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ABSTRACT

As the variance of the statistics of ultrasonic data in a
homogeneous tissue may be rather large and the statistics of
different tissues may be very similar, a new filtering
approach is proposed to enhance the contrast in ultrasonic
images. It is based on the Variable Bandwidth Mean Shift
algorithm adapted to the specificities of ultrasonic data. A
fully automatic adaptive bandwidth selection in both range
and spatial domains is described. Our method was compared
to a Variable Bandwidth Mean Shift algorithm based on an
adaptive range scale selection and a fixed spatial scale
parameter. The results show the superiority of our method.

1. INTRODUCTION

Ultrasonic images are characterised by a relatively poor
quality and thus, processing such as automatic segmentation
is a difficult problem [1], [2]. The image degradation
includes primarily the speckle noise, the blurring of spatial
information perpendicular to the propagation direction of
ultrasonic waves, and the non-constant attenuation of
ultrasound. Although dynamic focusing techniques are used,
the lateral resolution is poor and the structures are blurred in
a direction perpendicular to the ultrasonic propagation. In
most cases, the structures to be detected, such as tumours,
have acoustic characteristics similar to the surrounding
tissues. Thus, the contrast between the various tissues is
poor. This makes the determination of an accurate border
difficult. The attenuation of ultrasound depends on the
nature of the investigated tissues. Consequently, a
homogeneous tissue does not appear quite homogeneous on
the image. It may be visualised with a slight variation of
intensity in the ultrasonic propagation direction, despite the
correction of the Time Gain Compensation, which is
constant and independent of the nature of tissues. Moreover,
the principle of image formation uses the focalisation of the
ultrasonic beam. Then, the lateral resolution in the image,
defined by the resolution cell size, is not constant along the
propagation direction. It also implies variations in the
statistics of a homogeneous tissue at different depth of the
tissue.

As the variance of the statistics in a homogeneous tissue
may be rather large and the statistics of different tissue may
be very similar, several filtering techniques are proposed in
the literature to enhance the contrast in ultrasonic data.

The most widely used techniques for reducing the speckle
noise are the spatial or frequency compounding that consist
in averaging uncorrelated data. Several filtering techniques
have also been described. They are summarized in [3].

More recently, anisotropic diffusion techniques have been
adapted to the spatial properties of speckle to enhance the
contrast in ultrasonic images [4]. The Mean Shift analysis
has shown its efficiency to achieve a high quality
discontinuity-preserving filtering by identifying local modes
of the underlying distribution in the joint spatial-range
domain [5]. We propose in this paper a Variable Bandwidth
Mean Shift filtering based on an automated bandwidth
selection both in range and spatial domains (VBMS R+S).
This technique associates to each data point a range scale
parameter computed from the data points and a spatial scale
parameter obtained from the a priori knowledge about the
resolution of the ultrasound probe.

2. ULTRASONIC IMAGES

In order to evaluate the efficiency of our method, we have
simulated data using the Field software developed by J.A.
Jensen [6]. Given the positions and the acoustical
characteristics of the scatterers and also the beam
characteristics, the software is able to compute the emitted
and received waves, thus creating the corresponding RF
signals. The numerical phantoms consist in a 60 mm depth,
30 mm wide, 10 mm thick scattering medium with 100.000
randomly disposed scatterers with Gaussian-distributed
amplitudes. In the Field software, the acoustic
characteristics of each scatterer in the simulated tissue are
defined through the parameter called "amplitude". This
parameter controls the echogenicity of the medium. A 10
mm diameter cylindrical inclusion is placed at the centre of
the phantom. The amplitude inside is set to 0.1, the
amplitude outside is set to 1. The geometry of the two-
region phantom is shown in Fig. 1.
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Figure 1: Geometry of the phantom



The simulation is computed using a 3.5MHz array probe
with a focal zone centred on the inclusion in reception. We
used 50 RF lines sampled at a 100MHz rate. The output is
then a 50*7160 data file. For each line, the envelope of the
signal is detected. The axial resolution being 0.8 mm (about
100 pixels), the envelope data was decimated by 20, thus
giving a 50*358 data file.

The lateral resolution is related to the Point Spread Function
(PSF) of the imaging system. The Fig.2 (right) shows the
evolution of the PSF with the depth (on the y-axis). It is
obtained by placing 0.5 mm spaced scatterers along the y
axis and by computing the response of the imaging system
via the Field software. From the lateral profile of the PSF (in
the x-axis), we consider the lateral resolution at each depth
as the width at half maximum of the profile.
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Figure 2: Lateral resolution profile of the probe

3. VARIABLE BANDWIDTH MEAN SHIFT

Mean shift is a non parametric estimator of density gradient
developed by Fukunaga and Hostetler thirty years ago [7]
and recently exploited in low level computer vision tasks by
Comaniciu and Meer [5, 8]. Mean shift framework is
interesting because it can take into account jointly both
spatial information (pixel location in the spatial domain R)
and range information (grey level, colour or spectral
information in the range domain R"). The resulting spatial-
range domain is represented by a d-dimensional Euclidian
space RY, where d = s + r. Moreover, mean shift technique
is attractive, since it needs no prior knowledge on the
underlying distribution of the intensities of the pixels. But its
main drawback is the selection of a scale parameter tied to
the joint spatial-range domain. In [9], the authors proposed a
Variable Bandwidth Mean Shift procedure based on an
adaptive Range scale parameter (VBMS R) and
demonstrated its superiority over the fixed bandwidth
density estimation methods.

In this paper, we propose a Variable Bandwidth Mean Shift
filtering based on a fully adaptive bandwidth selection both
in Range and Spatial domains (VBMS R+S). One novelty of
our method is to take into account a priori knowledge about
ultrasonic imaging such as the lateral variation of resolution.

3.1 Principle of variable bandwidth mean shift

The mean shift procedure was fully described in [8, 9]. It
consists in detecting the stationary points of the underlying
density function, i.e. the modes of the density. In this
section, we remind the general principle and the main
equations governing the method. Mean shift is a non
parametric method based on the kernel density estimation.
The multivariate kernel density estimator with kernel K (a

radially symmetric, non-negative function centred at zero
and integrating to one) and a fixed symmetric, positive
definite bandwidth matrix H is defined in eq. 1 for a set of n

data points {x } , ina d-dimensional Euclidian space RY,

/}(X):liKH(x_xi) (1)
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The terminology "fixed bandwidth" means that the density
at each point x is estimated using the same scaled kernel
over the whole data points. The limitations of the fixed
bandwidth kernel based estimation are an undersmoothing
effect at the tails and an oversmoothing effect at the peaks of
the density. The performance also decreases when the data
exhibit local scale variations like in ultrasonic imaging.

An improvement of the method is to make the bandwidth
matrix H variable. One solution is to define a bandwidth
matrix H; for each data point x;, i = 1,..., n. The resulting
multivariate estimator is called the sample point density
estimator given by eq. 2 and has proved its efficiency over
the fixed bandwidth estimator [9].
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The bandwidth H; scales the kernel support to be radial
symmetric.

Ky (u)= (dez[Hi])‘%.K(H;% uj 3)

In our application, we will restrict H; to a diagonal matrix.
Each element h; ,, (m = 1,..., d) of the matrix is the scale
parameter of the m"™ dimension of the d-dimensional
Euclidian space RY. Due to its symmetry property, K(u) can
be replaced by its profile x:[0,.0) R , a monotonically

decreasing function
klu)=0 0<u<l

K(u) =¢ d.k(uru) with (u)> Jor 0u< )

' k(u)=0 foru>1

where ¢, 4 is a normalization constant.
Eq. 2 can be rewritten taking into account eq. 3 and eq. 4
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where d[x, x; ,H; ]2 denotes the square Mahalanobis distance
from x to x;.
Using the linearity property of eq. 5, the density gradient
estimator is obtained as the gradient of the density estimator
in eq. ©.
Vf(x) = V/ (x)
2 n
= ﬂZ(det[Hi])% .Hf'.(x - xi).k'(d[x,xi,Hi]z)
(©)
This expression can be rewritten with the notation Q; (x)
defined in eq. 7, where we note g(u) = - £’ (u).

Qi(x):(det[Hl.])_%.Hi_l.g(d[x,xi,H,]z) (7
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The mean shift vector M(x) is defined in eq. 9. It was shown
that this vector is an estimator of the normalized gradient of
the underlying distribution.
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The main property of this estimator is the convergence
associated with its repetitive computation. The mean shift
procedure consists in an iterative computation of the mean
shift vector M(x) and the translation of the kernel by M(x). It
was proved that this process converges at a point where the

estimate has zero gradient i.e. H M (X)H ~0-

Starting from a point x = x!"J, the successive locations of the
kernel are stored by the sequence {x[’] }1:1 , given by eq. 10.

N (Zn:Qf(xll])jl~ [zn: X, .Q;(xll])j (10)
M(X)[m]

process stops when the module of the mean shift vector is
less than a tolerance threshold. The point of convergence
corresponds to a mode of the distribution.

At each iteration,

:HX[M] _X[IIH is evaluated. The
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3.2 Adaptive bandwidth selection
A variable bandwidth matrix H; is determined for each data
points {x, } In our application, bi-dimensional images

i=l,..n*

of grey levels were considered, so the spatial dimension s is
equal to 2 and the range dimension r is equal to 1. The
variable bandwidth matrix is expressed in eq. 11.
B, 0 0
H =| 0 h,2 » 0
0 0 K.
Due to the different nature of the spatial and the range
spaces, a method for the bandwidth selection is defined for
each space:
a) the spatial scale parameters #; ;; and /; 5, are chosen in
order to fit to the local spatial resolution of the image.
b) the range scale parameter 4;, derives from a property of
the sample point estimator.

3.2.1

In the mean shift procedure, the use of variable spatial scale
parameters is well connected to a multiscale analysis of the
data. In [9], the authors propose a semi-parametric selection
of the spatial parameter based on an interesting property of
the mean shift vector. This solution is particularly well
appropriated when nothing is known about the spatial scale
of the image. In the context of ultrasonic imaging, we take
benefit of additional information such as the spatial
resolution of the probe. As explained in Section 2, the lateral
spatial resolution of the probe is experimentally estimated
for each pixel. As the spatial scale is closely related to the
resolution, we assign the spatial bandwidths #; ;; and 4; o
using the estimated resolution of the considered pixel. To
obtain %, ; , we multiply 4;;; by a scalar in order to take into
account the anisotropy of the image (4, = 5,2 h; ).
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We derive the method given in [9] for computing the
adaptive range scale parameter A; . for each pixel {x,}

i=l,..n

(11)

Adaptive spatial bandwidths h, , and h; ;,

Adaptive range bandwidth h;

This method is based on an attractive property of the sample
point estimator, which ensures a minimization of the bias

error for a particular choice of 4;,. The expression of #;, is
given by eq. 12.

1

It involves the estimation of f(X;) from the data, called pilot

(12)

distribution 17(",- )s and the determination of two constants 7,

and A. hy is a fixed bandwidth computed from the one-
dimensional plug-in rule proposed in [10]. According to the
authors in [9], this plug-in is the best of the currently
available data-driven methods for bandwidth selection. 4 is

computed from {]7 (X,)} usually as the geometric mean. It is a

reference value which sorts the range of density values in
low and high densities. When the local density is low, i.e.
f(x,)< A, hi , increases relatively to &g implying more

smoothing for the point x;. On the contrary, when ]N"(x[_ )> 2,
h; » becomes narrower. The pilot density 7(x,) is computed

for each pixel from a kernel density estimator, using a fixed
range bandwidth %, and variable spatial bandwidths #; ;; and
h;s; previously determined. Then, the adaptive range
bandwidth %; , is determined according to eq. 12 using
spatial scale parameters /;; and 7; ;.

3.3 Adaptive smoothing
Let {Xi}i:l,...nand {Yi}i:l,...n

image and the filtered points in the spatial-range domain.
The mean shift filtering is obtained by applying the variable
bandwidth mean shift procedure to each pixel {x, } . of the

L of the

filtered image the components of the point of convergence
XCoNV i associated to X;.

be the d-dimensional original

original image and by assigning to each pixel {y }

Algorithm:
The adaptive smoothing was applied to bi-dimensional grey
level images. Given i, }1:1,...n :

1. Compute %, the optimal fixed range bandwidth with the
plug-in rule.
2. Foreach {x }:
- Assign the spatial bandwidths 7%; ;; and 7%; , using the
lateral profile of the ultrasound probe.
- Compute the pilot density 7(x,) using the local S’Patial

scales £, h; s, and compute 4, with log/, = n’IZlogf(xj)
- Compute #;, given by eq. 12 using the local spaﬁél scales

his] and hiSZ-
3. Foreach {x }, run the adaptive mean shift procedure.

4. Foreach {y }, assign y; = Xconyi-

i

4. RESULTS AND DISCUSSION

We applied our method (VBMS R+S) to simulated
ultrasonic data. The original image and its related grey
levels distribution is displayed in Fig. 3a and Fig. 3c. We
can see from the distribution that both the dark and the
bright classes are indistinguishable. We compared (VBMS
R+S) to a VBMS algorithm based on an adaptive range



scale parameter and fixed spatial bandwidths (VBMS R).
Both algorithms used the same expression given by eq. 12
for the computation of %;,. However, in our method, #; . was
determined from the data points included in the adaptive
spatial bandwidths #; ;; and 4; ;». The fixed spatial bandwidth
hy; was fixed to the average lateral resolution of the probe
and the same previous factor of anisotropy (A, = 5,2 hy)
was applied for deducing 4. The resulting filtered images
can be observed in Fig. 3d for (VBMS R) and in Fig. 3g for
(VBMS R+S). The related grey levels distributions are
displayed in Fig. 3f and Fig. 3i. In Fig. 3f, it appears that
(VBMS R) has slightly grouped the data points around
several modes, but those modes are too numerous. (VBMS
R+S) has given better results than (VBMS R), since the dark
area is well isolated in the distribution of the filtered image.
More data points have converged towards fewer modes. The
homogeneity of the original image and the filtered images is
evaluated by a thresholding. Whereas a manual thresholding
is needed for the original image and the (VBMS R) filtered
image (since classes are not distinguishable), an automated
thresholding can detect the separation between the dark and
the bright classes in (VBMS R+S) filtered image. In Fig. 3h,
the resulting binary image is quite satisfying.

5. CONCLUSION

We have developed a Variable Bandwidth Mean Shift
filtering based on both spatial and range adaptive
bandwidths. For each data point, a range bandwidth was
computed from the data and spatial bandwidths were
determined from the lateral resolution of the ultrasound
probe. Our method has shown its superiority relatively to the
Variable Bandwidth Mean Shift filtering using fixed spatial
scale parameters. The proposed method has several
advantages on classical VBMS. First, it does not require any
setting of parameter. Then, it is able to fit to the variable
resolution of the ultrasound probe.
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Figure 3: Results: a), b) original data and resulting manual thresholding; d), ¢) (VBMS R) filtered image and resulting manual
thresholding; g), h) (VBMS R+S) filtered image and resulting automated thresholding; c), f), i) grey levels distributions of the
images a), d) and g). The vertical lines indicate the threshold values.



