Cholesky factorization of the system matrix, which is performed at
each outer iteration, when the point correspondence weights are updated. This limitation
derives from the adopted global regularization approach, which involves that each vertex has
an influence on every other vertex of the mesh, resulting in a very large linear system that is
costly to solve. Future works will be mainly focused on the computational optimization of the
method, in order to achieve the real-time performance required for the continuous monitoring
of breathing motion during radiotherapy treatments. Multi-resolution strategies and/or a more
local regularization approach, using for example a fixed-size vertex neighbourhood or GPU-
based techniques, could potentially provide significant speed gains, suitable for real-time
applications.

The implemented registration algorithm was also evaluated on real patient data, showing
the clinical feasibility in the estimation of a multi-dimensional breathing signal for different
thoraco-abdominal regions. The proposed method is put forward to represent a significant
improvement for problems dealing with respiratory motion in radiation therapy. The state of
the art clinical systems that currently account for breathing movement are limited to a restricted
area of the body surface. Such an approach does not accurately depict the complexity of human
respiration processes, involving the combined composition of thoracic and abdominal surface



372 J Schaerer et al

motion. A multi-dimensional respiratory signal accounting for different breathing patterns,
as provided by the implemented deformable registration algorithm, could potentially improve
current solutions for motion compensated treatment planning and delivery. There is still no
evidence that better external motion tracking will lead to a more accurate estimate of the
internal tumour position. However, the improved breathing surrogate signal derived from
the implemented deformable surface registration is put forward to provide potential benefits
for tumour targeting, as long as robust and reliable internal/external correlation models are
used. We expect to demonstrate the effective advantages of the proposed approach by using
a specifically acquired patient database, which includes the synchronized acquisitions of the
external thoraco-abdominal surface and the internal tumour position, derived from cone beam
CT projections.

5. Conclusion

We showed that deformable mesh registration can be used to recover multi-dimensional
breathing motion of the thoraco-abdominal surface from markerless optical surface
acquisitions, thus overcoming the lack of surface point correspondence. The accuracy of
the implemented registration algorithm in tracking respiratory motion was quantified in five
healthy subjects and proved to be site-specific and correlated with the direction of surface
displacement. The AP motion in the abdominal region was usually correctly recovered using
the registration algorithm, obtaining localization errors of 1.09 mm. Thoracic surface portion
showed instead registration errors of 2.13 mm, mainly predominant in the SI direction due to
the sliding effect of the projected structured light pattern. Since the most relevant component
of the breathing motion is focused in the abdominal region along the AP direction, the
limited accuracy of deformable registration in recovering the SI motion of the thorax does not
represent a critical aspect for clinical applications. The feasibility of the proposed approach in
extracting a multi-dimensional respiratory signal for different anatomical regions was assessed
on real patient data, using a clinically available markerless optical system. The implemented
deformable registration method is put forward to represent a significant improvement in the
management of respiratory motion in radiotherapy, especially for the reduction of motion
artefacts in 4D planning images and for the compensation of tumour motion based on
internal/external correlation models. A particularly interesting application may be to combine
the respiratory signal extracted from the thorax surface motion with a patient-specific breathing
model directly built from 4DCT planning images (Vandemeulebroucke et al 2011), for the
non-invasive estimation of the lesion position. The developed approach may also complement
state of the art surface imaging devices with 3D motion tracking of selected surface landmarks.
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