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ABSTRACT
Region growing is one of the most popular image segmen-
tation methods. The algorithm for region growing is easily
understandable but criticized for its lack of theoretical back-
ground. In order to overcome this weakness, we propose to
describe region growing in a new framework using a vari-
ational approach that we called Variational Region Grow-
ing (VRG). Variational approach is commonly used in im-
age segmentation methods such as active contours or level
sets, but is rather original in the context of region growing. It
relies on an evolution equation derived from an energy mini-
mization, that drives the evolving region towards the targeted
solution. Here, the energy minimization and the VRG robust-
ness to the initial seeds location are performed on gray-level
and color images.

Index Terms— Segmentation, region growing, varia-
tional approach, region-based energy

1. INTRODUCTION

Since its introduction by Zucker [1], the region growing
method has become a popular algorithm for 2D and 3D seg-
mentation. In this approach, a homogeneous region is pre-
sumed to correspond to a semantic object. Starting from a
seed, manually or automatically located, the iterative process
of region growing extracts a region of interest by merging all
pixels satisfying an aggregation criterion and located in the
neighborhood of the region. At each step, candidate pixels
neighboring the evolving region, or already belonging to it,
are tested. The algorithm converges when no more pixels are
added to the evolving region during an iteration.

In classical region growing methods, aggregation crite-
rion can be categorized into two groups. In the first group,
the criterion governs the growth of a single region. This cri-
terion measures either a similarity between a candidate pixel
and another pixel or the homogeneity of the whole result-
ing segmented region [2]. Such a criterion requires the use
of an arbitrary threshold value to fix the minimum value of
homogeneity. This method is attractive due to its simplic-
ity, but the choice of the threshold requires further knowl-
edge about the grey-level distribution to avoid trial and er-
ror adjustment. In the second group, the criterion governs
a competitive growth between several regions. This kind of
region growing called seeded region growing was introduced
by Adams and Bischof [3] in 1994. At each iteration, the
most similar pixel compared to mean intensity of a region is
looked up in the set of all candidate pixels and merged. This

method is free from tuning parameters [4]. More elaborated
merging criteria based on statistics were also proposed [5, 6].

The originality of this work is to apply the region grow-
ing process to solve an energy minimization arising from
segmentation problems. Through a discrete variational ap-
proach, we formalize the iterative algorithm of region grow-
ing, and we set out a theoretical framework for the definition
of the aggregation criterion. Our Variational Region Grow-
ing (VRG) describes a generic framework which relies on
a region-based energy minimization. The major relevance
of this framework is its ability to deal with whatever kind
of aggregation criterion, provided that can be converted in a
minimization energy problem.

2. DEFINITIONS

Let us start by introducing some definitions and notations
further used in our framework.

2.1 Region representation
In our formalism, the evolving region is represented by a
characteristic function φx defined by:

φx = φ (x) =

{
1 i f x ∈Ωin
0 i f x ∈Ωout

(1)

where x is a Rd element of the image domain Ω, Ωin the
segmented region in Ω and Ωout the background, defined as
the absolute complement of Ωin: Ωout = Ω\Ωin. The initial
region (t = 0) is described by the characteristic function φ 0:

{x ∈Ω | φ (x, t = 0) = 1} (2)

2.2 Neighborhood definition
In a metric space Ω, the neighborhood of a given point u is
defined by the set of all points close to u according to the
euclidian distance. We define the ε-neighborhood of a point
u as the set:

Nε (u) = {v ∈Ω |‖v−u‖ ≤ ε} (3)

In the 2D-image domain, the well-known N4 and N8 neigh-
borhoods are obtained with respectively ε = 1 and ε =

√
2.

Let us note ∂+
ε the outer boundary of Ωin ⊂Ω defined as

follows:

∂
+
ε = {v ∈Ωout | ∃u ∈Ωin, v ∈ Nε (u)} (4)
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In the same way, let us note ∂−ε the inner boundary of Ωin
defined as follows:

∂
−
ε = {v ∈Ωin | ∃u ∈Ωout , v ∈ Nε (u)} (5)

We also note ∂±ε the union of the inner and outer boundaries.

3. VARIATIONAL REGION GROWING APPROACH

The aim of this paper is to describe the region growing seg-
mentation as an energy minimization process. We particu-
larly focus on variational models. Variational models, and
functional analysis in general, belong to mathematical theo-
ries closely related to physics such as propagation equations
or conservation laws. Variational models are linked to opti-
mization problems and are frequently used for solving image
segmentation such as active contours and level sets [7].

3.1 Variational approach in segmentation
In a variational approach, image segmentation can be formu-
lated by the following expression:

φ
∗ = argmin

φ
J (φ) (6)

where φ ∗ is an optimal solution of an energy minimization
process and leads to the best segmentation according to the
considered energy J(.). A way to compute the optimal solu-
tion is to define the variation of φ called ∆tφ by introducing
an artificial time-variable t and to estimate iteratively the en-
ergy variation ∆J (.) for a small variation of φ noted φ̃ :

∆tφ +F
(
φ ,∆J

(
φ̃
))

= 0 (7)

where F is a functional that governs the region evolution.
In our approach, this functional depends on a special

function c(φ) (explained below) and the energy variation
∆J(φ̃). Starting from φ 0, φ is updated at each time by solv-
ing iteratively equation (8), over the whole the domain Ω,
until a steady state solution is reached.

∆tφ − c(φ) .H
(
−∆J

(
φ̃
))

= 0 (8)

H is the one-dimensional Heaviside function defined as fol-
lows:

H (z) =
{

0 if z < 0
1 if z≥ 0 (9)

The Heaviside function activates the function c(φ) when the
estimated energy variation ∆J(φ̃) is negative, and inhibits it
otherwise. The function c(φ) is defined in order to induce
the switch of φ values, so it is equal to (1−2φ). For clear-
ness sake, c(φ) is represented in figure 1 in the case of a
mono-dimensional space Ω. More details are given in the
next subsection.

In our discrete framework, the continuous-time variable t
is replaced by a discrete-time variable n. Therefore, φ n rep-
resents the current values of φ . At the next iteration, φ n+1 the
update of φ n consists in determining the new values of φ for
each grid points x. Let us note φ n

x the value of φ n at point x.
Equation (8) is iteratively solved by numerical methods mak-
ing φ evolve jointly to the segmented region. The evolution
of the region function φ is given by the following equation:

φ
n+1 = φ

n + c(φ n) .H
(
−∆J

(
φ̃

n)) , (10)

Fig. 1. The characteristic function φ n (also called re-
gion function), the function c(φ n) and the cut-off function
cε (φ

n) are plotted with a solid line in the case of a mono-
dimensional domain Ω.

At a specific point x of Ω, it can be also written:

φ
n+1
x = φ

n
x+ c(φ n

x) .H
(
−∆J

(
φ̃x

n))
, (11)

where the sign of ∆J(φ̃x
n
) indicates whether the value φx has

to be switched or not.

3.2 Adaptation for region growing method
In this section, we focus on the VRG algorithm implemen-
tation. Previously, we defined ∆J(φ̃ n) for each point x of
Ω. In the particular case of region growing, the set of can-
didate points for the state switch is restricted to a neighbor-
hood around the boundary of the evolving region. The size of
neighborhood where the region can evolve, is parameterized
by ε value (see equation (3)). That leads us up to propose a
cut-off function cε (φ

n) defining a spatial bandwidth for the
candidates points by:

cε (φ
n
x) =

{
1−2φ n

x if x ∈ ∂±ε
0 otherwise (12)

where cε (φ
n
x) depends on ε-value as shown in figure 1. The

aim of cε is similar to the narrow band used in level sets.
Note that in most of region growing methods, only the outer
boundary ∂+

ε is considered for the evolution of the region.

3.3 Energy variation
VRG recovers an object of interest by means of a discrete
function φ that switches according to the minimization of an
energy J. In the literature, many region-based energies were
introduced into the variational framework. Jehan-Besson [8]
gives a general definition of a region-based energy computed
from a ”region-independent” descriptor kx as:

J (Ωin) =
∫

Ωin

kxdx (13)

In our framework, we express the previous energy by:

J (φ n) = ∑
x∈Ω

kx ·φ n
x (14)

Starting from this energy, we evaluate J
(
φ̃ n
)

the energy
that would result from the state switch of a candidate pixel
v. We define the assessed state switch φ̃ n

v of a pixel by:

1782



φ̃
n
v = 1−φ

n
v, (15)

thus,

φ̃
n
x = φ

n
x i f x 6= v. (16)

From equation (14), the energy of φ̃ n can be expressed as:

J
(
φ̃

n)= ∑
x∈Ω

kx · φ̃ n
x (17)

Using equations (15) and (16), we can also write:

J
(
φ̃

n)= kv · φ̃ n
v+ ∑

x 6=v,x∈Ω

kx ·φ n
x (18)

J
(
φ̃

n)= kv · (1−φ
n
v)− kv ·φ n

v+ kv ·φ n
v+ ∑

x6=v

kx ·φ n
x︸ ︷︷ ︸

J(φn)

(19)

The energy variation ∆J(φ̃ n) resulting from promoting a sin-
gle point at position v is obtained by identification and is
defined by:

∆J
(
φ̃

n
v

)
= (1−2φ

n
v) · kv (20)

Note that this variation of energy is defined whatever the
region-independent descriptor used.

4. APPLICATION

Here, we present our algorithm to solve energy minimization
through a region growing process. And then we apply it to
image segmentation using the probability distribution sepa-
ration energy introduced by Paragios [7].

4.1 Variational region growing algorithm
The outline of our algorithm is presented in few steps:
Step 1. Initialization. Construct the initial partition φ 0 (see

eq. (2)). This partition corresponds to the initial seeds.
Step 2. Compute the set ∂±ε of candidate points for the

switch state (inner and outer boundaries of Ωin).
Step 3. Evolution. Switch φ -value of each point v in ∂±ε , if

∆J(φ̃ n
v) the energy variation is negative.

Step 4. Repeat the step 2, until the energy variation remains
unchanged (i.e. no more points are switched).

4.2 Probability distribution separation energy
To illustrate our variational method, we use it to Paragios
image segmentation model [7]. We consider a more complex
energy that looks simple means and compares the full prob-
ability distributions of the foreground and background. We
show that its incorporation into our framework is simple.
Consider pin(Ix) and pout(Ix) be the two estimated probabil-
ity density functions at pixel x computed from the global
inner Ωin and the outer region Ωout of a partitioned im-
age Ix using Parzen window. Parzen window method is a
non-parametric kernel density estimation. This estimation is
asymptotically unbiased, uniformly consistent in probability,
and consistent in the mean-square sense.

(a) (b)

Fig. 2. Segmentations of the LEOPARD color image. (a)
Shows the initialization (white circle region); (b) shows con-
tour of segmentation using probability distribution separation
in our variational approach.

The kernel density estimator pin(Ix) of the interior region
image intensities (Ix ∈ Rd) at point x is given by:

pin (Ix)H =
1
|Ωin| ∑

i∈Ωin

KH (Ix− Ii) (21)

where |Ωin| is the cardinality of set Ωin, H is a d× d sym-
metric positive definite matrix called the bandwidth matrix,

KH (Ix) = |H|−1/2 K
(
H−1/2Ix

)
(22)

and K is a d-variate kernel function satisfying:∫
K (z)dz= 1 (23)

Conditions on the multivariate kernel K and bandwidth ma-
trix H to guarantee the asymptotic unbiasedness, the mean-
square consistency and the uniform consistency of the esti-
mator can be found in [9]. In the following of the paper,
we use the Gaussian kernel KG which satisfies the previous
conditions:

KG

(
H−1/2Ix

)
= (2π)−d/2 .exp

(
−1

2
IxTH−1Ix

)
(24)

Paragios et al. shows that the maximization of the poste-
rior probability is equivalent to the minimization of the cor-
responding [−log()] function. In our work, this energy is
defined by:

J (φ n) =−∑
x

log(pin (Ix)) .φx−∑
x

log(pout (Ix)) .(1−φx)

(25)
With equation 20, we obtain the energy variation of J (φx):

∆J
(
φ̃

n
v

)
= (1−2φ

n
v) · [log(pout (Iv))− log(pin (Iv))] (26)

where pin (Iv) and pout (Iv) are updated at each iteration.

5. EXPERIMENTS

In order to demonstrate the strengths and limitations of our
method, we performed several experiments. First, we com-
pare VRG with a classic region growing approach. We con-
tinue with a study of the effects of segmentation initializa-
tion. Finally, we examine the convergence properties of the
proposed method. For all experiments, the VRG parameters
are set to constant values: H = 2.25 I, (I is the identity ma-
trix), and ε = 1.
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5.1 Comparison with a classic region growing approach

In the previous section, we have described how to inte-
grate region-based energies in our variational region grow-
ing. Here, we demonstrate the improvements offered by our
algorithm. We propose to compare the variational region
growing with a classic region growing approach driven by
a homogeneity criterion. Lots of homogeneity criteria were
implemented in region growing. These can be classified as
local or global criteria depending on the spatial extent where
measurements are computed. Difference between grey lev-
els, statistic properties of the evolving region such as mean or
variance are well-known features used to assess homogeneity
criteria [2], [10]. The purpose of the following experiments
is to demonstrate that using energy minimization instead of
a simple homogeneity criterion can improve significantly the
region growing segmentation .
We compare VRG with a classic region growing algorithm
called Global Mean Region Growing (GMRG) cited in [10].
In GMRG, the candidate pixels are aggregated to the growing
region if their grey levels are included in a range specified by
the mean of the grey level distribution of the evolving region
and a tolerated variation specified by the standard deviation
of this distribution. This approach implicitly assumes that the
grey level distribution of the target region can be modeled by
a Normal law. The criterion adapted to the inside region Ωin
is expressed by the following equation:∣∣Ix−µΩin

∣∣≤ α ·σΩin (27)

where α is a tuning parameter.
In figure 3, we compare the performance of VRG guided by
Paragios region-based energy described in section 4.2 with
GMRG driven by the previous homogeneity criterion. No-
tice that the classic approach only extracts the brightest parts
of the image while our approach converges to meaningful
object boundaries. For both images, α value is manually ad-
justed in order to get the best results. In the MUSHROOM
image [11], the main object and the inhomogeneous back-
ground are associated with multimodal distributions of their
color components (R,G,B). Lighting variations and complex
textures induce both smooth and quick changes onto these
components. In the BRAIN image, the VRG is initialized
from two small ellipses pointing out a single initial region.
Starting from this initial region (chosen to be inside the ob-
ject), the variational region growing evolves iteratively by
testing candidate points specified by ∂+

ε until convergence.

5.2 Sensitivity to Initialization

A major advantage of VRG is a lower sensitivity to initial-
ization. This characteristic comes from the use of global
region-based functional. Indeed, global region-based energy
analyses the whole image, whereas classic methods based on
homogeneity criterion only use features of the evolving re-
gion and are consequently more sensitive to initialization.
The experiment in figure 4 shows multimodal image in which
the leopard was segmented with several different initializa-
tions. In this experiment, the analysis of density distribution
of regions (inside and outside region) allows the segmenta-
tion technique to accurately separate this structure from the
rest of the image. With various initialization, our variational
approach converges to the same segmentation.

(a) (b) α = 1.9 (c)

(d) (e) α = 2.06 (f)

Fig. 3. Segmentations of a gray-level image (BRAIN) and a
color image (MUSHROOM). (a, d) show the same initializa-
tion for VRG and GMRG; (b, e) and (c, f) show contours of
segmentation using GMRG and VRG, respectively.

5.3 Convergence and properties

Finally, we examine the convergence and properties of our
variational region growing. Figure 5 displays the results for
different initial conditions. The white contours delineate seg-
mented regions. In figure 5(c), the same result is obtained
from two different initialization given by figures 5(a), 5(b).

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Segmentations of the LEOPARD color image. (a, c,
e) show different initializations; (b, d, f) show corresponding
segmentations using our variational approach.
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(a) Initial seeds 1 (b) Initial seeds 2 (c) Results

(d) Initial seeds 3 (e) Results

Fig. 5. Three different initial regions (seeds) (a,b,d) and the
corresponding segmentation results (c,e).

Fig. 6. Three different initial conditions and the correspond-
ing energy versus iterations.

Thus, different initial seeds, provided that they were inside
the same region of interest, converge to the same result. In
the same way, figure 5(e) displays the segmentation result
obtained with seeds of figure 5(d). Thanks to the use of ∂−ε ,
some pixels belonging first to the evolving region, can be re-
jected during the next iterations, enabling the segmentation
of non-connected objects. These examples illustrate the abil-
ity of VRG to converge towards the desired object, while en-
abling free changes of topology during the growing.
In figure 6, we plot the energy values versus iterations for
each initialization. These evolution curves point out the en-
ergy minimization which occurs during the iterative process
of the region growing. In the three cases, our variational
method detects a local minimum of energy. This intended
characteristic comes from the spatial restriction imposed by
the algorithm to the evolution of the region at each iteration.

6. CONCLUSION

In this work, we propose an original framework based on
variational region growing (VRG) for image segmentation.
Describing region growing segmentation approaches with
the proposed variational framework, we show that region
growing algorithms lead to an energy minimization. Our
framework is based on the discrete region-based energy vari-
ation and allows one to readily take into account energy in
the segmentation. An evolution equation of the region is de-
termined from a functional that depends on the variation of

the energy and a special cut-off function allowing both the
selection of the candidate pixels and the state switch of these
pixels during the segmentation process. We choose as cri-
terion the maximization of the posterior probability, and we
compare our approach with a classical region growing crite-
ria. VRG gives more accurate results than classical approach
on both gray-level and color images. Finally, we assess the
influence of the initial seeds on the segmented results and on
the minimization of the energy. We show that the resulting
segmentation is robust to the position of the initial seeds for
a given region as the seed initialization lead the same mini-
mum of energy and then to the same segmented region.
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