

Thomas GrenierThomas Grenier

Computer Science 1

Thomas Grenier
M.Sc IMESI

Summary

I. Introduction
II. First example : sorting algorithms
III. Bases of C++ syntax
IV. Second example: sorting with linked list

IMESI - CS1 - Thomas Grenier 2

IV. Second example: sorting with linked list
V. C++ Classes and UML
VI. Useful data structures
VII. Exercises/project

Computer Science

Computer Science 1&2Computer Science 1&2
Modules overview

Introduction

� Why computer science modules?
� Fundamentals of embedded systems and digital � Fundamentals of embedded systems and digital

processing
� Refresher courses!
� 1st semester:

� C/C++ and object programming (UML)
� Algorithms for discrete mathematics & operational

research (and many other things!)

IMESI - CS1 - Thomas Grenier 2

research (and many other things!)

� 2nd semester:
� Real time programming
� Network : TCP/IP, client/server application, …

Introduction
� Who ?

� For CS1: coordinator J. Fondrevelle
Thomas Grenier, Assistant Professor, Ph.D� Thomas Grenier, Assistant Professor, Ph.D

� Lab: Creatis
� Teaching: INSA, Génie Electrique (Electrical Engineering)

� Julien Fondrevelle, Assistant Professor, Ph.D
� Lab: LIESP-Ampère
� Teaching: INSA, Génie Industriel

� For CS2: coordinator T. Glatard
� Arnaud Lelevé, Assistant Professor, Ph.D

IMESI - CS1 - Thomas Grenier 3

� Arnaud Lelevé, Assistant Professor, Ph.D
� Lab: Ampère
� Teaching : INSA Génie Industriel

� Tristan Glatard, CNRS CR, Ph.D
� Lab: Creatis
� Research area: Grid of computers

Organization

� CS1 : 3 ECTS
� Lectures : 30 hours� Lectures : 30 hours
� Project : 5 hours advising plus 4-week individual

work
� Written examination: 2 hours

� CS2: 2 ECTS (2nd semester…)

IMESI - CS1 - Thomas Grenier 4

� CS2: 2 ECTS (2nd semester…)
�Lectures: 20 hours
�Project: ~5 hours
�Written examination: 2 hour

Schedule CS1

� Weeks 39-43: Algorithms and C++� Weeks 39-43: Algorithms and C++
� T. Grenier

� Weeks 43-45: Discrete mathematics and
operation research
� J. Fondrevelle

� Weeks 43-48: Project

IMESI - CS1 - Thomas Grenier 5

� Weeks 43-48: Project
� J. Fondrevelle

� Week 04: exam
� J. Fondrevelle

Questions ?

IMESI - CS1 - Thomas Grenier 6

Computer Science 1

IntroductionIntroduction

M.Sc IMESI

Summary

I. Introduction
� Algorithms, complexity and programming� Algorithms, complexity and programming

II. First example : sorting algorithms
III. Bases of C++ syntax
IV. Second example: sorting with linked list
V. C++ Classes and UML

IMESI - CS1 - Thomas Grenier 2

VI. Useful data structures
VII. Exercises/project

� Algorithms design and C++

Introduction

1. Why studying algorithms ?
a) Definitions and interests of algorithms designa) Definitions and interests of algorithms design
b) Pseudocode
c) Efficiency
d) Correctness

2. Why learning C++ ?

IMESI - CS1 - Thomas Grenier 3

2. Why learning C++ ?
a) Languages history and future
b) Object programming language
c) C++

1.Why studying algorithms ?

a) Definitions and interests of algorithms design
b) Pseudocode
c) Efficiency
d) Correctness

IMESI - CS1 - Thomas Grenier 4

d) Correctness

1.a – Definitions and interests

� Algorithm
Any well-defined computational procedure that Any well-defined computational procedure that
takes some value, or set of values, as input and
produces some value, or set of values, as output

� Tool for solving well-specified computational
problem

IMESI - CS1 - Thomas Grenier 5

problem

1.a – Definitions and interests

� Example
� Sort a sequence of numbers into non-decreasing order� Sort a sequence of numbers into non-decreasing order

� Input: sequence of n numbers {a1, a2, … an}
� Output: permutation (reordering) {a’1, a’2, … a’n} of the input

sequence such as a’1 ≤ a’2 ≤ … ≤ a’n.

� Exercise:
Give an algorithm that computes the average value of n

IMESI - CS1 - Thomas Grenier 6

� Give an algorithm that computes the average value of n
given numbers.

� Give an algorithm that computes the median value of n
given numbers.

1.a – Definitions and interests

� Conclusions of the exercise
�How to specify an algorithm?�How to specify an algorithm?
� Is my algorithm correct ?
� Is my algorithm better than another one ?
�What kind of problems are solved by algorithms?
�By the way…is it really interesting to study

algorithms?

IMESI - CS1 - Thomas Grenier 7

algorithms?
� Computers are faster and faster!
� Memory is cheaper and cheaper!

� Specifying an algorithm
�Describe it in French or English or …

How to specify an algorithms?
1.a – Definition and interests

�Describe it in French or English or …
�As computer program
�As hardware design
� …
�The only requirement is that the specification must provide

a precise description of the computational procedure to be
followed

IMESI - CS1 - Thomas Grenier 8

followed
�But… How to convey the essence of the algorithm

� Concisely?
� Without issues of software engineering?

� We will use a dedicated language : pseudocode

� Correctness of an algorithm - definitions
�An algorithm is said correct if, for every input

Is my algorithm correct ?
1.a – Definitions and interests

�An algorithm is said correct if, for every input
instance, it halts with the correct output

�A correct algorithm solves the given
computational problem

� How to demonstrate an algorithm is correct?
We often use a loop invariant (similar to

IMESI - CS1 - Thomas Grenier 9

�We often use a loop invariant (similar to
mathematical induction)

�Sometimes difficult to use… (strange loop,
recurrence)

1.a – Definitions and interests

� Algorithm analysis
� Meaning: “predicting the resources that the algorithm

Is my algorithm better than another one ?

� Meaning: “predicting the resources that the algorithm
requires”

� Memory, communication bandwidth, computational time, …

� By analyzing several algorithms for a problem, a most
efficient one can be easily identified

� We generally focus on the computational time
� The running time of an algorithm depends on the input

IMESI - CS1 - Thomas Grenier 10

� The running time of an algorithm depends on the input
and the size of the input !

� Algorithms efficiency
� Worst case, best case, average case analysis
� Order of growth of the running time function of the input size

1.a – Definitions and interests

� Problems solved by algorithms
� All ? theoretically right (but practically wrong cause of bounded

What kind of problems are solved by algorithms?

� All ? theoretically right (but practically wrong cause of bounded
resources…)

� Use of approximate/convergent algorithms and “incorrect” (with
controlled error rate) algorithms

� Challenging problems are linked to
� Optimization (minimization of a cost function f(x)): industrial,

logistic, mathematical problems

IMESI - CS1 - Thomas Grenier 11

logistic, mathematical problems
� Manipulation of large numbers (related to input size):

DNA, chess, cosmology, cryptography, web search
engine…

� Real time

1.a – Definitions and interests
� Guess in few years… Computers were infinitely fast

and computer memory were free?
� Computational time is null, no space memory limit…

Is it really interesting to study algorithms?

� Computational time is null, no space memory limit…
� All right but:

� Does your process stop?
� With the correct output ?

� You have to demonstrate it
� In real world …

� Computer are fast but not infinitely fast

IMESI - CS1 - Thomas Grenier 12

� Computer are fast but not infinitely fast
� Memory is cheap but not free
� Energy?
� Cost?
� The most efficient algorithms is the best compromise

1.b – Pseudocode

� Pseudocode to specify an algorithm
�Example: compute the average of an array

How to specify an algorithm?

�Example: compute the average of an array

IMESI - CS1 - Thomas Grenier 13

� Indentation
� Comment

� Pseudocode conventions
�Variables

1.b – Pseudocode

�Variables
� Assignment is : �
� Local to the given procedure
� Have the right type (described using mathematical notation)
� Array elements are accessed by specifying the array name

followed by the index in brackets. The first array element is at
index 1.

� Compound data are typically organized into objects , which

IMESI - CS1 - Thomas Grenier 14

� Compound data are typically organized into objects , which
are composed of attributes or fields . Objects and arrays are
treated as pointer.

�Examples:
A[1] � A[2] * A[1]
size � length[A]

� Pseudocode conventions
�Tests: if -then , if -then -else

1.b – Pseudocode

�Tests: if -then , if -then -else
� Indentation indicates block structure!

�Examples

IMESI - CS1 - Thomas Grenier 15

� Pseudocode conventions
�Loop : for , while , repeat -until (do-while)

1.b – Pseudocode

�Loop : for , while , repeat -until (do-while)
� Indentation indicates block structure!

�Examples

IMESI - CS1 - Thomas Grenier 16

� Pseudocode conventions
�Procedure parameters are passed by value!

1.b – Pseudocode

�Procedure parameters are passed by value!
� Modification of a value parameter in procedure is not seen by

the calling procedure
� Modification of an object field (or an array element) is seen by

the calling procedure (object are passed using pointer…)

�Example

IMESI - CS1 - Thomas Grenier 17

� Pseudocode conventions
�short circuiting of Boolean operators (‘and’, ‘or’ …)

1.b – Pseudocode

�short circuiting of Boolean operators (‘and’, ‘or’ …)
� Evaluate the expression “x and y”: first evaluate x, and then

evaluate y to determine the whole expression only if x is
evaluated to True.

� Evaluate the expression “x or y”: first evaluate x, and then
evaluate y only if x is evaluated to False.

�Examples

IMESI - CS1 - Thomas Grenier 18

� Example: 2 algorithms for a same problem
� i.e. insertion and merge sort
� Computational time of these algorithms depends on the input size n

1.c – Efficiency

� Computational time of these algorithms depends on the input size n
� The first algorithm (insertion sort) takes time roughly equal to c1.n2 to sort

n numbers
� The second algorithm (merge sort) takes time roughly equal to c2.n.log2(n)

to sort n numbers
� Insertion sort runs on a fast computer A (1 billion instructions per

second) and is coded by the world’s craftiest programmer. Resulting
code requires 2n2 instructions to sort n numbers
Merge sort runs on a slower computer B (ten million instructions per

IMESI - CS1 - Thomas Grenier 19

� Merge sort runs on a slower computer B (ten million instructions per
second) and is coded by an average programmer using high level
language with inefficient compiler. Resulting code requires 50n.log(n)
instructions to sort n numbers

� Give the computational times of each algorithm if n = {1 000, 38 000,1
000 000}

� Example: 2 algorithms for a same problem

1.c – Efficiency

�Computer A :

�Computer B :

second/nsinstructio10

nsinstructio2
9

2n

second/nsinstructio10

nsinstructio)(log50
6

2 nn

IMESI - CS1 - Thomas Grenier 20

n 1000 38000 1 000 000 10 000 000

A (in seconds) 0.002 2.888 2000 200000

B (in seconds) 0.050 2.890 99.65 1163

1.c – Efficiency

� Find n=38000 is difficult!
2

2)(log.502 nnn =
6

2
9 10

)(log.50

10

2 nnn =

)(log..10.25 2
32 nnn =

)(log.10.25 2
3 nn =

nn .
10.25

)2log(
)log(

3
=

Lambert’s transcendental equation

βnvn .)log(= is
()





 −−= β vW

n
.

exp With W the Lambert function

∑
∞

=

−−=
1

1

.
!

)(
)(

n

n
n

x
n

n
xW

IMESI - CS1 - Thomas Grenier 21

βnvn .)log(= is
()








 −−=
β
β vW

n
.

exp With W the Lambert function

25. (1/ 25)W− −

� Example: 2 algorithms for a same problem

1.c – Efficiency

8

10

12

14

16

18

20

Computer A

Computer B

C
om

pu
ta

tio
na

l t
im

e
in

 s
ec

on
ds

IMESI - CS1 - Thomas Grenier 22

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

2

4

6

C
om

pu
ta

tio
na

l t
im

e
in

 s
ec

on
ds

Input size (n=10^x numbers)

� Definition : Running time of an algorithm T(n)
� On a particular input, that’s the number of executed

1.c – Efficiency

� On a particular input, that’s the number of executed
primitive operations (or ‘steps’)

� step should be defined as machine-independent as possible
� Particular input can be: best case, worst case or average case

� For pseudocode
� a constant amount of time is required to execute each line of

pseudocode:

IMESI - CS1 - Thomas Grenier 23

� The execution of the ith line takes time ci

� Running time of the algorithm is given by:

∑
=

=
linesofnumber

i
i executedisilinetimesofnumbercnT

1

).()(

1.c – Efficiency

� Pseudocode example
cost times

0

c2

c3

0
c5

c6

1

1

n

n-1

n-1

1

IMESI - CS1 - Thomas Grenier 24

c6 1

6532).1(.)(ccncncnT +−++=

65253)(cccccn +−++=

� Order of growth
�To simplify computational time analysis:

1.c – Efficiency

�To simplify computational time analysis:
� All ci are equal to a constant time

� Consider only the leading term of formula, since the
lower-order terms are relatively insignificant for large n

� Asymptotic notation

bnanT +=→ .)(

nanT .)(=→

IMESI - CS1 - Thomas Grenier 25

� Asymptotic notation
�We asymptotically bound the function T(n)

� Asymptotic upper bound: O-notation
� Asymptotic upper and lower bounds: Θ-notation

)()(nnT Θ=→

)()(nOnT =→

Which is stronger than O(n)

� Two classical asymptotic notations

1.c – Efficiency

)(nO)(nΘ“big-oh” “Theta”)(nO)(nΘ“big-oh” “Theta”

IMESI - CS1 - Thomas Grenier 26

()() () () (){ }021021 ,00,,:)(nnngcnfngcnccnfng ≥∀≤≤≤>∃=Θ

()() () (){ }00 ,00,:)(nnncgnfncnfngO ≥∀≤≤>∃=

� Exercise
�Find the best-case and the worst-case running

1.c – Efficiency

�Find the best-case and the worst-case running
time of Insertion-Sort

�Give the order of growth
� Let tj be the number of times
the ‘while’ instruction is executed
at iteration j

IMESI - CS1 - Thomas Grenier 27

� Exercise solution

1.c – Efficiency

IMESI - CS1 - Thomas Grenier 28

� Solution

1.c – Efficiency

Best case running time: A is already sorted � tj =1 for j=2..n

Worst case running time: A is in reverse sorted order � tj =j for j=2..n

IMESI - CS1 - Thomas Grenier 29

� We often use Loop invariant to understand
why an algorithm gives the correct answer

1.d – Correctness

why an algorithm gives the correct answer
� In computer science, a predicate that, if true, will

remain true throughout a specific sequence of
operations, is called (an) invariant to that
sequence. (Wikipedia)

� Proof of correctness is trivial… or very hard

IMESI - CS1 - Thomas Grenier 30

� Proof of correctness is trivial… or very hard
�Average proof of correctness is trivial
� Insertion-Sort proof of correctness is also trivial!

� To use loop invariant to prove correctness,
we must show three things about it:

1.d – Correctness

we must show three things about it:
� Initialization : It is true prior the first iteration of

the loop
�Maintenance : If it is true before an iteration of the

loop, it remains true before the next iteration
�Termination : When the loop terminates, the

IMESI - CS1 - Thomas Grenier 31

�Termination : When the loop terminates, the
invariant gives us a useful property that helps
show that the algorithm is correct

� The invariant must be correctly defined

� Example Loop invariant for Insertion-Sort
� Invariant : the subarray A[1..j-1] is sorted

1.d – Correctness

� Initialization : before the first iteration j=2.
� The subarray A[1] is sorted!

� Maintenance :
� Problem of the inner while loop

� use another loop invariant,
� or simply note that the while loop moves A[j-1], A[j-2],…by one

position to the right until proper position for key is found

IMESI - CS1 - Thomas Grenier 32

position to the right until proper position for key is found

� Termination :
� The outer ‘for’ loop ends when j>n, this occur when j=n+1
� Therefore n= j-1
� Thus the subarray A[1..j-1] consists of the elements originally in

A[1..n] but in sorted order

2.Why studying C++ ?

a) Languages history and future
b) Object programming language
c) C++ ?

IMESI - CS1 - Thomas Grenier 33

2.a – Languages history and future

� When was the first program written ?

IMESI - CS1 - Thomas Grenier 34

Ada Lovelace
1815-1852

2.a – Languages history and future

~1843 1945
52

59
64

67
72

7554 95 200585
83

1st program
(Ada Lovelace)

…

Plankalkül
(Zuse)

SmallTalk

C

Cobol

Java

C#
Microsoft

IMESI - CS1 - Thomas Grenier 35

(Zuse)

A-0
(Grace Hopper)

BASIC
(Kemeny & Kurtz)

Simula67

Dennis Ritchie

C++
Bjarne StroustrupAltair BASIC

(B. Gates & P. Allen)

Java
Sun Microsystems

Fortran

2.a – Languages history and future

~1843 1945
52

59
64

67
72

7554 95 200585
83

1st program
(Ada Lovelace)

…

Plankalkül
(Zuse)

SmallTalk

C
Dennis Ritchie

Cobol

java

C#
Microsoft

First object oriented languages

OOP effervescence OOP golden age …

IMESI - CS1 - Thomas Grenier 36

(Zuse)

A-0
(Grace Hopper)

BASIC
(Kemeny & Kurtz)

Simula67

Dennis Ritchie

C++
Bjarne StroustrupAltair BASIC

(B. Gates & P. Allen)

java
Sun Microsystems

Fortran

OOP: oriented-object programming

� What kind of language for the future?
� Based on object-oriented language or on new paradigms

2.a – Languages history and future

� Based on object-oriented language or on new paradigms
� Very high level language

� Hardware abstraction (like java)
� Data type abstraction (cf. python)
� Full object communication, reflection (ie. objectiveC)
� Intelligent operators (matlab)

� Visual (3D) programming language

IMESI - CS1 - Thomas Grenier 37

� Visual (3D) programming language
� Link objects and/or functions together (Access, Simulink)
� No syntax language for algorithms (LabView)

� The most famous are C++ and java

� Now new standards of each language include

2.b – Object-oriented languages

� Now new standards of each language include
object oriented capabilities
�Cobol, Basic, matlab, fortran, Perl , PHP…

� In real-world
�OOP can be used to translate from real-world

IMESI - CS1 - Thomas Grenier 38

�OOP can be used to translate from real-world
phenomena to program elements (and vice versa)

� Specify OO Program � Modeling
�UML: Unified Modeling Language

� Fundamental paradigms (top 3)
�Encapsulation

2.b – Object oriented languages

�Encapsulation
� fields and methods are merged into class
���� Object (or instance) is a pattern (exemplar) of class

� Inheritance
� Subclasses are more specialized versions of a class,

which inherit attributes and behaviors from their parent
classes, and can introduce their own fields and

IMESI - CS1 - Thomas Grenier 39

classes, and can introduce their own fields and
methods

�Polymorphism
� Polymorphism allows the programmer to treat derived

class members just like their parent class' members

� Characteristics of C++
�Combination of both high and low level language

2.c – C++

�Combination of both high and low level language
features

�Statically typed
�Object oriented language
�Procedural programming
�Data abstraction (or at least this possibility can be

IMESI - CS1 - Thomas Grenier 40

�Data abstraction (or at least this possibility can be
offered…)

�Generic programming (template)
�Operators overloading
�…

New standard is C++0x … promising for the future

� About the C++ syntax
�Similar to C (useful for low level programming)

2.c – C++

�Similar to C (useful for low level programming)
�Similar to many languages (java, C#, Pascal,

matlab)
�Not so far from pseudocode ☺

� The first array element is at index 0 …

IMESI - CS1 - Thomas Grenier 41

Computer Science 1

Sorting ProblemsSorting Problems

M.Sc IMESI

Summary

I. Introduction
II. First example : sorting algorithmsII. First example : sorting algorithms
III. Bases of C++ syntax
IV. Second example: sorting with linked list
V. C++ Classes and UML
VI. Useful data structures

IMESI - CS1 - Thomas Grenier 2

VI. Useful data structures
VII. Exercises/project

� Algorithms design and C++

Sorting algorithms

� Definition of the sorting problem
�Sort a sequence of numbers into non-decreasing �Sort a sequence of numbers into non-decreasing

order
� Input: sequence of n numbers {a1, a2, … an}
� Output: permutation (reordering) {a’1, a’2, … a’n} of the

input sequence such as a’1 ≤ a’2 ≤ … ≤ a’n.

�The input sequence is usually a n-element array
�Numbers to be sorted are rarely isolated values

IMESI - CS1 - Thomas Grenier 3

�Numbers to be sorted are rarely isolated values
� Part of data collection called a record
� Each record contains a key, which is the value to be

sorted
� The remainder of the record consists of satellite data

Sorting algorithms

� Why sorting?
�Many computer scientists consider sorting to be �Many computer scientists consider sorting to be

the most fundamental problem in the study of
algorithms
� Easy to understand
� Inherent in many applications
� Used as subroutine

� (graphical layered objects render, …)

IMESI - CS1 - Thomas Grenier 4

� (graphical layered objects render, …)

� There is a wide variety of sorting algorithms
� Large set of techniques are used (memory, data structure,

recurrence)
� Application of correctness and efficiency demonstrations

List of sorting algorithms

� More than 20 good sorting algorithms
� Wikipedia � list of sorting algorithm� Wikipedia � list of sorting algorithm

� Popular sorting algorithms
�Bubble-Sort
� Insertion-Sort, Selection-Sort
�Shell-Sort

IMESI - CS1 - Thomas Grenier 5

�Merge-Sort, Quick-Sort
�Heapsort
�Counting-Sort, BucketSort,

IntroSort

Bubble-Sort algorithm

� Method
� The algorithm works as follows:� The algorithm works as follows:

� The algorithm starts at the beginning of the data set.
� It compares the first two elements, and if the first one is greater

than the second one, it swaps them.
� It continues doing this for each pair of adjacent elements to the

end of the data set.
� And then it starts again with the first two elements, repeating until

no swaps have occurred on the last pass.

IMESI - CS1 - Thomas Grenier 6

no swaps have occurred on the last pass.

� Write the Bubble-Sort algorithm
� Show the correctness of the Bubble-Sort algorithm
� Give the time complexity (worst and best case)

Bubble-Sort algorithm, animation

IMESI - CS1 - Thomas Grenier 7

Bubble-Sort algorithm While

�Correctness :
� the for inner loop improve the sorting sequence of A

�The jth highest value of A moves to jth index at the jth execution of this for loop
�The process ends when no permutation occurs :

IMESI - CS1 - Thomas Grenier 8

�The process ends when no permutation occurs :
�each A[i] is less or equal than A[i+1]

� Best case: already sorted array

�Worst case: invert sorted array
�Last element has to move to the first index

)()(nOnT =

)()(2nOnT =

� Memory: (defined later))1()(OnM =

Bubble-Sort algorithm, For

� Another version of Bubblesort

� Give the time complexity (worst and best case)

IMESI - CS1 - Thomas Grenier 9

� Give the time complexity (worst and best case)
� Prove the correctness of the Bubblesort algorithm

Bubble-Sort algorithm, For

IMESI - CS1 - Thomas Grenier 10

Insertion-Sort

IMESI - CS1 - Thomas Grenier 11

)()(2nOnT =

)1()(OnM =
� Time complexity

"Memory" denotes the amount of auxiliary storage needed beyond that used by the array itself

� Memory

Insertion-Sort

� How this algorithm works

IMESI - CS1 - Thomas Grenier 12

Insertion-Sort, animation

IMESI - CS1 - Thomas Grenier 13

Selection-Sort algorithm

� Method
�The algorithm works as follows:�The algorithm works as follows:

� Find the minimum value in the array
� Swap it with the value in the first position
� Repeat the steps above for remainder of the array

(starting at the next position)

�Write the Selection-Sort algorithm

IMESI - CS1 - Thomas Grenier 14

�Write the Selection-Sort algorithm
�Give the time and memory complexities of this

algorithm

Selection-Sort algorithm, animation

IMESI - CS1 - Thomas Grenier 15

Selection-Sort algorithm

IMESI - CS1 - Thomas Grenier 16

Not-In-Place Selection-Sort algorithm

� Give a sorting algorithm using 2 different
arrays based on Selection-Sort algorithmarrays based on Selection-Sort algorithm

� Give the time complexity
� Give the memory complexity
� Compare these values to values of the In-

place version

IMESI - CS1 - Thomas Grenier 17

place version

Merge-Sort algorithm, recursive

� Recursive algorithms
�To solve a given problem, they call themselves �To solve a given problem, they call themselves

recursively one or more times to deal with closely
related subproblems

�These algorithms typically follow a Divide and
conquer approach
� Divide the problem into a number of subproblems

Conquer the subproblems by solving them recursively.

IMESI - CS1 - Thomas Grenier 18

� Conquer the subproblems by solving them recursively.
If the subproblem sizes are small enough, just solve the
subproblems in a straightforward manner

� Combine the solutions of the subproblems into the
solution of the original problem

Merge-Sort algorithm, recursive

� For Merge-Sort
�Divide the n-element sequence to be sorted into �Divide the n-element sequence to be sorted into

two subsequences of n/2 elements
�Conquer : Sort the two subsequences recursively

using Merge-Sort
�Combine : Merge the two sorted subsequences to

produce the sorted answer

IMESI - CS1 - Thomas Grenier 19

produce the sorted answer
�Write the Merge(A,p,q,r) algorithm which merges

two sorted sequences (A[p..q] and A[q+1..r]).

Merge-Sort algorithm, animation

IMESI - CS1 - Thomas Grenier 20

Merge-Sort algorithm, recursive

� Write the Merge(A,p,q,r) algorithm which
merges two sorted subarrays (A[p..q] and merges two sorted subarrays (A[p..q] and
A[q+1..r]),and then forms a single sorted
subarray that replaces the current subarray
(A[p..r])
�Hints : create 2 subarrays

IMESI - CS1 - Thomas Grenier 21

IMESI - CS1 - Thomas Grenier 22

…

Merge-Sort algorithm, recursive

� Write the Merge-Sort(A,p,r) algorithm which
sort recursively the array A[p..r]sort recursively the array A[p..r]
�If p ≥ r the subarray contains at most one element

and then it is already sorted
�Otherwise, the divide step computes an index q

that partition A[p..r] into 2 subarrays
�A[p..q] containing elements  2/n

IMESI - CS1 - Thomas Grenier 23

�A[p..q] containing elements

�A[q+1..r] containing elements  2/n

 2/n

Merge-Sort algorithm, recursive

� Write the Merge-Sort(A,p,r) algorithm which
recursively sort the array A[p..r]recursively sort the array A[p..r]

IMESI - CS1 - Thomas Grenier 24

Merge-Sort algorithm, recursive

� Running time analysis
� Intuitively � Intuitively

� Merge procedure takes O(n)
� Merge-Sort procedure calls Merge procedure log2(n) times

� Merge-Sort algorithms running time is O(n.log2(n))

�Master theorem approach

 ≤Θ if)1(cn
Straightforward solution

IMESI - CS1 - Thomas Grenier 25





++
≤Θ

=
otherwise)()()/(

if)1(
)(

nDnCbnaT

cn
nT

Combine time

Divide time
Number of subproblems

Subproblems depending value

Merge-Sort algorithm, recursive

� Master theorem
 ≤Θ

=
if)1(cn





++
≤Θ

=
otherwise)()()/(

if)1(
)(

nDnCbnaT

cn
nT

IMESI - CS1 - Thomas Grenier 26

Merge-Sort algorithm, recursive

� Master theorem applied to Merge-Sort
 =Θ

=
1if)1(n





>Θ+Θ+
=Θ

=
1 if)1()()2/(2

1if)1(
)(

nnnT

n
nT





>+
=

=
1 if.)2/(2

1if
)(

nncnT

nc
nT

))(log()(.)()()2(log2 nnnTncnn Θ=⇒=Θ=Θ

thus

then

IMESI - CS1 - Thomas Grenier 27

The constant c represents the time required to solve problems of size 1 as
well as the time per array element of the divide and combine steps

))(log()(.)()(2
)2(log2 nnnTncnn Θ=⇒=Θ=Θthen

Merge-Sort algorithm, recursive

� Memory needed by the Merge-Sort algorithm?
�The A array (normal…)�The A array (normal…)
�At the last step the summed size of subarrays is n
� M(n)=O(n)

IMESI - CS1 - Thomas Grenier 28

Quicksort
� Method

� Quicksort sorts by using a divide and conquer strategy to
divide a array into two sub-arraysdivide a array into two sub-arrays

� The steps are:
� Pick an element, called a pivot, from the array
� Reorder the array so that all elements which are smaller than the

pivot come before the pivot and so that all elements greater than
the pivot come after it (equal values can go whatever the way).
After this partitioning, the pivot is in its final position. This is called
the partition operation.

IMESI - CS1 - Thomas Grenier 29

the partition operation.
� Recursively sort the sub-array of smaller elements and the sub-list

of greater elements

� The base cases of the recursion are either array of size
zero or of size one, which are always sorted

Quicksort, animation

IMESI - CS1 - Thomas Grenier 30

Quicksort

� Write the quicksort algorithm
� Compare time complexity of quicksort with � Compare time complexity of quicksort with

merge-sort
� Compare memory used by quicksort to

memory used by merge-sort

IMESI - CS1 - Thomas Grenier 31

Quicksort algorithm pivot

IMESI - CS1 - Thomas Grenier 32

Partition procedure

Sorting in O(n)

� Game…
�Students vs. teacher�Students vs. teacher

IMESI - CS1 - Thomas Grenier 33

Computer Science 1

Bases of C++ SyntaxBases of C++ Syntax

M.Sc IMESI

Summary

I. Introduction
II. First example : sorting algorithmsII. First example : sorting algorithms
III. Bases of C++ syntax
IV. Second example: sorting with linked list
V. C++ Classes and UML
VI. Useful data structures

IMESI - CS1 - Thomas Grenier 2

VI. Useful data structures
VII. Exercises/project

Bases of C++ syntax

1. C/C++ Syntax
2. Complete source2. Complete source

� main function
� Includes
� Preprocessor directives
� File association (.cpp and .h)

3. From source code to executable

IMESI - CS1 - Thomas Grenier 3

3. From source code to executable
� Compilation and Linkage
� Debugging

4. Exercises

1- C/C++ Syntax overview

� Comment
� // only one line of comments� // only one line of comments
� /* … more than one line of comments */

� Instruction delimiting
�Each instruction ends by a semicolon ‘;’
�{ …}: the two braces delimit a block of instructions

IMESI - CS1 - Thomas Grenier 4

�{ …}: the two braces delimit a block of instructions

1- C/C++ Syntax overview

� Data Type (standard)

IMESI - CS1 - Thomas Grenier 5

1- C/C++ Syntax overview
� Variable declaration and initialization

� Normal variable
DataType VariableName [, Var2] ;

Optional !

DataType VariableName [, Var2] ;
DataType VariableName(construction parameters);
DataType VariableName = … ;

� Pointer
DataType* VariableName;
DataType* VariableName = …;

� Reference (& : ampersand)
DataType &VariableName = Variable;

� Static array (not dynamic)

IMESI - CS1 - Thomas Grenier 6

� Static array (not dynamic)
DataType VariableName[Number of elements];
DataType VariableName[] = { list of elements, comma separated};

� Dynamic array
DataType* VariableName= new DataType[Number of elements];
… // instructions
delete[] VariableName; // memory free

1- C/C++ Syntax overview

� Operators
�Many operators (cf. next table)�Many operators (cf. next table)

� arithmetic, logical, access, …

�17 levels of priority
� First operator with the highest priority are executed

Associative property

IMESI - CS1 - Thomas Grenier 7

�Associative property
� How to execute to operator with the same priority

‘*’ and ‘/’ have the same priority level (13)

IMESI - CS1 - Thomas Grenier 8

IMESI - CS1 - Thomas Grenier 9

1- C/C++ Syntax overview

� Examples
�Playing with variables and pointers�Playing with variables and pointers

�Mathematical operators

IMESI - CS1 - Thomas Grenier 10

�Logical operators

1- C/C++ Syntax overview

� Condition
�Boolean : true or false (==0)�Boolean : true or false (==0)
�Use logical operators to combine conditions

� Tests
� if, if/else

IMESI - CS1 - Thomas Grenier 11

� if, if/else
�switch/case (only for integer values)

1- C/C++ Syntax overview

� If, if/then

IMESI - CS1 - Thomas Grenier 12

These brackets means that this block is optional

1- C/C++ Syntax overview

� Switch case

IMESI - CS1 - Thomas Grenier 13

1- C/C++ Syntax overview

� C/C++ loops
� for � for
�while
�do while

IMESI - CS1 - Thomas Grenier 14

1- C/C++ Syntax overview

� for

Principle of the for loop : 3 steps
1) Initializations
2) condition is evaluated

IMESI - CS1 - Thomas Grenier 15

2) condition is evaluated
3) if condition is true

then
the bloc of instructions is executed
the post-instructions are executed
the loop continues, goes to step 2)

else the loop ends

1- C/C++ Syntax overview

� while

� do … while

IMESI - CS1 - Thomas Grenier 16

;

1- C/C++ Syntax overview

� Functions
�Declaration�Declaration
�Definition
�Parameters to/from functions

� return parameter
� Copy

Pointer/array

IMESI - CS1 - Thomas Grenier 17

� Pointer/array
� Reference

1- C/C++ Syntax overview

� Functions declaration (or function prototype)
� It is used to inform the compiler that the function exists� It is used to inform the compiler that the function exists
� specify the function's name, arity (number of

arguments), argument types and return type

� Examples

IMESI - CS1 - Thomas Grenier 18

1- C/C++ Syntax overview

� Functions definition
� Supply the function body� Supply the function body
� Notice that formal parameters are local variables which

are assigned values from the arguments when the
function is called

IMESI - CS1 - Thomas Grenier 19

1- C/C++ Syntax overview

� Functions definition
� Examples� Examples

IMESI - CS1 - Thomas Grenier 20

1- C/C++ Syntax overview

� Functions parameters
� Formal parameters

� By default, argument values are simply copied to the formal
parameter variables at the time of the call. This type of parameter
passing is called pass-by-value.

� Pointer parameters
� A pointer parameter is indicated by the star (*) that precedes the

parameter. The argument value must be an address (a pointer or an
address of (&) a variable)

� Reference perameters

IMESI - CS1 - Thomas Grenier 21

� Reference perameters
� A reference parameter is indicated by the ampersand (&) that

precedes the parameter name. The compiler will then pass the
memory address of the actual parameter, not the value. A formal
reference parameter may be used as a normal variable

� Return parameter

1- C/C++ Syntax overview

� Function parameter: pass-by-copy

void fonction(double a)
void main(void)

void fonction(double a)
{

a = 3;
}

void main(void)
{

double x = 1;
fonction(x);
cout << x;

}

In memory:
x: double

1

a: double

1
In main scope,
call of fonction(&x);

Copy the value

x equal to 1

IMESI - CS1 - Thomas Grenier 22

1 1

a: double

3

call of fonction(&x);

In fonction:
a = 3;

� The value of x is NOT modified by the function

1- C/C++ Syntax overview

� Function parameter: pass-by-address
void fonction(double *a)

void main(void)
void fonction(double *a)
{
*a = 3;

}

{
double x = 1;
fonction(&x);
cout << x;

}

In memory:
x: double

1
In the main scope,
call of fonction(&x);

x equal to 3

a: double*

&x
&x

Copy « the address of x » � &x

IMESI - CS1 - Thomas Grenier 23

1

a: double*

&x

call of fonction(&x);

In fonction:
*a = 3;

� The value of x IS modified by the function

&x

x: double

3
Set 3 in what
a points out

1- C/C++ Syntax overview

� Function parameter: pass-by-address
void fonction(double &a)

void main(void)
void fonction(double &a)
{

a = 3;
}

{
double x = 1;
fonction(x);
cout << x;

}

In memory:
x: double

1
In main scope,
call of fonction(x);

x equal 3

a: double&

&x
&x

Use a reference of x (address)

a is a reference
to x

IMESI - CS1 - Thomas Grenier 24

1

a: double&

&x

call of fonction(x);

In fonction:
a = 3;

� The value of x IS modified by the function

&x

x: double

3
Set 3 in what a
refers

to x

1- C/C++ Syntax overview

� Sum up (or résumé)

by-copy by-pointer by-referenceby-copy by-pointer by-reference

speed slow fast fast

syntax and
use

very easy be carefull! easy

array

IMESI - CS1 - Thomas Grenier 25

array
takedown

no yes no

memory use
per param.

size of the
object

size of pointer
size of

reference

parameter
modification

no yes yes

=

1- C/C++ Syntax overview

� Function parameter: return parameter
double Square(double a) void main(void)double Square(double a)
{ double result;

result = a*a;
return result;

}

{
double x;
x=Square(3);
cout << x;

}

In memory:

x: doubleAt the end of

x equal 9

result: double

Copy the value

IMESI - CS1 - Thomas Grenier 26

9
At the end of
Square(x);

�The value is copied in x
�Remember that the local variable result is destroyed at
the end of function Square()

9

1- C/C++ Syntax overview

� Standard lib
� iostream (C++), Input Output stream� iostream (C++), Input Output stream

� #include <iostream> and using namespace std;
� cout << something; // prints something on the screen
� cin >> variable; // stops and waits a value from keyboard, this

value is stored in variable
� cout << endl; // equivalent to “\n”: new line

�Math

IMESI - CS1 - Thomas Grenier 27

� #include <math.h> and compile argument : -lm
� sqrt(x): return the square root of x
� sin(x), cos(x),… : trigonometric function

�Objects and classes ? later!

2- Sources

� The main function
� The main function is the main program
� The C++ environment calls main

� your program must never call main

� Parameters:
� The main function must return type int, the value return by main is

passed to the host environment (0�EXIT_SUCCESS)
� It can be called with no arguments or with two arguments

IMESI - CS1 - Thomas Grenier 28

� When the main function ends (or returns), all static objects
are destroyed in the reverse order of their construction,
and the program terminates.

2- Sources
� Include directive

� The #include directive includes the entire contents of a standard
header or source file.header or source file.

� Two forms:

� The only difference between both expressions is the places
(directories) where the compiler is going to look for the file

� when the file name is specified between double-quotes, the file is searched

IMESI - CS1 - Thomas Grenier 29

� when the file name is specified between double-quotes, the file is searched
first in the same directory that includes the file containing the directive. (if it is
not there, the compiler searches the file in the default directories where it is
configured to look for the standard header files).

� When the file name is enclosed between angle-brackets <>, the file is
searched directly where the compiler is configured to look for the standard
header files.

These default directories are specified either by configuration files or by environment variables

2- Sources

� Preprocessor directives
� The preprocessing step occurs before the main � The preprocessing step occurs before the main

compilation step
� Preprocessor directives

� To define and undefine macros,
� To establish regions of conditional compilation,
� To include other source files,
� To control the compilation process

� Preprocessor directives obey different syntax rules

IMESI - CS1 - Thomas Grenier 30

� Preprocessor directives obey different syntax rules
from the rest of the language

�C++ understands only 12 directives

2- Sources

� Preprocessor directives

Examples

IMESI - CS1 - Thomas Grenier 31

2- Sources

� Standard extension of files
�Header files: .h .hpp .hxx�Header files: .h .hpp .hxx

� Contains the functions (and classes) declarations
� Contains the classes definitions

�Source files: .cpp .cxx
� Contains the functions definition

�Template source files (.txx)

IMESI - CS1 - Thomas Grenier 32

�Template source files (.txx)
� Contains the definition of template functions

3- From source files to executable

� Compilation and linkage
Preprocess Compile Link

.h

.h

.cpp

.cpp

Preprocess

.o

.o

Compile

.exe

Link

Executable file

IMESI - CS1 - Thomas Grenier 33

.cpp .o

.lib
External libraries
(static)

.h

Source files Object files

Executable file

.dll

Dynamic libraries

3- From source files to executable

� Debugging
�To execute a program step by step, watch �To execute a program step by step, watch

variables values, …
�understand what is going wrong

�or if all is alright! (memory, loops, function calls…)

�Tools : debugger
� Breakpoints

IMESI - CS1 - Thomas Grenier 34

� Breakpoints
� Watches variables

3- From source files to executable

IMESI - CS1 - Thomas Grenier 35

3- From source files to executable

IMESI - CS1 - Thomas Grenier 36

4- Examples

IMESI - CS1 - Thomas Grenier 37

4- Examples

IMESI - CS1 - Thomas Grenier 38

4- Examples

IMESI - CS1 - Thomas Grenier 39

Computer Science 1

Sorting with linked listSorting with linked list

M.Sc IMESI

Summary

I. Introduction
� Algorithms, complexity and programming� Algorithms, complexity and programming

II. First example : sorting algorithms
III. Bases of C++ syntax
IV. Second example: sorting with linked list
V. C++ Classes and UML

IMESI - CS1 - Thomas Grenier 2

VI. Useful data structures
VII. Exercises/project

� Algorithms design and C++

Sorting with linked list

� Element insertion/removal in an array
�Computational time�Computational time

� How to insert quickly (O(1)) a value in an
array?
�By using a list
� How to create a list ? How to use it?

� Exercises:

IMESI - CS1 - Thomas Grenier 3

� Exercises:
�Playing with list
�Sorting algorithm with linked list

� Efficiency of insertion sort with linked list

1- Inserting/removing array elements

� Adding a new element
�Pseudocode�Pseudocode

IMESI - CS1 - Thomas Grenier 4

�Asymptotical running time: O(n)

4 5 6 8 9

4 5 6

A

B

4 5 6 8 9A

B

index=4
x=7

Insertion: illustration

1 2

4 5 6 8 9

4 5 6 8 9
4 5 6 7 8 9

A

B

B

1

3

2

4

IMESI - CS1 - Thomas Grenier 5

4 5 6 8 9A 4 5 6 7 8 9A� B

x

6
5

2- Linked list

� Arrays
�Are continuous sequence in memory �Are continuous sequence in memory
�Support random access

…

tab[0]

tab[1]

tab

dataAddress

&tab[1]

tab[i]

array

IMESI - CS1 - Thomas Grenier 6

tab[1]

tab[2]

tab[3]

…

&tab[1]

&tab[2]

&tab[3]

array

index 0 1 2 3 4 5

2- Linked list

� List
� Is a sequence container that has constant � Is a sequence container that has constant

performance when adding to or removing from
any point in the container.

�Supports bidirectional iterators,
� you can use as many iterators as you need

�Does not support random access.

IMESI - CS1 - Thomas Grenier 7

�Does not support random access.

list

iterator
it++

2- Linked list

� (after)Insertion of a new value in a list

list

New value Insertion position (we insert after this position…)

New value New element

IMESI - CS1 - Thomas Grenier 8

1 2

2- Linked list

� After-Insertion of a new value in a list

� Asymptotical running time: O(1)
� (not depending of n!)

list

IMESI - CS1 - Thomas Grenier 9

� (not depending of n!)

� What is the asymptotical running time of the before-
insertion algorithm ?

� (the new element is inserted before the iterator position)

2- Linked list

� Doubly linked list (the obvious choice!)

�Many versions

list

iterator
it++it--

IMESI - CS1 - Thomas Grenier 10

�Many versions
� Chained list

�Many applications
� Stacks (lifo), queues (fifo)

figures

…

dataAddress

list
…

tab[0]

tab[1]

tab[2]

tab[3]

…

tab

&tab[1]

&tab[2]

&tab[3]
tab[i]

array

list

iterator

IMESI - CS1 - Thomas Grenier 11

array

index 0 1 2 3 4 5

list

iterator

2- Linked list

� Stacks
1 2 3

c

b

d

c

b

dc

b

a

d

1 2 3

IMESI - CS1 - Thomas Grenier 12

b

a

push(d)

b

a

pop()

�Push_front(b)
�Add a new element in the front of the list

�Pop_front()
�Remove the first element of the list

d c b a=

2- Linked list

� How to create a list ?
�We need Element that contains Data

Next element address

Previous
�We need Element that contains

� The data
� The addresses of next (and previous) element

�We need List structure that contains
� The number of elements (the size of the list)
� Addresses of the first and the last elements

DataPrevious
element
address

IMESI - CS1 - Thomas Grenier 13

� Addresses of the first and the last elements
� Operations like: insert, remove an element

List
Insert()

Erase()

2- Linked list

� Encapsulation of fields and methods
� Classes� Classes

UML

Element

-Data: double
-Next: Element
-Previous: Element

+GetData(): double

List

-First: Element
-Last: Element
-Size: int

+Begin(): Element
+End(): Element
+Insert(a: double, pos: Element): void
+InsertLast(a: double): void

IMESI - CS1 - Thomas Grenier 14

+GetData(): double
+SetData(d: double): void
+SetNext(n: Element): void
+GetNext(): Element
+SetPrevious(p: Element): void
+GetPrevious(): Element
+IsValid(): bool

+InsertLast(a: double): void
+Erase(pos: Element): double
+Clear(): void
+Empty(): bool
+GetSize(): int
<<create>>+List()
<<destroy>>+List()

2- Linked list
� Encapsulation of fields and methods

� Classes

C++

IMESI - CS1 - Thomas Grenier 15

2- Linked list
� Encapsulation of fields and methods

� Classes
Sources files?... later
C++

IMESI - CS1 - Thomas Grenier 16

2- Linked list

� How to use it ? Example

IMESI - CS1 - Thomas Grenier 17

3- Exercises
� Write an algorithm verifying that a list is sorted

�Efficiency of this solution�Efficiency of this solution

� Insertion sort using a doubly linked list
�Write this algorithm
�Give the efficiency of this algorithm
�Are lists useless?

IMESI - CS1 - Thomas Grenier 18

Computer Science 1

C++ Classes and UMLC++ Classes and UML

M.Sc IMESI

Summary

I. Introduction
II. First example : sorting algorithmsII. First example : sorting algorithms
III. Bases of C++ syntax
IV. Second example: sorting with linked list
V. C++ Classes and UML
VI. Useful data structures

IMESI - CS1 - Thomas Grenier 2

VI. Useful data structures
VII. Exercises/project

� Algorithms design and C++

C++ Classes and UML

� Simple example: Class Complexe
� What do we need to manipulate complex numbers?� What do we need to manipulate complex numbers?
� C++: header and source files
� Step by step example of use
� Exercises

� Bases of OOP (UML and C++)
� Fields and methods

IMESI - CS1 - Thomas Grenier 3

� Fields and methods
� Declaration, definition, visibility, multiplicity
� Constructors and destructor

� Inheritance
� Operators overload

1- Simple Example: Class Complexe
mathematics implementation

� Complex numbers
iii jbaz +=∈21, zz CCsuch iii∈21, zz CC

jz +=11

jz 422 −=
Example :

z1 and z2 come from the same algebraic structure (complex)

z1 and z2 are two independent complex numbers

C
 s

tr
uc

t

2 data are merged

O
bj

ec
t O

rie
nt

ed
 P

ro
gr

am
m

in
g

IMESI - CS1 - Thomas Grenier 4

The main interest of complex numbers: they are a field (+,x)

jzzz 33213 −=+=
jzzz 26214 −=×=

�Algebraic structure with
dedicated functions

O
bj

ec
t O

rie
nt

ed
 P

ro
gr

am
m

in
g

OOP definitions:
- z1, z2, z3 and z4 are objects
- is a classC

1- Simple Example: Class Complexe

� Complex numbers in C and in C++
C Language C++ Language

Fields

Data

Functions

class Complexe
{
public:

double Reel;
double Imag;
Complexe() {Reel=0;Imag=0; }

Complexe Plus(Complexe z)
{

constructor

typedef struc
{ double Reel;

double Imag;
} Complexe;

typedef struct
{ double Reel;

double Imag;
} Complexe;

IMESI - CS1 - Thomas Grenier 5

Complexe Somme(Complexe z1, Complexe z2)
{
Complexe s;

s.Reel = z1.Reel + z2.Reel;
s.Imag = z1.Imag + z2.Imag;

return s;
} Methodes

Functions {
Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

� Complex numbers in C++

class Complexe #include <iostream>

1- Simple Example: Class Complexe

class Complexe
{
public:

double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;}
Complexe Plus(Complexe z)

{
Complexe s;

#include <iostream>
…
…
int main(void)
{

Complexe z1,z2,z3;
z1.Reel = 1; z1.Imag = 1;
z2.Reel = 2; z2.Imag = -4;
z3 = z1.Plus(z2);

Objects

IMESI - CS1 - Thomas Grenier 6

Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

cout << z3.Reel<< endl;
cout << z3.Imag << "j \n";

return 0;
}

Lazy programming

� How does the main function work?
int main(void)
{ 1) 3 Complexe objects (z1, z2, z3) are created

1- Simple Example: Class Complexe

{
Complexe z1,z2,z3;
z1.Reel = 1; z1.Imag = 1;
z2.Reel = 2; z2.Imag = -4;
z3 = z1.Plus(z2);
cout << z3.Reel<< endl;
cout << z3.Imag << "j \n";

return 0;
}

1) 3 Complexe objects (z1, z2, z3) are created
Call of the appropriate object constructor

z1
Reel = 0
Imag = 0

z2
Reel = 0
Imag = 0

z3
Reel = 0
Imag = 0

In memory :

class Complexe
{
public:

IMESI - CS1 - Thomas Grenier 7

public:
double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;};
Complexe Plus(Complexe z)

{
Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

int main(void)
{ 1) 3 Complexe objects (z1, z2, z3) are created

1- Simple Example: Class Complexe

� How does the main function work?

{
Complexe z1,z2,z3;
z1.Reel = 1; z1.Imag = 1;
z2.Reel = 2; z2.Imag = -4;
z3 = z1.Plus(z2);
cout << z3.Reel<< endl;
cout << z3.Imag << "j \n";

return 0;
}

1) 3 Complexe objects (z1, z2, z3) are created
Call of the appropriate object constructor

z1
Reel = 1

z2
Reel = 2

z3
Reel = 0

In memory :

2) Modification of z1 and z2 fields
Direct access to values (public …)

class Complexe
{
public:

IMESI - CS1 - Thomas Grenier 8

Reel = 1
Imag = 1

Reel = 2
Imag = -4

Reel = 0
Imag = 0

public:
double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;};
Complexe Plus(Complexe z)

{
Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

int main(void)
{

1- Simple Example: Class Complexe

� How does the main function work?

1) 3 Complexe objects (z1, z2, z3) are created{
Complexe z1,z2,z3;
z1.Reel = 1; z1.Imag = 1;
z2.Reel = 2; z2.Imag = -4;
z3 = z1.Plus(z2);
cout << z3.Reel<< endl;
cout << z3.Imag << "j \n";

return 0;
}

3) The Plus function is called from z1 with the
z2 parameter, the result is stored in z3

class Complexe
{
public:

1) 3 Complexe objects (z1, z2, z3) are created
Call of the appropriate object constructor

2) Modification of z1 and z2 fields
Direct access to values (public …)

IMESI - CS1 - Thomas Grenier 9

z1
Reel = 1
Imag = 1

z2
Reel = 2
Imag = -4

z3
Reel = 3
Imag = -3

In memory :
public:

double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;};
Complexe Plus(Complexe z)

{
Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

1- Simple Example: Class Complexe

� How does the main function work?
3) The Plus function is called from z1 with the

z2 parameter, the result is stored in z3

z1
Reel = 1
Imag = 1

z2
Reel = 2
Imag = -4

z3
Reel = 0
Imag = 0

class Complexe
{
public:

double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;}
Complexe Plus(Complexe z)

{ z3 = z1.Plus(z2);

z3 = z1.Plus(z2);
- In memory, when Plus is called

z2 parameter, the result is stored in z3

IMESI - CS1 - Thomas Grenier 10

Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

z3 = z1.Plus(z2);

z
Reel = 2
Imag = -4

s
Reel = 0
Imag = 0

- Local variables
in Plus function

1- Simple Example: Class Complexe

� How does the main function work?
3) The Plus function is called from z1 with the

z2 parameter, the result is stored in z3

z1
Reel = 1
Imag = 1

z2
Reel = 2
Imag = -4

z3
Reel = 0
Imag = 0

class Complexe
{
public:

double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;}
Complexe Plus(Complexe z)

{

z3 = z1.Plus(z2);

z2 parameter, the result is stored in z3

- In memory, when Plus is called

IMESI - CS1 - Thomas Grenier 11

Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

z
Reel = 2
Imag = -4

s
Reel = 3
Imag = -3

- Local variables
in Plus function

1- Simple Example: Class Complexe

� How does the main function work?
3) The Plus function is called from z1 with the

z2 parameter, the result is stored in z3

z1
Reel = 1
Imag = 1

z2
Reel = 2
Imag = -4

z3
Reel = 3
Imag = -3

class Complexe
{
public:

double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;}
Complexe Plus(Complexe z)

{

z3 = z1.Plus(z2);

z2 parameter, the result is stored in z3

- In memory, when Plus is called

IMESI - CS1 - Thomas Grenier 12

Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

z
Reel = 2
Imag = -4

s
Reel = 3
Imag = -3

- Local variables
in Plus function

int main(void)
{

1- Simple Example: Class Complexe

� How does the main function work?
1) 3 Complexe objects (z1, z2, z3) are created

{
Complexe z1,z2,z3;
z1.Reel = 1; z1.Imag = 1;
z2.Reel = 2; z2.Imag = -4;
z3 = z1.Plus(z2);
cout << z3.Reel<< endl;
cout << z3.Imag << "j \n";

return 0;
}

class Complexe
{
public:

4) z3 is printed:
3

3) The Plus function is called from z1 with the
z2 parameter, the result is stored in z3

Call of the appropriate object constructor

2) Modification of z1 and z2 fields
Direct access to values (public …)

IMESI - CS1 - Thomas Grenier 13

public:
double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;};
Complexe Plus(Complexe z)

{
Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + s.Imag;
return s;

}
};

z1
Reel = 1
Imag = 1

z2
Reel = 2
Imag = -4

z3
Reel = 3
Imag = -3

In memory :

3
-3j

1- Simple Example: Class Complexe

� Exercise
�Add the following operations in Complexe class:�Add the following operations in Complexe class:

� absolute value (or modulus or magnitude)
� conjugation
� subtraction, multiplication, and division

�Add the polar to cartesian conversion
Conversion from the polar form to the Cartesian for m

IMESI - CS1 - Thomas Grenier 14

Conversion from the polar form to the Cartesian for m

Conversion from the Cartesian form to the polar for m

yjxz .+=

•Addition: •Addition:

•Subtraction:

•Multiplication:

•Division:

IMESI - CS1 - Thomas Grenier 15

1- Simple Example: Class Complexe

� Exercise with Complex numbers
�Compute the complex impedance of a RC parallel �Compute the complex impedance of a RC parallel

circuit: R=50 Ohm, C=10nF, if
� f= 50hz and f=[1, 10000]Hz

�Give the new position of 2D vectors after a 45°

IMESI - CS1 - Thomas Grenier 16

�Give the new position of 2D vectors after a 45°
rotation

Some answers

IMESI - CS1 - Thomas Grenier 17

2- OOP bases

� Complex numbers, C++ and UML
class Complexe Class name

Complexe

+Reel: double
+Image: double

<<create>>+Complexe()
+Plus(z: Complexe): Complexe

class Complexe
{
public:

double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;}
Complexe Plus(Complexe z)

{
Complexe s;

Class name

IMESI - CS1 - Thomas Grenier 18

Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

Implementation Modeling

Fields, attributes,
data members Methodes, operations,

member functions

� Complex numbers, C++ and UML

class Complexe

2- OOP bases

Complexe

+Reel: double
+Image: double

<<create>>+Complexe()
+Plus(z: Complexe): Complexe

class Complexe
{
public:

double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;}
Complexe Plus(Complexe z)

{
Complexe s;

Name
Type

IMESI - CS1 - Thomas Grenier 19

Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

Implementation Modeling

Argument(s),
parameter(s) with type

Type of value returned

� Complex numbers, C++ and UML

class Complexe

2- OOP bases

Complexe

+Reel: double
+Image: double

<<create>>+Complexe()
+Plus(z: Complexe): Complexe

class Complexe
{
public:

double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;}
Complexe Plus(Complexe z)

{
Complexe s;

Visibility, access specifiers

IMESI - CS1 - Thomas Grenier 20

Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

Implementation Modeling

� Complex numbers, C++ and UML

class Complexe

2- OOP bases

Complexe

+Reel: double
+Image: double

<<create>>+Complexe()
+Plus(z: Complexe): Complexe

class Complexe
{
public:

double Reel;
double Imag;
Complexe(){Reel=0;Imag=0;}
Complexe Plus(Complexe z)

{
Complexe s;

Constructor

IMESI - CS1 - Thomas Grenier 21

Complexe s;
s.Reel = Reel + z.Reel;
s.Imag = Imag + z.Imag;
return s;

}
};

Implementation Modeling

2- OOP bases – Visibility

� Attributes and operations access specifiers:
restrict who can access a member restrict who can access a member

�4 UML-supported visibility types
�Only 3 access specifiers supported in C++

+ -# ~UML

package

IMESI - CS1 - Thomas Grenier 22

public: private:protected:C++

Less accessible to other
parts of the system

More accessible to other
parts of the system

2- OOP bases – Visibility

� public visibility (+)
�Anyone have access to a public member �Anyone have access to a public member

� protected visibility (#)
�Only the class, derived classes, and friends have

access to protected members
� private visibility (-)

�Only the class and friends have access to private

IMESI - CS1 - Thomas Grenier 23

�Only the class and friends have access to private
members

�In a class definition, the default access for
members and base classes is private

2- OOP bases – Visibility

� public visibility (+)
�Anyone can access a public member �Anyone can access a public member

ok
ok

ok

+
MyClass

+Attribute1

+Operation1()
OtherClass

IMESI - CS1 - Thomas Grenier 24

MaClasse a;
a.Attribut1=1;//OK

Outside the classinheritance SpecializedClass

2- OOP bases – Visibility

� protected visibility (#)
�Only the class, derived classes, and friends can

MyClass

Attribute1

+Operation1()
OtherClass

�Only the class, derived classes, and friends can
access protected members

ok
ok

No!

#

IMESI - CS1 - Thomas Grenier 25

SpecializedClass

MaClasse a;
a.Attribut1=1;//no

Outside the class

2- OOP bases – Visibility

� private visibility (-)
�Only the class and friends can access private

MyClass

Attribute1

+Operation1()
OtherClass

�Only the class and friends can access private
members

No ! ok

No!

-

IMESI - CS1 - Thomas Grenier 26

SpecializedClass

MaClasse a;
a.Attribut1=1;//no

Outside the class

� To have public attributes or not to have public
attributes? That is the question
� the use of public attributes: opening a class's attributes to

2- OOP bases – Visibility

� the use of public attributes: opening a class's attributes to
the rest of the system is like exposing your house to any
person off the street without requiring him to check with
you before entering. There is just as much potential for
abuse.

� It's usually best to avoid public attributes
� Exceptions

IMESI - CS1 - Thomas Grenier 27

� Exceptions
� when the attribute is a constant
� when the attribute is not important for the class works and

it is also not secret!

� Members: Name and Type
�Name

2- OOP bases – Name and Type

�Name
� can be any set of characters,
� but two members in the same class can not have the

same name.
� Make sure that the name accurately describes what is

being named

�Type

IMESI - CS1 - Thomas Grenier 28

�Type
� The type of attribute can vary depending on how the

class will be implemented in your system
� it is usually either a class, such as string, or a primitive

type, such as an int, double,…

2- OOP bases – Attributes

� Inline Attributes or Attributes by association

MyClass

-object1: AnotherClass1
+object2: AnotherClass2
+object3: AnotherClass3
#object4: AnotherClass4

+Operation1()

MyClass

+Operation1()
+Operation2()

AnotherClass3 AnotherClass1

+object3

-object1

association

Note, remarque, ...

IMESI - CS1 - Thomas Grenier 29

+Operation1()
+Operation2()

AnotherClass4AnotherClass2

+object2

#object4

� An attribute could represent any number of
objects of its type

2- OOP bases – Multiplicity

�This is like declaring that an attribute is an array

� Multiplicity
�Allows you to specify that an attribute actually

represents a collection of objects, and it can be
applied to both inline and attributes by

IMESI - CS1 - Thomas Grenier 30

applied to both inline and attributes by
association

BlogAccount

-Name: String
+PublicURL: URL
+authors: Author[1..5]

BlogEntry

-trackbacks: TrackBack[*]
-comments: Comment[*]

-entries

*1

2- OOP bases – Multiplicity

BlogAccount

-Name: String

BlogEntry
-entries

� The trackbacks, comments, and authors attributes all
represent collections of objects.

� The * at the end of the trackbacks and comments attributes

-Name: String
+PublicURL: URL
+authors: Author[1..5]

-trackbacks: TrackBack[*]
-comments: Comment[*]

-entries

*1

IMESI - CS1 - Thomas Grenier 31

� The * at the end of the trackbacks and comments attributes
specifies that they could contain any number of objects of
the TrackBack and Comment class, respectively.

� The authors attribute is a little more constrained since it has
specified that it contains between one and five authors.

2- OOP bases – Multiplicity

BlogAccount

-Name: String

BlogEntry
-entries

� The entries attribute (introduced using an association) has
two multiplicity properties specified at either end of the
association

-Name: String
+PublicURL: URL
+authors: Author[1..5]

-trackbacks: TrackBack[*]
-comments: Comment[*]

-entries

*1

IMESI - CS1 - Thomas Grenier 32

association
� A * at the BlogEntry class end of the association indicates that any

number of BlogEntry objects will be stored in the entries attribute
within the BlogAccount class.

� The 1 specified at the other end of the association indicates that
each BlogEntry object in the entries attribute is associated with one
and only one BlogAccount object.

2- OOP bases – constructors
� C++ constructors

� A constructor is used to initialize an object
� A constructor's name is the same as the class name� A constructor's name is the same as the class name
� A constructor cannot have a return type, and you cannot return a

value
� A constructor is executed when an object is created

� Variable declaration or call of operator new
� You never call a constructor directly

� 4 forms of constructor
� User constructors (construct new object with some user parameters)

� Complexe z1(2,3);

IMESI - CS1 - Thomas Grenier 33

� Complexe z1(2,3);
� Copy constructor (constructs a new object from a previous one)

� Complexe z2(z1);
� Default constructor (constructor without parameters)

� Complexe z3();
� hidden constructor (when none constructor is declared in your class, the

compiler adds one)
� Element p;

2- OOP bases – constructors

� C++ constructors examples

IMESI - CS1 - Thomas Grenier 34

2- OOP bases – destructor
� C++ destructor

� A destructor is used to finalize an object
� The name of a destructor is a tilde (~) followed by the class name � The name of a destructor is a tilde (~) followed by the class name
� A destructor cannot have a return type, and you cannot return a value

� A destructor is executed when an object is destroyed
� For local variable : automatically called at the end of life (neither for

pointers nor references)
� Executed from a delete call

� A destructor has none parameters

IMESI - CS1 - Thomas Grenier 35

� A destructor has none parameters
�Only one destructor per class!

� If you don’t write the destructor, one (doing nothing) is added

2- OOP bases – constructors

� C++ destructors examples

IMESI - CS1 - Thomas Grenier 36

2- OOP bases – Generalization (Inheritance)

� What is Generalization (or inheritance)?
�A very important concept in object-oriented �A very important concept in object-oriented

design
�Generalization refers to the ability of one class

(child class) to inherit the identical functionality of
another class (super class, base class), and then
the new class adds new functionalities to its base

IMESI - CS1 - Thomas Grenier 37

the new class adds new functionalities to its base
classes

A

CB

A_1 A_2

B

2- OOP bases – Generalization (Inheritance)

� Definitions
� A class with at least one base class is said to be a derived � A class with at least one base class is said to be a derived

class.
� A derived class inherits all the data members and member

functions of all of its base classes
� A class's immediate base classes are called direct base

classes.
� Their base classes are indirect base classes.

IMESI - CS1 - Thomas Grenier 38

� Their base classes are indirect base classes.
� The complete set of direct and indirect base classes is sometimes

called the ancestor classes.

� A class can inherit from zero or more base classes.

2- OOP bases – Generalization (Inheritance)

UML C++

� Example

class A
{
protected:

double Aa
private:

double Ab;
public:

A() {};
double GetAa()

{return Aa;}

class B : public A
{
private:

double Ba;
public:

B() {};
void Afficher()

{

A

#Aa: double
-Ab: double

+GetAa(): double
+GetAb(): double
+Afficher(): void

IMESI - CS1 - Thomas Grenier 39

{return Aa;}
double GetAb()

{return Ab;}
void Afficher()

{ cout<< Aa << Ab;}
};

{
cout << Aa << GetAb();
cout << Ba << endl;
}

void Afficher_Bis()
{
A::Afficher();
cout << Ba << endl;
}

};

B

-Ba: double

+Afficher(): void
+Afficher_Bis(): void

� Order of constructors execution
� The base class constructor is executed before the constructor of the

derived class

2- OOP bases – Generalization (Inheritance)

derived class
� From the derived class constructor, you can pass some parameters to

the base class constructor. If none parameter is passed, the default
constructor of the base is executed

class A
{
double X;
public:

class B: public A
{
public:

B()
{ cout << " B:defaut " << endl;}

IMESI - CS1 - Thomas Grenier 40

public:
A()

{ cout << "A:defaut" << endl;}
A(double a)

{ X=a;
cout << "A:General" << endl;}

};

{ cout << " B:defaut " << endl;}
B(double a) :A(a)

{ cout << "B:General" << endl;}
};

Result:
A:defaut
B:defaut

void main()
{
B ob1; //X=?
B ob2(3) ;//X=3
}

� Order of constructors execution
� The base class constructor is executed before the constructor of the

derived class

2- OOP bases – Generalization (Inheritance)

class A
{
double X;
public:

class B: public A
{
public:

B()
{ cout << " B:defaut " << endl;}

derived class
� From the derived class constructor, you can pass some parameters to

the base class constructor. If none parameter is passed, the default
constructor of the base is executed

IMESI - CS1 - Thomas Grenier 41

public:
A()

{ cout << "A:defaut" << endl;}
A(double a)

{ X=a;
cout << "A:General" << endl;}

};

{ cout << " B:defaut " << endl;}
B(double a) :A(a)

{ cout << "B:General" << endl;}
};

void main()
{
B ob1; //X=?
B ob2(3);//X=3
}

Result:
A:General
B:General

� Destructors order
� The derived class destructor is executed before the base class

destructor

2- OOP bases – Generalization (Inheritance)

destructor

class Array
{
double *Tab;
int Size;
public:

Array(int size=1)
:Size(size)

{ Tab = new double[Size]; }
double GetElement(int i) const

class VecteurZero:
public Array

{
public:

VecteurZero(int size)
:Array(size)

{for(int i=0; i<GetSize(); i++)
SetElement(i, 0);

}
~VecteurZero() //useless destructor

IMESI - CS1 - Thomas Grenier 42

{ return Tab[i]; }
void SetElement(int i, double v)

{ Tab[i] = v; }
int GetSize() const

{ return Size; }
~Array() // destructor

{ delete[] Tab;
cout << "TD:Destructor"<< endl;
}

};

{cout << "VZ:Destructor"<< endl;}
};

void main()
{
VecteurZero a(10);
a.SetElement(0, 1+a.GetElement(0));
}

2- OOP bases – operators overload

� Operator+
� In class Complexe:� In class Complexe:

Complexe operator+(const Complexe &z) { … }

� In main function:
Complexe z1, z2, z3;
z3 = z1 + z2; // � z3 = z1.operator+(z2);

IMESI - CS1 - Thomas Grenier 43

� operator-, operator/, operator*, …
� idem

2- OOP bases – operators overload

� operator=
� Automatically added by the compiler if not defined in your

classclass
� In class Complexe:

Complexe& operator=(const Complexe &z) {
if(this != &z)

{
// copy the z object into the current object (this)
}

IMESI - CS1 - Thomas Grenier 44

}
return *this;
}

� In main function
Complexe z1, z2, z3;
z3 = z1 = z2; // � z3.operator=(z1.operator=(z2));

2- OOP bases – operators overload

� operator[]
� In class Array (of double):� In class Array (of double):

double& Array::operator[](int index)
{ // first you can test the value of index
return A[i];

}

� In main function

IMESI - CS1 - Thomas Grenier 45

� In main function
Array a;
a[0] = 1;

cout << a[0];

2- OOP bases – operators overload

� operator>, operator<, operator==, …
� In class Complexe� In class Complexe

bool Complexe::operator==(const Complexe &z) const
{ if((Imag == z.Imag) && (Reel==z.Reel))

return true;

else return false;
}

IMESI - CS1 - Thomas Grenier 46

}

� In main function
Complexe z1(1,2), z2(1,3);

if(z1 == z2) …

Computer Science 1

Useful data structuresUseful data structures

M.Sc IMESI

Summary

I. Introduction
� Algorithms, complexity and programming� Algorithms, complexity and programming

II. First example : sorting algorithms
III. Bases of C++ syntax
IV. Second example: sorting with linked list
V. C++ Classes and UML

IMESI - CS1 - Thomas Grenier 2

VI. Useful data structures
VII. Exercises/project

� Algorithms design and C++

Useful data structures

� Array, Matrix, Volume
� Lists� Lists

�Doubly linked lists
�Chained lists
�Queues, stacks

� Hash table

IMESI - CS1 - Thomas Grenier 3

� Hash table
� Trees
� Graph… CS1-3

Tree, binary tree
Simple binary tree

Tree Element
root

IMESI - CS1 - Thomas Grenier 4

leafs

Standard Containers of C++
� deque

� A deque (double-ended queue) is a sequence container that supports fast insertions
and deletions at the beginning and end of the container. Inserting or deleting at any
other position is slow, but indexing to any item is fast. Items are not stored contiguously. other position is slow, but indexing to any item is fast. Items are not stored contiguously.
The header is <deque>.

� list
� A list is a sequence container that supports rapid insertion or deletion at any position

but does not support random access. Items are not stored contiguously. The header is
<list>.

� map , multimap
� A map (or dictionary) is an associative container that stores pairs of keys and

associated values. The keys determine the order of items in the container. map requires
unique keys. multimap permits duplicate keys. The header for map and multimap is
<map>.

IMESI - CS1 - Thomas Grenier 5

� set, multiset
� A set is an associative container that stores keys in ascending order. set requires

unique keys. multiset permits duplicate keys. The header for set and multiset is <set>.
� vector

� A vector is a sequence container that is like an array, except that it can grow as
needed. Items can be rapidly added or removed only at the end. At other positions,
inserting and deleting items is slower. Items are stored contiguously. The header is
<vector>.

Standard adapters of C++
� Based on containers
� priority_queue

A priority queue is organized so that the largest element is always the � A priority queue is organized so that the largest element is always the
first. You can push an item onto the queue, examine the first element,
or remove the first element. The header is <queue>.

� queue
� A queue is a sequence of elements that lets you add elements at one

end and remove them at the other end. This organization is commonly
known as FIFO (first-in, first-out). The header is <queue>.

� stack

IMESI - CS1 - Thomas Grenier 6

� stack
� A stack is a sequence that lets you add and remove elements only at

one end. This organization is commonly known as LIFO (last-in, first-
out). The header is <stack>.

Useful pseudo-containers of C++
basic_string, string, wstring

� Represent character strings. The string class templates
meet almost all of the requirements of a sequence meet almost all of the requirements of a sequence
container, and you can use their iterators with the
standard algorithms. Nonetheless, they fall short of
meeting all the requirements of a container, such as
lacking front and back member functions. The header is
<string>.

� valarray
� Represents an array of numeric values optimized for

IMESI - CS1 - Thomas Grenier 7

� Represents an array of numeric values optimized for
computational efficiency. A valarray lacks iterators, and as
part of the optimization, the compiler is free to make
assumptions that prevent valarray from being used with
the standard algorithms. The header is <valarray>.

Computer Science 1

ExercisesExercises

M.Sc IMESI

Tools…

� Write a C++ function that prints all elements
of a given array.of a given array.

� Write a C++ function verifying that a given
array is sorted. This function returns true only
if the array is sorted.

� Write a C++ function that randomly initializes

IMESI - CS1 - Thomas Grenier 2

� Write a C++ function that randomly initializes
all elements of an array.

Shell Sort

� Divide and conquer approach (without
recursive calls), D.L. Shell 1959recursive calls), D.L. Shell 1959

1. Shell sort divides a long list into several smaller
lists

2. It sorts each smaller list by using an algorithm
such as insertion sort or bubble sort

3. It combines all the smaller lists into a large list

IMESI - CS1 - Thomas Grenier 3

4. It divides the new large list into several smaller
lists again, but into smaller lists than in step 1

5. It repeats steps 2 through 4 (if necessary) until a
single sorted list remains

Shell Sort…

� The idea of Shell sort is the following:
�Divide the data sequence in a two-dimensional �Divide the data sequence in a two-dimensional

array
�Sort the columns of the array (the effect is that the

data sequence is partially sorted)
�The process above is repeated, but each time

with a narrower array, i.e. with a smaller number

IMESI - CS1 - Thomas Grenier 4

with a narrower array, i.e. with a smaller number
of columns.

� In the last step, the array consists of only one
column.

Shell Sort

� Illustrate the shell sort algorithm on the array
{5,6,8,2,1}. At the first iteration, the smaller {5,6,8,2,1}. At the first iteration, the smaller
lists have at most 2 elements

� Write the shell sort algorithm
� Try to give the efficiency of your algorithm

(worst case analysis)

� Prove the correctness of shell-sort algorithm

IMESI - CS1 - Thomas Grenier 5

� Prove the correctness of shell-sort algorithm
using the loop invariant:

� Each sub array is sorted

� Write and test your algorithm in C++

IMESI - CS1 - Thomas Grenier 6

http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/shell/shellen.htm

Searching algorithms
� Sequential search algorithm

� A sequential search can start at the beginning or end of a list. It then
proceeds to examine every item in the list until it finds the one item proceeds to examine every item in the list until it finds the one item
that it’s searching for. Then it stops.

� Write a sequential search algorithm
� Give it efficiency (worst case analysis)
� The list is sorted… use a binary search algorithm that:

� Cuts the list in half
� Examines the number in the middle of the list
� Determines if the searched value lies in the left or in the right half of

the list

IMESI - CS1 - Thomas Grenier 7

� Determines if the searched value lies in the left or in the right half of
the list

� Repeats these steps on the right (correct) side of the list until it finds
what’s looking for

� Give the efficiency of binary search algorithm
� Write this algorithm in C++

