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Abstract. Respiratory motion introduces uncertainties when planning
and delivering radiotherapy for lung cancer patients. Cone-beam projec-
tions acquired in the treatment room could provide valuable information
for building motion models, useful for gated treatment delivery or motion
compensated reconstruction. We propose a method for estimating 3D+T
respiratory motion from the 2D+T cone-beam projection sequence by in-
cluding prior knowledge about the patient’s breathing motion. Motion
estimation is accomplished by maximizing the similarity of the projected
view of a patient specific model to observed projections of the cone-beam
sequence. This is done semi-globally, considering entire breathing cycles.
Using realistic patient data, we show that the method is capable of good
prediction of the internal patient motion from cone-beam data, even
when confronted with interfractional changes in the breathing motion.

1 Introduction

In radiotherapy, breathing motion causes uncertainties in the dose delivered to
the tumor. The existing approaches to take respiratory motion into account
include adding safety margins to ensure target coverage, breath-hold, gating,
or tracking of the target [1]. An important prerequisite to plan and evaluate
treatment when using these techniques is a detailed knowledge of the motion.
Four-dimensional (4D) computed tomography imaging [2] or cone-beam (CB)
CT [3], consisting of three dimensional (3D) frames each representing a breath-
ing phase, can provide additional motion information. However, no intercycle
variability can be measured as they represent a single respiratory cycle.

Breathing motion occurs predominantly in cranio-caudal direction and tends
to be larger for the lower lobes [1]. Trajectories of tumors and organs can be
subject to hysteresis [4], i.e. a different path is followed during inhalation and
exhalation. Cycles can differ from one another in breathing rate and level [5];
the latter influencing the amplitude of the motion. Variations in the mean tumor
position (baseline) between and during fractions have also been reported [4,6].

Previously, 4D CT [7] and cine CT volume segments covering multiple cy-
cles [8] have been used to model breathing motion. The small amount of acquired

G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 365–372, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



366 J. Vandemeulebroucke et al.

breathing cycles limits their ability to model intercycle variability. 4D MRI [9]
covering more cycles could offer a solution to this problem. Regardless of the cho-
sen approach, one should be able to detect and correct for interfractional changes
in breathing motion that occur frequently between treatment sessions [4,6].

A CB projection sequence consists of a series of wide angle X-ray projections
taken from viewpoints orbiting the patient. CBCT is routinely acquired for pa-
tient setup in many institutions, immediately before treatment, with the patient
in the treatment position. Zijp et al. [10] have a fast and robust method for
extracting a respiratory phase signal from a CB projection sequence. By estab-
lishing a relation to a prior 4D CT, Rit et al. [11] obtained a motion model
that proved suitable for motion compensated CB reconstruction. Zeng et al. [12]
estimated motion from a projection sequence by deforming a reference CT image
so that its projection views match the CB sequence. Optimization of the large
number of parameters of a B-spline based deformation model required adding
aperiodicity penalties to the cost function to regularize the problem.

This article deals with in situ motion estimation from CB projection data for
radiotherapy of lung cancer. With respect to [12] we incorporate prior knowledge
in the form of a patient-specific model, significantly reducing the number of pa-
rameters to be identified. No intercycle regularization is required and we obtain
improvement in speed and robustness. Within-cycle smoothness is guaranteed
automatically, through the use of a B-spline temporal model.

2 Method

First, a parametric patient-specific motion model with a small number of degrees
of freedom is built from a 4D CT image routinely acquired preoperatively for
the irradiation treatment planning of the considered patient group. The model is
able to represent changes in the breathing phase in addition to small variations
in breathing pattern. The model is then fitted to the CB projection sequence
by optimizing the model parameters to maximize the similarity between the
acquired 2D CB projections and simulated projection views of the model. Indi-
vidual cycles are processed separately and a smooth motion estimate is found by
simultaneously considering the whole cycle with suitable boundary conditions.

2.1 Motion Model

Using the demons algorithm [13], we deformably register a manually chosen
reference frame f∗ to all other frames fϑ of the 4D CT, where ϑ ∈ [0; 1) is the
breathing phase. f∗ should be chosen as to contain as little artifacts as possible.
End-exhale is usually a good choice. Let gϑ(x) be the resulting deformation
vector field, mapping f∗ to fϑ. All deformation fields are averaged and a mean
position image f̄ is created by backward warping of f∗ [14] (Figure 1a).

f̄(x) = f∗
(
ḡ−1(x)

)
with ḡ(x) =

1
b

b∑

θ=1

gθ(x) (1)
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(a) (b)

Fig. 1. (a) The procedure for obtaining a mean position image f̄ . (b) A schematic
representation of the representable space for the proposed model. Consider a point
with position x in in the image f̄ (dark oval). Its position in all frames of the 4D CT
(white ovals) is interpolated yielding the estimated breathing trajectory (bold curve).
The amplitude parameter α allows to reach breathing states sϑ,α off the trajectory.

All structures appear at their time-weighted mean position in the image f̄ [15].
Next, f̄ is registered to the original frames fϑ. The resulting deformation fields
are approximated using B-splines as

Tϑ,α(x) = x + α
∑

i

∑

j

aij βnx

(
x − xi

Δx

)
βnϑ

(
ϑ − ϑj

Δϑ

)
. (2)

where βn(.) are B-splines placed at positions xi, ϑj with uniform spacing Δx,
Δϑ; aij are the B-spline coefficients. As ϑ varies from 0 to 1, the deformation
model produces a motion corresponding to an entire breathing cycle starting
from end-exhalation. Note that this allows to model hysteresis. The second pa-
rameter α is an instantaneous amplitude (it can vary with ϑ) and helps to model
variations of the trajectory shape and breathing level. We chose cubic spline in-
terpolation for phase space (nϑ=3). For the spatial dimension however, since
dense deformation fields are available, a fast nearest neighbor (nx = 0) is em-
ployed. The coefficients aij are found quickly using digital filtering [16]. Image
sϑ,α for a particular breathing state described by ϑ,α (Figure 1b) is obtained
through forward warping [14] (where the subscript for T was omitted)

sϑ,α

(
T (x)

)
= f̄(x) . (3)

2.2 Cost Function and Optimization Strategy

We propose to optimize the parameters of the model together for each breathing
cycle. This renders the method more robust with respect to simply considering
each projection separately (see Section 3), but is computationally more tractable
than a truly global optimization (over many breathing cycles). Since breathing
cycle extrema can usually be identified well, the accuracy is not compromised.
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(a) (b) (c)

Fig. 2. (a) A simulated CB projection view calculated from the mean position image
f̄ and (b) a true CB projection of the same patient from the same viewpoint. Note
that the images are very similar except for a horizontal reinforcement of the treatment
table visible in the true CB projection. (c) Color overlay of preregistered end-inhalation
frames from the two 4D CT acquisitions of patient 1.

Given a CT volume f , an ideal cone-beam projection image p can be calculated
using a linear projection operator Pφ where the parameter φ fully describes the
(known) camera position and orientation:

p = Pφ f (4)

Figure 2a and 2b show a CB projection view of a mean position image f̄ com-
pared with a CB projection of the same patient. We measure similarity between
an observed CB projection p̂ and a modeled breathing state sϑ,α by calculating
the normalized correlation coefficient (NCC) in the 2D projection space:

J(ϑ, α; φ) = NCC(p̂,Pφsϑ,α) . (5)

In a first step, we detect the approximate time positions (projection indexes) te
corresponding to extreme breathing phases [10]. The method is based on taking
image derivatives and analyzing 1D projections of the obtained image. Second,
we refine the parameters ϑ(te) and α(te) by minimizing

J (ϑ(te), α(te); φ) + w (ϑ(te) − ϑe) with w(y) =
{

0 for|y| ≤ h
δ|y|2 otherwise .

(6)

Note we are favoring solutions near the expected phase value ϑe. Powell-Brent
[17] multidimensional search was used with h = 0.1 and δ = 20 with initial values
α(te) = 1 and ϑ(te) = ϑe = ϑee or ϑei for end-exhalation and end-inhalation,
respectively. The values for both ϑee and ϑei were determined by applying the
extrema detection method [10] to simulated projections of the model with slowly
varying phase.

Let te and te′ be the two end-inhalation positions, the beginning and end of
a breathing cycle. We have just shown how to get ϑ and α at te, te′ , what remains
is to obtain the estimates also for frames te+1, . . . , te′−1. Assuming temporal
smoothness, we propose to represent ϑ as

ϑ(t) =
k∑

i=0

ci βnϑt

(
t − ti
Δϑt

)
for te < t < te′ . (7)
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where k is the number of control points, ti are the temporal position of the knots,
Δϑt is the knot spacing and ci are the B-spline coefficients. Fixing the value for
ϑ(te) we can express the boundary coefficient c0 as

c0 =
ϑ(te) −

∑k
i=1 ciβ

nϑt

(
te−ti

Δϑt

)

βnϑt

(
te−t0
Δϑt

) . (8)

and similarly for ck. A B-spline expansion with coefficients dj is used to represent
α(t). By summing the contributions for m different time instances within the
cycle and using equations (5),(7–8), we obtain the following similarity measure:

J t(c,d) =
1
m

m∑

t=1

J (ϑ(te + t), α(te + t); φ(te + t)) . (9)

We find the coefficients c = [c1, . . . , ck],d = [d1, . . . , dl] by minimizing J t, using
a Nelder-Nead downhill simplex algorithm [17], which performed well in this
high dimensional search space, requiring less iterations than Powell-Brent and
yielding comparable results. A linear progression is used as a starting point. We
use a quadratic B-spline representation (nϑt = nαt = 2) with k = l = 4.

3 Experiments and Results

Accurately evaluating the 2D-3D motion estimation is very difficult, as no ground
truth is available. In this work we use pairs of 4D CT sequences acquired for
three lung cancer patients using a Philips Brilliance BigBore 16-slice CT scan-
ner (Philips Medical Systems, Cleveland, OH). The time between acquisitions
ranged from 20 minutes (patient 1 and 2) to 3 days (patient 3). Patients 1 and
2 were asked to stand up from the acquisition table and walk around for 10
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Fig. 3. Results of sequential motion estimation for patient 1: the recovered phase (a)
and amplitude (b) (dashed line) together with the parameters used to generate the CB
sequence (full line). The reference amplitude is a constant, α = 1.
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Table 1. Results of the semi-global motion estimation. The residual misalignment
(residual) between the found and the true motion: the mean (μ), standard deviation (σ)
and maximum (max) is compared to the original motion with respect to f̄ (original).

(mm) original residual

μ σ max μ σ Max

Patient 1 3.8 2.1 17.1 1.1 0.6 8.3
Patient 2 2.8 1.7 16.1 1.6 0.8 11.0
Patient 3 3.7 1.6 13.8 1.3 0.7 5.8
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Fig. 4. Results of the semi-global motion estimation for Patient 3: the recovered phase
(a) and amplitude (b) (dashed line) are shown together with the parameters used to
generate the CB sequence (full line). The reference amplitude is a constant, α = 1.
(c) The resulting residual misalignment (dashed line) is shown in comparison with the
original misalignment with respect to the mean position image (full line).

minutes before repositioning and acquisition of the second 4D CT. In spite of
the small time between the acquisitions, substantial difference can be observed
between the two subsequent 4D CT acquisitions due to interfractional changes
in breathing motion (see Figure 2c). We used the first 4D CT sequence to con-
struct a patient model as described in Section 2.1. The second acquisition was
first rigidly registered to the first 4D CT to align the bony structures. In order
to have a ground truth available, we took the mean position image from the first
sequence and the deformation fields from the second sequence to get a simulated
reference 4D CT sequence. A respiratory trace was randomly generated [5] and
a piece-wise linear phase signal ϑ(t) with variable breathing rate was derived.
We simulated the first 90◦ of a CB acquisition protocol in our institute by cal-
culating 150 projections for evenly spaced angles from the reference 4D CT with
varying phase value over a period of 30 s.
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When optimizing separately for each projection the criterion (5) with respect
to ϑ and α, we obtained bad results when confronted to interfractional changes
in breathing motion (see Figure 3, results for other patients were similar). Note
that an optimal result doesn’t necessarily mean recovering identical parameter
values as they correspond to different deformation fields. In this case however, we
can observe how intermediate phases during inhalation (ϑ ≈ 0.2) and exhalation
(ϑ ≈ 0.8) are confused, due to limited hysteresis and unfavorable projection
angle and are accompanied with strong variations in amplitude.

The phase and amplitude found for Patient 3 using our semi-global crite-
rion (9) are shown in Figure 4a and 4b, together with the parameters used to
generate the CB sequence. To evaluate the accuracy we calculate the residual
geometric misalignment (i.e. the norm of the difference between deformation
vector fields) between the estimated motion and the true motion. This mea-
sure is averaged over the lower lung, where the largest motion tends to occur.
For comparison, the original misalignment, i.e. the motion with respect to the
mean position image, is also given. Table 1 contains the average over all projec-
tions for each patient. Figure 4c shows this mean misalignment as a function of
the projection index for Patient 3. Note that while displacement might lo-
cally attain 3cm, the average motion as seen from the mean position does not
exceed 1cm.

4 Discussion and Conclusion

We achieved a smooth motion estimation from a CB projection sequence using
B-splines and by considering the complete movement in a respiratory cycle and
obtained a considerable reduction of the original misalignment for all patients.

To our knowledge this is the first time a respiratory motion model is tested
against clinical data containing real interfractional changes in breathing motion.
Some additional challenges presented by real CB data will include dealing with
scatter [12] and detecting and correcting for rigid misalignment (setup errors).

As a consequence of generating the ground truth, baseline shifts were not
present in our patient data. Changes in breath rate, breathing level or trajectory
shape were however present. It is expected that the method will be able to cope
with small shifts (< 20% of the motion amplitude). For larger shifts, a prior shift
estimation can be performed, e.g. from a 4D CBCT [6].

In this work we exploited only acquisitions already acquired for treatment
purposes. More preoperative data, such as breath hold CT scans [8,12] or MRI
data [9], could further improve the prior model, rendering it’s construction more
robust to artifacts and providing prior information on the intercycle variation.
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