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This is the appendix of the work titled ”Local optimization of discrete region-
based energies for multi-region segmentation”. Here we develop the mathemat-
ical derivations that lead to the variations of the data terms presented in the
above work, as well as the regularization term. For each derived term, the en-
ergy variation caused by label modification at pixel v is studied. We denote
by i = φv and m the initial and candidate labels, respectively. With a view
to conciseness, the tested labeling φv,m is shortened to φ′, whereas variation of
energy J [φ′]− J [φ] is shortened to ∆vJ [φ].

1 Global uniform modeling

We detail the variation of the global uniform modeling term addressed in section
3.1 ”Global uniform modeling” and based on the following penalty function:

f [l,p, φ] = ‖Ip − µl[φ]‖2

where µl[φ] is the average color over region Rl:

µl[φ] =
1

|Rl|
∑
q∈D

δ (φq, l) Iq

It is clear that label modification only affects data terms over Ri and Rm, hence
we have:

∆vJ [φ] =
∑
p∈D

{
δ(φ′p,m) ‖Ip − µm[φ′]‖2

−δ(φp,m) ‖Ip − µm[φ]‖2 + δ(φ′p, i) ‖Ip − µi[φ′]‖
2

−δ(φp, i) ‖Ip − µi[φ]‖2
}

where candidate means µi[φ
′] and µm[φ′] are:

µl[φ
′] =


µl[φ] |Rl| − Iv
|Rl| − 1

if l = i

µl[φ] |Rl|+ Iv
|Rl|+ 1

if l = m

µl[φ] otherwise

(1)

It follows that energy variation is made up of two distinct parts, i.e. the
swap of deviations due to v itself and the deviations of all unchanged pixels
belonging to regions Ri and Rm:

∆vJ [φ] = ‖Iv − µm[φ′]‖2 − ‖Iv − µi[φ]‖2

+
∑

p∈D\{v}

{
δ(φp,m)

(
‖Ip − µm[φ′]‖2 − ‖Ip − µm[φ]‖2

)
+δ(φp, i)

(
‖Ip − µi[φ′]‖

2 − ‖Ip − µi[φ]‖2
)}

Expanding squared `2 distances with rule

‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2a · b,
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the variation simplifies to:

∆vJ [φ] = ‖Iv − µm[φ′]‖2 − ‖Iv − µi[φ]‖2

+|Rm| ‖µm[φ′]− µm[φ]‖2 − (|Ri| − 1) ‖µi[φ′]− µi[φ]‖2

2 Local uniform modeling

We detail the variation of the local uniform modeling term addressed in section
3.2 (”Local uniform modeling”) and based on the following penalty function:

f [l,p, φ] = ‖Ip − νl[p, φ]‖2

where νl[p, φ] is the normally-weighted mean of colors in region Rl belonging
to the ball centered at p:

νl[p, φ] =

∑
q∈D

K(q − p)δ (φq, l) Iq∑
q∈D

K(q − p)δ (φq, l)

Label modification at pixel v yields the following variation, which can naturally
be split into two components:

∆vJ [φ] = ‖Iv − νm[v, φ′]‖2 − ‖Iv − νi[v, φ]‖2

+
∑

p∈D\{v}

∥∥Ip − νφp [p, φ′]
∥∥2 − ∥∥Ip − νφp [p, φ]

∥∥2
where the first terms is the direct consequence from label change at v. The
second term, summed over the whole image domain except v, results from the
addition or removal of Iv in affected local means. According to:

νl[p, φ
′] =



∑
q∈Br(p)

K(q − p)δ
(
φ′q, l

)
Iq∑

q∈Br(p)

K(q − p)δ
(
φ′q, l

)
if p ∈ Br(v) and (l = i or l = m)

νl[p, φ] otherwise

(2)

local means are modified only in the ball of radius r = 3σ surrounding v. Thus,
the sum of variations in the second term can be restricted within this ball:

∆vJ [φ] = ‖Iv − νm[v, φ′]‖2 − ‖Iv − νi[v, φ]‖2

+
∑

p∈Br(v)\{v}

∥∥Ip − νφp [p, φ′]
∥∥2 − ∥∥Ip − νφp [p, φ]

∥∥2
Moreover, the modification of local means does not apply to pixels which labels
are different from i or m, which further simplifies the implementation of the
sum in the previous equation.
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3 Non-parametric probability function

We detail here the calculus of variations for the non-parametric probability mod-
eling term addressed in section 3.3 ”Non-parametric probability modeling”.We
can express energy variation for the removal of pixel v from region Ri and its
addition to region Rm with the following expression:

∆vJ [φ] =
∑
p∈D
− log pi [Ip, φ

′] δ
(
φ′p, i

)
+
∑
p∈D
− log pm [Ip, φ

′] δ
(
φ′p,m

)
+
∑
p∈D

log pi [Ip, φ] δ (φp, i)

+
∑
p∈D

log pm [Ip, φ] δ (φp,m)

∆vJ [φ] = −
∑
p∈D

log pi [Ip, φ
′] δ (φp, i) + log pi [Iv, φ

′]

−
∑
p∈D

log pm [Ip, φ
′] δ (φp,m)− log pm [Iv, φ

′]

+
∑
p∈D

log pi [Ip, φ] δ (φp, i)

+
∑
p∈D

log pm [Ip, φ] δ (φp,m)

Simplifications gives the following discrete variation:

∆vJ [φ] = − log
pm [Iv, φ

′]

pi [Iv, φ
′]

+
∑
p∈D

log
pi [Ip, φ]

pi [Ip, φ
′]
δ (φp, i)

+
∑
p∈D

log
pm [Ip, φ]

pm [Ip, φ
′]
δ (φp,m)

A direct computation of this variation is expensive. In particular, the complexity
is in the computation of the two last terms. However, we reduce the complexity
of calculation using histogram hl [a, φ] and the Parzen window-based histogram

ĥl [a, φ] based on pl [a, φ].

hl [a, φ] =
∑
q∈D

δ (a, Iq) δ (φq, l)

ĥl [a, φ] =
∑
q∈D

Kσ (a− Iq) δ (φq, l)
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Using histograms, we can express variations in the following way:

∆vJ [φ] = − log
pm [Iv, φ

′]

pi [Iv, φ
′]

+ |Ri| log
|Ri|+ 1

|Ri|
+ |Rm| log

|Rm|+ 1

|Rm|

+
∑
p∈D

log
ĥi [Ip, φ]

ĥi [Ip, φ
′]
δ (φp, i)

+
∑
p∈D

log
ĥm [Ip, φ]

ĥm [Ip, φ
′]
δ (φp,m)

With a view to simplification, the sum of log-values in the histogram can be
written as: ∑

p∈Rl

log ĥl [Ip, φ] =
∑
p∈Rl

∑
a∈A

log ĥl [Ip, φ]δ (Ip,a)

=
∑
a∈A

log ĥl [a, φ]
∑
p∈Rl

δ (Ip,a)

=
∑
a∈A

hl [a, φ] log ĥl [a, φ]

so ∑
p∈Rl

log
ĥl [Ip, φ]

ĥl [Ip, φ
′]

=
∑
p∈Rl

log ĥl [Ip, φ]− log ĥl [Ip, φ
′]

=
∑
a∈A

hl [a, φ] log
ĥl [a, φ]

ĥl [a, φ
′]

(3)

Since Kσ(x) can be considered as negligible as x exceeds 3σ, a simplification
of the derivative in eq. (3) consists in limiting the explored range in the color
neighborhood of Iv:

Nσ(Iv) = {a ∈ A | ‖Iv − a‖ < 3σ}

Indeed, histogram bins for colors far enough from Iv are not affected by the
addition or removal of Iv. Trivially, for these colors, we have

log
ĥl [a, φ]

ĥl [a, φ
′]
≈ 0 if a /∈ Nσ(Iv),

which allows to write∑
a∈A

hl [a, φ] log
ĥl [a, φ]

ĥl [a, φ
′]
≈

∑
a∈Nσ(Iv)

hl [a, φ] log
ĥl [a, φ]

ĥl [a, φ
′]
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With this simplification, the variation becomes

∆vJ [φ] = − log
pm [Iv, φ

′]

pi [Iv, φ
′]

+ |Ri| log
|Ri|+ 1

|Ri|
+ |Rm| log

|Rm|+ 1

|Rm|

+
∑

a∈Nσ(Iv)

hi [a, φ] log
ĥi [a, φ]

ĥi [a, φ′]

+
∑

a∈Nσ(Iv)

hm [a, φ] log
ĥm [a, φ]

ĥm [a, φ′]

4 Regularization term

Having formulated our framework in terms of a generic energy measure, we now
introduce specific calculus of regularization energy variation. From our original
definition :

J [φ]=
∑
p∈D

f [φp,p, φ]︸ ︷︷ ︸
Data term

+λ
∑

(p,q)∈C

u(p, q) (1− δ (φp, φq))

︸ ︷︷ ︸
Regularization term

we recall the smoothness term :

J [φ] =
∑

(p,q)∈C

1− δ (φp, φq)

The calculus of variations is directly obtained with:

∆vJ [φ] =
∑

(p,q)∈C

1− δ
(
φ′p, φq

)
−

∑
(p,q)∈C

1− δ (φp, φq)

=
∑

(p,q)∈C

[
1− δ

(
φ′p, φq

)]
− [1− δ (φp, φq)]

∆vJ [φ] =
∑

(p, q) ∈ C
p 6= v, q 6= v

[1− δ (φp, φq)]− [1− δ (φp, φq)]

+
∑

(p, q) ∈ C
p = v, q 6= v

[
1− δ

(
φ′p, φq

)]
− [1− δ (φp, φq)]

+
∑

(p, q) ∈ C
p 6= v, q = v

[
1− δ

(
φp, φ

′
q

)]
− [1− δ (φp, φq)]

+
∑

(p, q) ∈ C
p = v, q = v

[1− δ (φ′v, φv)]− [1− δ (φv, φv)]
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In the last equation, the first and last terms vanish. Therefore, we can express
variations by:

∆vJ [φ] = 2
∑

(p, q) ∈ C
p = v, q 6= v

[
1− δ

(
φ′p, φq

)]
− [1− δ (φp, φq)]

= 2
∑

q∈N(v)\{v}

[1− δ (φ′v, φq)]− [1− δ (φv, φq)]
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