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Abstract

Purpose. In this paper, we review several applications of deformable registration
algorithms in the field of image-guided radiotherapy.

Materials and methods. We first describe the input and output of deformable reg-
istration algorithms. Section 3 is dedicated to a brief review of common methods.
Several examples of the use of deformable registration are reviewed in section 4.
The first four sets of examples deal with intra-patient registration: two sections are
dedicated to inter-fraction registration (time interval between images in the order
of several days), and the other two sections with intra-fraction registration (dis-
placement during image acquisition or patient treatment, mainly due to respiratory
movement; time interval in the order of several tenths of seconds). The last examples
(section 4.5) focus on inter-patient registration.

Conclusion. Deformable registration has increasing applications in radiotherapy.
Extensive validation of the numerous existing methods is required before extending
its clinical use. Nevertheless, deformable registration is already a fundamental image
analysis tool for radiotherapy, and will probably be included into all treatment
planning systems in the near future.
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Sarrut. 21 Introduction

Deformable registration is a fundamental image tool that is widely used for the
analysis of medical images. Its use in the field of radiation therapy is relatively recent
and in constant progression: a search of Pubmed 1 using the terms “deformable
registration” and “radiotherapy” (or related words such as “radiation therapy”,
“nonrigid registration” ...) has returned about 40 full-length-papers. At ASTRO 2

and AAPM 3 2005 meetings there were respectively 7 and 17 abstracts dedicated
to deformable registration in radiotherapy, whereas there had been only 1 and 7 at
the 2004 meetings. Usage of deformable registration is mainly found in conjunction
with Image-Guided Radiation Therapy (IGRT [1,2]). The principle of IGRT involves
an image-based monitoring of changes in the shape and position of organs during
treatment. Images can be acquired using a large variety of modalities: regular CT
or in-room-CT (such as CT-on-rails [3] or Cone-Beam CT [4]), MegaVoltage-CT [5],
2D images (either MV or KV), US, PET, MRI, video, etc. The goal of using these
images is to reduce treatment margins, allowing to potentially perform safe dose
escalation and hopefully improve patient treatment.

This paper is organized as follows. Section 2 describes the input and output of
a deformable registration. Section 3 describes various algorithms used to perform
deformable registration. Section 4 is dedicated to the use of deformable registration
in radiotherapy.

2 What is deformable registration ?

Image registration is the process of defining a mapping between two images so
that the coordinates in one image correspond to those in the other. When the
mapping contains deformations, one speaks of deformable registration (DR). A DR
takes as input two (or more) images. One image is considered as the reference (or
the target image) and the other one is the deformable (or object, or moving, or
floating, or test) image. We denote I the reference image and J the deformable
image. The output is a transformation φ which relates the content of the first image
to the content of the second image. Let x = (x1, x2, x3) (for a 3D image) be the
coordinates of a point in I, φ(x) = x′ is the corresponding point in J : I(x) =
J(φ(x)). DR is related to rigid registration (RR) which is now part of most treatment
planning systems. RR output is generally 6 numbers (translation and rotation).
By comparison, DR output is a deformation field (DF) of vectors, indicating the
correspondence between each voxel in the first image and each corresponding voxel
in the second. Such DF can be represented in different ways (see section 3.2), but
hundreds or thousands of parameters are generally required. For example, the DR

1 http://www.ncbi.nlm.nih.gov/
2 American Society for Therapeutic Radiology and Oncology
3 American Association of Physicists in Medicine
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of all voxel displacements in a 512×512×100 image involves 78 million parameters
(three coordinates per voxel). Even if it is not necessary to compute the displacement
vector of each individual voxel, DR is at least one order of magnitude more complex
than RR. Figure 1 represent a DF by displaying vectors on image slices. Hence, only
a planar displacement (two of the three dimensions) is represented on each slice. By
displaying other slices, with different orientations, it is possible to visualize the 3D
deformation.

Fig. 1. Vector field representation by superimposition of 2D displacement vectors
on several slices. The length of the vectors corresponds to the length of the in-plane
displacement. Components of the 3D displacement orthogonal to the slice can be
visualized with other slice orientations and with variations of the vector color (from
light green to light yellow according to the 3D displacement amplitude). Here vectors
are spaced every 7 mm. Sampling of displaying vectors can be changed interactively
by the user.

3 How does it work ?

The literature on DR methods is very extensive. The goal of this section is not
to provide an exhaustive description of all existing DR methods but to present
the main classes of DR in order to understand the contribution of DR meth-
ods currently used in radiotherapy. More details can be found in several sur-
veys [6,7,8,9,10,11,12,13,14,15,16]. Generally, DR algorithms are described as the
combination of several components: a feature space, a similarity measure, a trans-
formation model and an optimization algorithm. The goal is to find an optimal
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transformation that provides maximum similarity (or minimum distance) between
the reference and the deformable image. DR is an ill-posed problem 4 . All methods
represent a tradeoff between a certain image similarity (or distance) and an a priori
knowledge of the nature (and amplitude) of the deformation to recover.

3.1 Feature space and similarity measures

Similarity between images can be feature-based or intensity-based or an hybrid of
the two approaches. Feature-based methods use landmark points [17,18], organ con-
tours [19,20] or segmented surfaces. Features must be defined in the two images and
must generally be homologous, i.e. each feature in one image is related to its corre-
sponding feature in the other image. Landmarks correspond to identified anatom-
ical points manually selected and paired by an expert or (semi-)automatically ex-
tracted [21]. Landmarks may also be selected using image-based processing, typi-
cally corresponding to high local gradients. The distance between pairs of features
is then defined (as a simple Euclidian distance for pairs of homologous points, or
more complex distances for high-order features such as surfaces or lines, including
uncertainties or orientations). On the other hand, intensity-based methods involve
optical-flow like methods and are generally almost fully automatic. Image similarity
is defined as a statistical measure between the intensity (grey-levels) distribution
of the two images. For monomodality image registration, other techniques can be
used: Sum of Absolute Differences or Sum of Squared Differences (SSD [17,22,23]),
or Cross Correlation [24]. For multimodal cases, more advanced measures such as
Mutual Information [25,26,8,27] or Correlation Ratio [28,29] can be used but they
generally require a longer computation time. Hybrid methods make use of both ex-
tracted features and voxel intensities [30] to make the process more robust or to
allow user interaction.

3.2 Transformation models

There are roughly three main groups of methods to model a transformation φ: global
modeling (polynomial, harmonic), semi-local (piecewise polynomial with various
splines) and local (regularized dense vector fields) modeling [31] (see table 1). Some
authors use global high-order polynomial [32,33], or Harmonic [34] to parameterize
the transformation. However, oscillations tend to appear and the global model does
not always allow to retrieve local deformation. Many studies have used local piece-
wise polynomials (splines) as a linear combination of radial basis functions (RBF).
The method makes it possible to interpolate or approximate pairs of homologous
features defined in each image. Thin-plate splines (TPS) or second order Lapla-
cian splines are the most popular basis functions [35], but other functions such as

4 A problem is well-posed when a solution exists, is unique and depends continu-
ously on the initial data. It is ill-posed when it fails to satisfy at least one of these
criteria.
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multiquadrics, inverse multiquadrics or Gaussians can also be used [36]. The TPS
coefficients are found by resolving a set of linear equations, which requires the in-
version of a matrix which size depend on the number of points to be interpolated
or approximated. Other basis functions such as Fourier series [37], wavelets, mem-
brane spline [38], elastic body spline [39], div-curl spline [40] have also been used.
Transformation models supported by this approach are mostly interpolant (exact
landmarks matching) but an extension to the approximation case has been pro-
posed [41] to take into account landmarks localization uncertainties. Such functions
do not have compact support: each landmark pair impacts the transformation result
globally. Fornefett et al. [36] proposed the use of compactly supported RBF with
Wendland functions. There are many other ways to represent the transformation
with local piecewise polynomial models. One of these is B-splines [27,31]. B-splines
are piecewise polynomials of degree n (tri-cubic splines are often used, n = 3),
with interesting mathematical properties: compact support, continuous (n − 1)th

derivative, etc. They are often described by a free-form deformation (FFD) model:
deformation is carried out by an underlying uniform regular mesh of control points.

Other widely used approaches consist in representing the transformation with dense
vector fields (up to one vector per voxel) and adding regularization constraints to
the field. Generally, constraints are defined using an energy function computed from
the deformation field. At each iteration of the optimization procedure, the energy
of the current transformation is used to impair non smooth transformation. Linear
elastic energy is commonly used [42,37]. It is based on the physical equations of the
deforming material, assuming that the relationship between strain and stress is lin-
ear. Other regularizing energies are the membrane or Laplacian model (which can be
considered as a simplification of the linear elastic model [43]), bi-harmonic [35] (TPS
correspond to an exact solution to this energy minimization), viscous fluid [44,45,46]
(same equations as for the elastic model but applied to the velocity field instead
of the displacement field), Jacobian-based [47,48], Gaussian [49,45] (which can be
related to elastic regularization under some assumptions), etc. Interested readers
should refer to Cachier et al. [50] who report that almost all regularization energies
are based on the same small set of differential quadratic forms.

Biomechanical models [51,52] do not explicitly use similarity measures. Instead they
simulate organ deformation by using both physical material properties and con-
straints based on the initial and final states of the organs. They are based on the
Finite-Element Method (FEM) and use similar equations (elastic model for exam-
ple) to simulate individual organ deformation. Deformation is generally represented
by triangular meshes for surface-based models or tetrahedral meshes for volume-
based models. The individual material properties of each organ must be described,
with parameters such as Young’s modulus and Poisson’s ratio. Chi et al. [53] stud-
ied the relationships between those parameters and achievable registration. Contact
between organs is also sometimes simulated [54].
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Table 1
Short classification of some feature-spaces and transformation models used in de-
formable registration.

3.3 Conclusion

In feature-based methods, the intervention of experts did allow to obtain a confident
correspondence between sets of points (even when taking into account inter-observer
variability), but this method remains time consuming, error prone and not appro-
priate for a daily use. The difficulties were to establish a correspondence between
landmarks and to insure that extracted landmarks in the two images correspond to
same physical points. Moreover, landmarks should be uniformly distributed within
the volume in order to correctly infer the deformation. However, such methods
are generally faster than intensity-based methods. Intensity-based methods do not
require (manual) segmentation of organs but are subject to image artifacts. Biome-
chanical models require the definition of organ properties which are generally not
well known and are thus to be found heuristically.

There is no single method outperforming all other methods and which can be used
in all situations. The result is always a tradeoff between accuracy and speed. The
application can help choose a DR as a function of a priori differences in images.
The differences between images that we want to be registered can be due to sev-
eral factors: change in patient anatomy (intra-subject registration), different image
viewpoints, images from different sensors (multimodality registration), images from
different patients (inter-subject registration), dynamic motion (intra-fraction mo-
tion such as breathing). The type and amplitude of transformation φ depends on
such a priori differences. A priori information on the nature of the deformation is
therefore crucial. The next section describes several applications of DR.
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4 What use in radiotherapy ?

DF is used in a great variety of processes in IGRT. This section does not provide
an exhaustively list of DR applications in radiotherapy but describes a number
of examples. The first example describes local organ deformations induced by the
application of an endo-rectal coil. The second example deals with inter-fraction
organ deformations. The third example describes intra-fraction motion mainly due
patient respiration. Other examples include multi-modal DR (PET/CT) and inter-
patient segmentation propagation with DR.

4.1 Example n◦1: fusion of functional MRSI to anatomical CT or MRI for
prostate treatment

DR is used to combine anatomical data obtained by MRI or CT and functional
information from magnetic resonance spectroscopic imaging (MRSI) for prostate
treatment planning. MRSI provides information on the in vivo metabolic activity
of tissues that can be related to the presence of cancer [55]. . In practice, however,
the use of endorectal probes for MRSI distorts the prostate and other neighboring
soft tissue organs, modifying their shape when compared to an anatomical MRI or
a planning CT (see fig. 2). It makes the analysis and the use of MRSI in treatment
planning difficult and RR insufficient. DR is thus an adequate tool to recover the
deformation, as it allows a combination of functional and anatomical information.

Fig. 2. In the left MRS image the endorectal coil is inflated with 100 cm3 of air,
while in the right image the endorectal coil is completely deflated. From Venugopal
et al. [55].

Lian et al. [56] used TPS to interpolate the deformation from 4 to 8 homologous
control points in each pair of slices. DR is only performed slice by slice in 2D,
potentially resulting in errors in the longitudinal direction. Control points were
chosen manually along the contour of the prostate gland and feature points such
as corners and intersections of edges were identified. Based on a similar approach,
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Venugopal et al. [55] reported a registration method that required contouring of the
gross tumor volume (GTV) in both inflated and deflated images. They also used
2D TPS from a manual and contour guided selection of homologous control points.
Wu et al. [33] used an intensity-based DR between MRSI and MRI images which
did not require contouring the organs. They used mutual information as similarity
measure and the deformation was parameterized by a global polynomial function
of order 5-6 (168−252 parameters). The regularization energy was the bi-harmonic
differential operator, an energy associated with the TPS, involving second partial
derivatives. For MRSI to CT image registration, Schreibmann et al. [57] proposed an
hybrid method combining contour-based free form deformation using B-spline and
information on pixels contained in narrow bands around the contours. This method
allowed to avoid the use of homologous control points. Intensity-based information
was done with normalized correlation as similarity measure and optimization was
performed with a quasi-Newton approach allowing to avoid the computation of the
Hessian by using an iteratively updated approximated matrix [58].

In each approach, RR was considered inefficient to retrieve deformation. Hence, DF
was used to warp back MRSI data to anatomical data obtained from MRI or CT
by removing the deformation, thus allowing image fusion.

4.2 Example n◦2: IGART

Fraction to fraction variations of patient anatomy and setup lead to dosimetric un-
certainties, potentially leading to under-dosage of the tumor and/or over-dosage of
healthy tissues. It might be even more problematic for intensity-modulated radi-
ation therapy because of higher gradients and potentially higher doses. Adaptive
Radiation Therapy (ART) [59,2,60] was developed to reduce these uncertainties
using information obtained frequently during the treatment course and making
mid-course adjustments. DR can be used to (semi-)automatically quantify image
to image variations and potential dosimetric gains, it thus represents a key tool in
IGART.

Following the notations proposed in [61], let A(t0) denote the anatomical repre-
sentation of one patient at time t = t0 (generally obtained from a CT). Several
studies [2,61,62,63,51,54] (among others) aimed to adapt the initial treatment plan
to accommodate changes in patient anatomical configuration revealed by a post-
treatment follow-up image, A(t1), acquired for example after one week. To be able
to potentially adapt the treatment according to the current situation, one needs
to compute an estimation of the dose deposit d1 in A(t1) and compare with the
previous dose map d0 corresponding to A(t0) in order to obtain a difference dose
map ∆d01. There are two issues when performing this first step of an ART strategy.
First, new shapes and positions of organs and treatment targets must be estimated
in order to estimate the current dose map d1. Secondly, a cumulative dose map must
be computed, which cannot be done by simply subtracting the dose value of each
voxel ∆d01(x) 6= d0(x)−d1(x)). For both issues, DR can provide useful information.
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4.2.1 Estimation of anatomical variation using DR

Organs and target contours need to be redefined on A(t1). It is possible to import the
contours drawn on A(t0) into A(t1) and to use them as initial input for additional
manual recontouring. Instead, DR can be performed between A(t0) and A(t1), and
the resulting DF is used to propagate contours. Such contours can still be checked
and corrected manually but they are potentially closer to the solution than simple
imported contours. The dose distribution d1 could then be computed according to
the initial irradiation parameters.

For prostate treatments, several DR methods have been proposed to perform this
first step. Yan et al. [19] proposed a method to estimate organ deformation us-
ing a biomechanical model. The contours of each organ of interest were manually
drawn (then smoothed with a cubic-spline) and a set of fiducial points was manu-
ally selected. A 3D mesh (with tetrahedronal volume elements) was then generated
and deformation was obtained by FEM solution of the differential equations of the
biomechanical model including mechanical properties of the tissue. The method was
used by Birkner et al. [51] on CT images of patients with large rectum and blad-
der motion. Schaly et al. [20] also used a contour-based dose mapping technique,
but theirs was based on TPS. An automated heuristic technique was proposed
to generate homologous control points on contours, including tumor contour, all
surrounding critical structures and external contours. For each contour, 3D defor-
mation was propagated to the whole volume by TPS interpolation. This approach
was validated in prostate patients [64]. Fei et al [65] proposed an almost fully au-
tomated DR of prostate and pelvic MR volumes for image-guided prostate cancer
treatment. They used a semi-automatic method to detect corresponding pairs of
feature points, beginning with a manual localization of some points (prostate cen-
ter, two hip joints, two distal femurs) then automatically creating several hundreds
of other feature points. Local rigid transformations were optimized using the mu-
tual information similarity measure computed on each small cubic area centered
on points. Final deformable transformation was obtained by TPS interpolation of
corresponding control points. Wang et al [66] proposed an intensity-based DR to
register prostate motion on a daily basis in order to aid dose tracking. The method
used an optical flow-like algorithm inspired from [49] in order to register two CT
scans. A reverse similarity force taking into account both image gradients was added
to speed up the calculation. Validation of this approach was studied in [67].

It should be noted that several studies have demonstrated that the deformation of
prostate and seminal vesicles during the course of radiotherapy is small relative to
organ motion [68,69]. Hence, DR is not strictly required and RR can be sufficient
when performed locally, relatively to other structures. This can be done using an
automated intensity-based RR method, as proposed in [70]. Most of the studies
presented here were focused on the pelvic region, but other localizations could po-
tentially benefit from the same type of techniques: breast [71,72] or lung [73,74] (see
section 4.3).
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4.2.2 Dose accumulation computation using deformation field

The previous step was dedicated to obtaining quantitative information on or-
gan/target deformation between two anatomical representations. In order to com-
pare two dose distributions d0 and d1, respectively estimated according to two
anatomical representations A(t0) and A(t1), a difference dose distribution ∆d01

should be computed by expressing the dose in the same spatial reference, A(t0) for
instance. By using the DF φ obtained from a DR, the difference dose distribution
can be expressed as ∆d01(x) = d0(x)− d1(φ(x)). Hence, by integrating several pa-
tient descriptions A(ti) over the course of the treatment, several authors proposed
formulations of the planning optimization problem which included dynamic geo-
metrical variations of the organs. Following this principle, Yan et al. [19,75] were
among the first to propose a model for accumulating fractionated dose in a deform-
ing organ. A similar dose warping technique was proposed by Schaly et al. [76], or
Wu et al [61,62,63], using the DR method published by Lu et al. [22].

4.2.3 Conclusion

Taking into account organ/target inter-fraction motion could help improve the treat-
ment [2]. Dosimetric consequences of including fraction to fraction organ motion and
deformations into the treatment is a different matter and has been evaluated in sev-
eral studies [77,78,79,76,80]. The main ideas are that accounting for daily change
in the anatomy would allow to escalate the prescription dose, but the dosimetric
impact is patient-dependent. Such ART processes require to extract quantitative
information from several images using registration methods. It is worth noting that
rigid motion (patient setup error) is probably the first cause of uncertainties and
leads to the most dramatic dosimetric consequences. Nevertheless, DR remains re-
quired to accurately determine dose accumulation in the organs (such as in the
rectum or the bladder. Kupelian et al. [69] also reported infrequent but significant
deformations. Finally, the rigid displacements of soft tissues are local and can gen-
erally not be retrieved using global RR. Global intensity-based DR methods such
as in [66] or biomechanical models such as in [19] potentially remain an alternative
to take into account both issues (rigid and deformable motion) at the same time.

4.3 Example n◦3: temporal breathing deformation (liver and lung)

Accounting for intra-fraction organ motion is an important challenge in lung cancer
radiation treatment [81]. Movement and deformation due to breathing cause prob-
lems with image acquisition (distorted target volume [82]), treatment planning and
radiation delivery [83]. Motion potentially leads to GTV underdosage and/or unnec-
essary irradiation of healthy tissues. As with ART, reducing uncertainties in target
position should result in a decrease in healthy lung irradiation and should allow
tumor dose escalation, which could potentially lead to better outcome [84]. Mo-
tion management [60] includes several steps [85,83]: motion limitation (contention,
breath-holding, coached breathing, gated radiation delivery), residual motion quan-
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tification (intra and inter-fraction), residual motion management (adapted dosime-
try) and treatment delivery control (QA). Dealing with breathing motion in an
IGRT context involves several image modalities such as: blurred, slowly acquired CT
image averaging breathing periods, end-inhale/end-exhale/deep-inspiration (EEX-
EIN-DI) breath-hold CT images, 4D CT images, 2D+t dynamic projective images
(mega-volt portal images or kilo-volt radiographic images acquired with on-board
cone-beam, for instance), etc.

Recovering motion from images representing thorax anatomy at several breathing
states is a process similar to recovering motion from day to day images (previous
section). However, in the former case, there is a temporal coherence of the motion
between different states. Moreover, motion from breathing also happens with some
degree of regularity: changes in lung tissue density (due to the inspired air) occur
on a fairly regular basis. The next section deals with the use of DR to account
intra-fraction breathing motion of the liver and lung.

4.3.1 Breathing deformation of the liver

Kitamura et al. [85] showed that liver tumor motion can reach 10 mm in tidal
breathing. Yan et al. [77,19] showed that linear (rigid) registration was insufficient
to recover the liver deformation caused by diaphragm motion. Instead, they applied
their previously described biomechanical model to the liver. They determined the
liver boundary points in relation to the surrounding anatomic structures. Brock et
al. [86] proposed a linear elastic, small deformation, mechanical system to construct
a 4D model of the liver during breathing. The finite-element model was build from
two EEX-EIN breath-hold CT images with a volumetric mesh (6000 tetrahedral fi-
nite elements) obtained from initial contours using biomechanical properties . Liver
was split into six regions (segmentation defined from a standard anatomic refer-
ence system) and different initial constraints were applied to each region. Brock
et al. used an equivalent model with six intermediate positions (from t0 to t5) to
study dose accumulation in the liver deformed by breathing [87]. The model was
extended in [88] into a finite element model-based DR method named MORFEUS
(with MRI). This multi-organ model (liver, spleen, external surface, stomach and
kidneys), describes the surface interface between organs and assigns each individual
organ material properties that allow accurate deformation of internal structures.
The same authors [26] proposed another, less time-consuming and user-dependent
method, based on TPS interpolation of control points after initial rigid alignment
using mutual information. The control points were automatically placed using a
probabilistic atlas (created from 32 patients). Rohlfing et al. [89] also proposed a
model of liver motion during respiratory cycle with an intensity-based approach.
They used a 4D dataset, obtained with gated MRI, from EEX to EIN, with 8 in-
stants. Motion was modeled using an intensity-based DR method similar to the one
presented in [27] (on breast). Deformation was parameterized with a free-form de-
formation of cubic B-spline, and computed between the reference EEX image and
each successive 3D image of the dataset.
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4.3.2 DR of the lung

From end-exhale to end-inhale. A first group of studies have explored DR be-
tween EEX and EIN CT images acquired during breath hold. Several groups used
sparse sets of anatomical features (mostly selected points or extracted surfaces) in
each image, established pairs of correspondence between features and finally com-
puted dense displacement fields with an interpolation model based on the paired fea-
tures [90,17,18,74,25,91,73]. In [90,17,25], features were points manually located and
paired by experts. In [91], features were automatically determined with the image
gradient and, in [73], using slice by slice segmentation. Warping models used to com-
pute dense displacement fields were: TPS [25,18] with inverse-consistent constraints
in [18], radial basis interpolation with the shift log function [73], and B-spline [91].

Other groups used dense intensity-based methods. Most authors [17,92,18,22,93,94]
used SSD as dissimilarity measure and neglected the lung density variations due to
breathing. Sundaram et al. [24] used normalized cross-correlation on 2D MRI slices,
Coselmon [25] used mutual information on right lung images, Weruaga et al. [92]
computed a similarity measure which was a combination of cross-correlation and
SSD. We [23] proposed a preprocessing step, called a priori lung density modification
(APLDM), to take into account changes in lung density due to inspiration.

4D Models. Attempts at building a 4D model have been made. A 4D model
encompassed successive step-by-step deformations from EEX to EEI, and is not
based on a single deformation from initial to final state. It contains individual
voxel trajectories and could be used to study local hysteresis. A 4D model is gen-
erally (but not necessarily) build with from 4D CT images. 4D CT imaging [95]
can be defined as the acquisition of a sequence of 3D CT image sets over consecu-
tive segments of a breathing cycle. Several 4D CT acquisition methods have been
proposed [96,97,98,99,100,101,102,103,104,105,104,106,107].

Zhang et al. [54] proposed to build a 4D thorax model with a triangular surface
mesh obtained from lung contours converted into a volumetric tetrahedral mesh.
Transformation from the EEX image to the EIN image was then computed with a
finite element contact-impact analysis allowing to simulate interactions between the
organ of interest and the surrounding body. As described before, Brock et al. [88]
used their finite element model-based multi-organ deformable image registration on
the thoracic region including the lungs, the external surface and the breasts. Rietzel
et al. [108] used an open source implementation of an intensity-based free-form DR
based on B-spline interpolation [109]. The similarity measure was SSD. DF was
used to combine dose distributions and a technique based on maximum intensity
volume of lung tumor was proposed for fast contouring of composite GTV. Kaus
et al [94] compared deformable surface (based on manually drawn 2D contours)
and volumetric B-spline DR to propagate organ models through the image time
series. They concluded that surface DR is not able to handle tumor motion, but
that intensity-based DR was susceptible to motion artifacts in CT. Keall et al. [110]
used large deformation diffeomorphic image registration from [37,111] to map the
transformation between a reference CT image (peak-inhale) to any other CT image
in the 4D dataset. The resulting DF allows the contours defined on one image to be
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automatically transferred to other phases images (eight image sets in total), thus
allowing to draw 4D contours. Guerrero et al. [112] proposed another use of DR in
4D CT images: they described a method of quantifying regional ventilation with
the goal of developing functional images for treatment planning and optimization.
Optical-flow DR [93] was used to obtain voxel to voxel correspondence, and local
volume change due to inspiration was computed using corresponding Hounsfield
units. A similar approach was also used by our team [23] to generate intermediate
voxel densities taking into account the air volume change, for simulating a 4D image
from two EEX-EIN breath hold CT scans.

4.3.3 Conclusion

A spatio-temporal 4D model allows to quantify and analyze the displacement and
deformation of any object (organ, tumor) as a function of time. Variations of lung
density according to time can be computed. Any (ir)regular breathing signal can
be simulated. When related to a given breathing signal, Probability Density Func-
tion (PDF) of organ/tumor presence can be computed in order to derive optimal
treatment margins. The 4D model can be incorporated into the treatment plan by
dose deformation as in [113] or combination of dose distributions [108,87] for lung
or liver. Keall et al. [110] used such a model to perform 4D dose computation for
DMLC-based (Dynamic Multi-Leaf Collimator) respiratory motion tracking. Sev-
eral authors used 4D models with Monte-Carlo simulations [114,115,116]. Rit et
al. [107] simulated dynamic cone-beam image acquisitions. Resulting 4D deforma-
tion fields were also used to propagate contours from one image to the other in a
4D dataset [108,110].

However, such 4D models are still in their early stages. They are subject to image
artifacts, do not take into account heart beat variability [117], or respiration de-
ficiencies and still need validation. Nevertheless, 4D DR are very promising tools
that provide individualized quantitative information for each patient on organ tra-
jectories or hysteresis, for instance.

4.4 Example n◦4: PET (motion compensation)

18F fluorodioxydoglucose (FDG) Positron emission tomography (PET) images pro-
vide useful functional information which could lead to improve diagnosis or perform
PET-based radiotherapy planning. However, registering these images to anatomical
CT is difficult due to the acquisition difference between the two modalities: the pro-
cess requires a few seconds acquisition time for CT, about 30 min for PET; motion
artifacts caused by respiration thus degrade PET image quality and quantification.
Moreover, differences in the patient positions (arms-up posture) cause RR failure,
with two major consequences: it affects the accuracy of quantification, producing
a reduction of the measured standard uptake value (SUV) and the apparent lesion
volume is overestimated [118].
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Slomka et al. [119] proposed a fully automated algorithm for DR of whole-body PET
and CT images, which compensates for the nonlinear deformation due to breath-
hold CT imaging. After initial affine registration based on mutual information, they
used TPS on a large number (a few hundreds) of automatically derived correspond-
ing point pairs. Shekhar et al. [120] used DR to register and fuse a whole-body
functional PET with an anatomic CT, in order to differentiate viable tumors from
benign masses. They used elastic intensity-based DR with normalized mutual infor-
mation, and the global transformation was derived from a combination of multiple
local rigid body transformations. Mattes et al.[121] proposed a method to elasti-
cally align PET (normal tidal during about 30 min, without arms-up posture) and
CT images (acquired in DI breath-hold, with arms-up posture) of the chest. They
used mutual information measure with B-spline based DR (both for deformation pa-
rameterization and image value interpolation), and limited-memory quasi-Newton
optimization algorithm. Schwartz et al. [122] used this technique for head and neck
PET-CT imaging in order to guide head and neck intensity-modulated radiation
therapy planning [123] and to improve neck staging sensitivity and specificity in pa-
tients with head and neck squamous cell cancer [122]. Reyes et al. [124] proposed a
statistical method to correct for PET motion artifacts based on a 4D motion model.
Such technique require the a priori knowledge of a 4D motion model such as the
ones described in the previous section.

Nehmeh et al. [118,125,126] proposed a protocol to acquire gated 4D-PET/CT im-
ages whereas circumventing breathing motion artifacts in cases where DR could
potentially be used. Once the images are registered, the resulting DF can be ap-
plied to the emission or standard uptake value image for building a fused PET-CT
image and improving PET image interpretation.

4.5 Example n◦5: Inter-patient registration (atlas)

Intra-patient DR is generally used to account for the deformation of anatomical
structures corresponding to a “real”, elastically or plastically deforming material.
Inter-patient DR is used to help transferring contours from one patient in another
and/or to study the variability of anatomical structures across different patients.
Generally, (semi-)automated organ delineation with inter-patient DR is performed
based on an anatomical atlas, composed of several images which are segmented and
represented in a same reference frame system.

Qatarneh et al. [127] constructed a whole body atlas for optimizing radiotherapy.
The atlas contained, among other information, standardized, segmented organs from
several patients, to be used as a reference. Auto-segmentation was then performed
for each individual patient, first by matching contours from to whole body atlas to
the new image, then by refining contours using an active contour model. Boes et
al. [128] generated a normalized geometric liver model using DR with TPS surface
warping. Li et al. [18] built a normative atlas of the human lung for inter-patient tho-
rax images. Bondiau et al. [129] used an intensity-based DR technique (SSD, fluid,
optical flow) to register brain MRI to another segmented MRI, allowing automatic
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delineation of brain structures. Park et al. [130] proposed a method to construct
a probabilistic atlas of an abdomen consisting of four organs: liver, kidneys, and
spinal cord. They used 32 manually segmented CT images mapped into a same ref-
erence with a quasi-fully automated DR (using TPS and mutual information). The
probabilistic atlas was used to aid the segmentation of low-contrast organs. Deurloo
et al. [68] used a morphing technique [131] to map manually drawn GTVs (prostate
and seminal vesicles) of several patients to a reference case. Although the technique
used (morphing of 3D surfaces) is not strictly a DR, it detects deformations between
GTV’s, allowing statistical comparisons.

DF amplitudes are generally higher with inter-patient DR than with intra-patient
DR and thus potentially require a higher number of degrees of freedom to model the
deformation, and more iterations to converge. However, regularization is generally
less constrained than with intra-patient DR. More details on inter-subject DR can
be found in [132].

5 Conclusion

Many other examples of DR use in radiotherapy can be found. Christensen et
al. [111] used fluid intensity-based DR between cervix CT images for planning
brachytherapy treatments with intracavitary applicators (which induce complex or-
gan deformations). Our group [133] evaluated inter-fraction reproducibility by com-
paring 3D CT images acquired from the same patient at the same breath-hold levels.
Bharatha et al. [134] proposed to recover shape changes between pre-operative MRI
images obtained with an endorectal coil and intra-operative images obtained with
a rectal obturator in place. The method involved the use of a biomechanical FEM
(with tetrahedral elements) initially obtained from segmented images [135,136].

The main difficulty is validation. There is no standardized means of evaluating the
results of a DR method. The most common evaluation methods are:

• Simulated data: this method involves the generation of an artificial image de-
formation with a mathematical transformation. Its advantage is that the gold
standard is perfectly known. However, these method lacks realism. It is generally
only a first step and allows to evaluate the influence of parameters (noise quan-
tity) on the method. Evaluating the consistence of the deformation (Invertibility:
is φij close to φji ? Transitivity: is φij ◦ φjk close to φik ?) could also provide
useful information [45,137].

• Phantom data: the method is more realistic but still uncertain. The gold standard
is evaluated by means of implanted landmarks. For example, Wang et al. [67] de-
signed a deformable pelvis phantom containing simulated prostate, bladder, sem-
inal vesicles, rectum and bony structures. A rectal balloon could be inflated and
seeds were embedded in the prostate structure in order to track the deformation.
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• Patient data: the gold standard is unknown. It can be defined by means of manual

selection of homologous landmarks by experts. However, even if the found trans-
formation perfectly matches the expert-defined landmarks, this does not imply
that the transformation of points between the landmarks is correct.

Even if the validation of DR is still uncertain, some applications can benefit from
these techniques. For the propagation of organs/tumor contours, for instance, the
distance between deformed contours and those defined by experts should remain in
the range of inter-experts variability. However, for more precise applications such
as dose deformation, or organ deformation studies, the results of DR algorithms
should be used with care. Nevertheless, DF algorithms remain a fundamental image
analysis tools for radiotherapy, and will probably be included into all treatment
planning systems in the near future.
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