
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007 1285

Radiographic Testing of Anomalies in Thick
Metal Components: Fitting the Standard

Line-Integral Model
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Abstract—Radiography is an effective method for nondestruc-
tive inspection of thick metal components. However, complete
diagnosis of internal defects is a difficult task that needs reliable
computer assistance. In particular, fully 3-D reconstruction would
be a very valuable tool for the expert, but it is not so clear whether
digitized radiographs can be made suitable for reconstruction.
We show that this is indeed the case by studying the radiographic
image formation process in the context of primary loop piping
inspection in pressurized water nuclear reactors. In a more gen-
eral way, our findings apply to the testing of thick metal pecimens
with simple, known geometry. Based on justified simplifications
and approximations, we demonstrate that it is possible to process
the raw data to closely fit the conventional line-integral projection
model. More specifically, we provide a full processing procedure
that includes (i) a criterion for subsampling the data without loss
of pertinent information, (ii) a novel field-flattening algorithm, and
(iii) a calibration method that requires minimal knowledge about
the data acquisition parameters. The actual 3-D reconstruction
issue is addressed in another paper [1] whose results further
validate the present work.

Index Terms—Data models, field-flattening, image processing,
nondestructive testing, nuclear imaging, radiography, scattering.

I. INTRODUCTION

A. Motivation and Contribution

OUR study is motivated by a nondestructive evaluation task
that plays a vital role in the nuclear power plant main-

tenance program of the EDF group, namely the radiographic
inspection of flaws in casted elbows of the primary loop of
pressurized water reactors [2]. These components undergo reg-
ular checks, as they are subject to severe temperature and pres-
sure conditions that may lead to structural flaw formation or
worsen existing anomalies. The testing procedure consists in
introducing a gamma-ray source inside the inspected pipe and
recording the outgoing radiation by means of X-ray films flat-
tened against the external surface. Because of the large spec-
imen thickness (about 7–8 cm), the angle of incidence is lim-
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ited and only five to seven radiographs are generally available
for a given defect. Consequently, building up a complete diag-
nosis including precise localization, orientation, and shape char-
acterization of flaws is a difficult task that needs reliable com-
puter assistance. The issue at stake here is to demonstrate the
feasibility of reconstructing the 3-D shape of voids (such as gas
holes, airlocks, shrinkage cavities, or cracks) by considering real
test data gathered under conditions similar to those met on site.
This turns out to be a great challenge since dealing with a few
2-D projections collected under a limited angle of incidence is
not the only difficulty: first, due to scattered radiation predom-
inance, and because the flaw size is small with respect to the
specimen thickness, both the signal-to-noise ratio (SNR) and the
contrast are low; second, the scattered radiation and, in our case,
the digitization apparatus produce unknown, smooth gradients
of luminosity which contaminate the attenuation data; third, the
projections are not calibrated in the sense that the flaw informa-
tion signals are weighted by unknown constants.

Let , , be a set of 2-D
digitized projections available for reconstruction, where de-
notes a rectangular pixel lattice. Many authors (see, e.g., [3]–[6]
for closely related problems) resort to the standard direct model

(1)

where the field , defined over a 3-D voxel
lattice , characterizes the shape of the defects, is a linear
map from to , and is Gaussian white noise with
mean zero and variance (which we denote by
whether is a constant field or not). However, to our knowl-
edge, no attempt was made to rigorously justify this model for
the testing of thick metal components in the context of a real
industrial application. This task constitutes the main focus of
this paper; the actual 3-D reconstruction issue is discussed in
[1]. Assuming that the inspected object geometry is known, we
show that, at the expense of some model-driven processing of
the data, one can indeed come up with a set of projections of the
form

(2)

for some constant close to one and independent of , where the
field is directly connected to the attenuation of a monochro-
matic radiation by the “negative” of the flaws (i.e., by metal ob-
jects taking the shape of the defects). These projections fit well
into model (1) for small size flaws such as those we wish to char-
acterize.
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B. Overview

In Section II, we provide a brief description of the experi-
mental setup — the real data presented therein will be used
throughout the rest of the paper. Section III is devoted to the
analysis of the image formation process, except for scattered
radiation which is studied in Section IV. We show that the film
exposure satisfies

(3)

where is the exposure time, denotes the irradiance pro-
duced by scattered photons, stands for the primary irra-
diance that would be observed in the absence of defect, and

is the flaw information signal. In addition, we establish that
the common logarithm of the available digital radiographs, say

, is related to through an expression of the form

where is an unknown, smoothly varying field resulting from
digitization and , are unknown positive constants. The pri-
mary irradiance in (3) can be easily estimated, but the scat-
tered component is a real nuisance for extracting . How-
ever, it is intuitively reasonable to assume that is not sensi-
tive to moderate size flaws. Indeed, starting with a single-scatter
approximation, it is shown in Section IV that the term

can be approximated by the spatial distribution
of the build-up factor that would be observed if the inspected
object were flawless.

Section V discusses how to obtain projection data of type (2)
from our model:

In the prospect of reducing computational costs, we first demon-
strate that the digitized radiographs can be subsampled without
loss of useful flaw information. Strictly speaking, we give an
upper bound on the subsampling factor that permits one to re-
tain the flaw information located in the frequency regions where
the Fourier domain SNR is greater than one. Next, we pro-
pose a novel field-flattening algorithm to remove the unknown,
smooth component . This is a quite dif-
ficult task, as the support of is not known a priori and as
the spectral ranges of and significantly overlap. Our al-
gorithm performs well even for very low SNR data; it leads to
projections of the form for some set of constants

, where is a nonstationary, zero-mean,
Gaussian white noise field. The last stage is to get rid of the

’s up to a multiplicative constant preferably close to one.
For this purpose, we develop a calibration procedure that does
not depend on film characteristics, exposure time, or source ac-
tivity. This ultimately leads to projections of type (2), as con-
firmed by comparing simulations to experimental results. The
full processing procedure is summarized in Section VI, where
we also give concluding remarks about how to obtain model (1)
from (2).

II. EXPERIMENTAL SETUP

Gamma-ray data have been collected under the constraints
imposed by on-site testing conditions. The inspected specimens

Fig. 1. Data acquisition geometry.

are nitrogen-strengthened austenitic stainless steel castings with
uniform thickness of 7 or 8 cm including artificial flaws with
known shape, dimensions, and localization. In accordance with
Fig. 1, the source positions are in a plane parallel
to the base of the specimen. The film cassettes are taped on the
specimen and the source-film distance is fixed by the external
diameter of the pipes to be inspected. Within the source plane,

lie on a circle whose center and whose diam-
eter are chosen to ensure an upper thickness limit of 110% of the
specimen thickness in the projection regions of interest. There-
fore, the angle of incidence is less than 25 degrees. Each film
cassette contains a 2 mm lead filter and is backed with a 3 mm
lead screen for protection against backscatter. In addition, the
films are sandwiched between 0.2 mm lead intensifying screens
whose main effect is to convert part of the ionizing radiation into
electrons that assist in the formation of the latent image. The
sources are 3 mm 3 mm iridium-192 cylindrical pellets with
strength close to 100 Ci and the exposure times varies between 2
and 5 hours as a function of source position and specimen thick-
ness. Note that on-site inspections are scheduled during shut-
down periods that are long enough to assume constant temper-
ature and pressure conditions.

After film development, digitization is achieved by placing
films on an illuminated screen and recording the transmitted
irradiance using a CCD array camera. This system allows
one to obtain 5 cm square projections with spatial resolution

, some examples of which are given in Fig. 2. The
radiographs in Figs. 2(a)–(d) show an open notch, fabricated
by electro-erosion, simulating a crack with a large depth/width
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Fig. 2. Digital radiograph examples: (a)–(d) 20� 20 mm� 0:3 mm electro-eroded notch; (e)–(h) 2 mm diameter drilled hole.

ratio. Figs. 2(e)–(h) are views of a 2 mm diameter hole parallel
to the base of the specimen at a depth of 10 mm on the source
side. Note that the smooth background intensity variations are
not representative of metal thickness, as the incident irradiance
produced by the illuminator of the digitization apparatus is not
constant. This could be avoided by using a laser digitizer, but
there was not one available at the time of the experiments (the
data acquisition process was outside our control).

III. IMAGE FORMATION MODEL

The data model we develop here is dedicated to the exper-
imental setup described in Section II, but it can be easily cus-
tomized to other radiographic inspection systems for thick metal
components. The results presented in Sections III-A and III-B
are to be interpreted as statistical averages; deviations from this
mean behavior is the subject of Section III-C.

A. The Radiant Image

When the detector is an X-ray film, the information to be
captured is the energy fluence that exposed the emulsion. This
quantity, called exposure and denoted by , is obtained by in-
tegrating the irradiance (i.e., the energy fluence rate) over the
exposure period. For iridium-192 sources, the radioactive decay
over a several hours period is negligible and the relevant forms
of interactions of photons with matter are photoelectric absorp-
tion and scattering. Hence, for any point in the detector plane

(4)

where is the exposure time and and denote the en-
ergy fluence rates respectively produced by primary (i.e., un-
scattered) and scattered photons. The remainder of this subsec-
tion is devoted to the characterization of the primary component
(scattered radiation is studied in Section IV).

Consider the geometry shown in Fig. 3. For any point in
the source , is the distance from to the detector plane

and, given any point , denotes the distance
from to . Let be the total linear attenuation coeffi-
cient at point for energy ( is Planck’s constant) and let

Fig. 3. Geometry used for modeling the primary irradiance.

be the line integral running from to . The pri-
mary irradiance can be written as

where is the volume of the source, is the source activity, and
denotes the probability that a disintegration is accompanied

by the emission of a photon of energy . Our experimental
conditions allows us to make useful simplifications.

• First, letting (respectively, ) be the total linear atten-
uation coefficient of the material composing the inspected
object (respectively, the filter), we have
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where , and respectively de-
note the lengths of intersection between line segment
and the flawless specimen, the flaw(s) and the filter. In our
case, and , where and are
the total linear attenuation coefficients of iron and lead.

• Second, because the source dimensions are very small
compared to the source-film distance, we can set

and
over the projection region of interest . To the same order
of approximation, since the inspected specimen and the
filter have uniform thickness,
and .

Taking this into account, we obtain

(5)

with

The limited angle of incidence opens the way to another sim-
plification: for any possible source position, we can find and

such that

(6)

In other words, from the primary irradiance standpoint, the
real source behaves like a monochromatic source with activity

and frequency . Finding and is an easy to solve
nonlinear optimization task which can be performed regardless
of the shape of the defects [2]. For instance, Fig. 4 displays
the results associated with the testing conditions described
in Section II in the least favorable situation (i.e., when the
mean angle of incidence over is 25 degrees). The estimated
quantities and the corresponding relative error

are plotted versus . For small
defects (e.g., ), is of the order of and the
numeric values of and stay close to those obtained for
a flawless specimen (i.e., for ). This shows that the
proposed approximation is sharp and that the specification of
the equivalent sources can be accomplished on the sole basis of
the specimen geometry.

From (4), (5) and (6), the exposure can be described by

(7)

where

(8)

Fig. 4. (a) Equivalent monochromatic source characteristics and (b) associated
relative error versus maximum path length through defect cavities.

conveys the pertinent flaw information, and where denotes
the primary irradiance that would be “observed” in the absence
of defect:

where

(9)

( is the ratio of the mean number of primary photons
intercepted by the detector element to the number of pho-
tons emitted by the equivalent monochromatic source.)

B. Detection and Digitization

The optical density, , of a developed X-ray film depends
linearly on exposure up to (see, e.g., [7]–[9]). The
exposure time is typically determined so that this relationship
holds within the projection region of interest. Thus,

(10)

where the constant measures film sensitivity and where
denotes the fog density resulting from the in-

herent density of the base of the film together with the presence
of self-developable grains in the emulsion. In fact, because of
the blurring due to the scattering of electrons in the emulsion,
it would be more accurate to write
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where stands for the 2-D convolution operator and is a
low-pass filter impulse response. However, this blurring effect
is negligible compared to the geometric blurring due to finite
source size (the former is of the order of 0.1 mm and the latter
is of the order of 1 mm).

As regards digitization, the CCD camera imperfections can
be safely overlooked, but the intensity variations produced by
the illuminator have to be taken into account. Hence, the avail-
able numerical data consist of projections

of the form

(11)

where is an unknown, smoothly varying field, and
denotes the density measured over the square domain

(12)

whose size is the spatial resolution of the digitization system.

C. Noise Characteristics

Let be the mean number of photons per unit area and
unit time (i.e., the fluence rate) impinging on the detector.
During the exposure period, photon detection can be described
by the spatial random process

where is the Dirac delta function, is the total number of
detected photons, and the 2-D vectors are independent and
identically distributed random variables with probability den-
sity function . Restricting ourselves to the
monochromatic case, the derivation of a noise model for our
radiographic images starts with the characterization of the non-
stationary discrete random field

(13)

where is given in (12). Let be the quantum efficiency
of the detector (i.e., the probability that an incident photon
contributes to latent image formation) and let be the total
number of photons incident on the emulsion. Clearly, is
a binomial random variable with parameters and . Since

can be assimilated to a poisson random variable with mean
, which we denote by , we

deduce that . It follows that

with

In addition, it is not difficult to check that (13) is uncorrelated:

where is the Kronecker delta symbol.
The above description can be further simplified when using

very fine grain films. For an average density of about 2–3 and
a spatial resolution, the number of developed
grains in the volume of emulsion under is of the order of

(which is the reason why granularity is not considered here).
Also, for the principal energy spectrum lines of iridium-192
(i.e., between 0.3 MeV and 0.6 MeV) the average number of
halide grains that are made developable for each quantum ab-
sorbed ranges between 20 and 40. Therefore, is large
enough to fully justify a Gaussian approximation

where . Since is a linear function of
in the range of linearity of the density-exposure re-

lation, the same kind of approximation holds for , but
with correlated. Indeed, two-dimensionally, the set of grains
that are rendered developable for one quantum absorbed is con-
fined to a small disc whose diameter, of the order of 0.1 mm, is
greater than the spatial resolution. Because is a linear
function of with mean behavior described by (10), we
deduce that

(14)

for some positive constant . It should be stressed that the mag-
nitude of geometric blurring is large, as on-site testing con-
ditions impose small source-film distances. Consequently, the
cut-off frequency of the power spectrum of density fluctuations
is greater than the useful bandwidth of the mean density distri-
bution . Hence we can actually assume that

in (14).

IV. SCATTERED RADIATION

As suggested by (7), scattered radiation does not contribute to
valuable flaw information, but rather reduces the contrast of the
radiographs. Moreover, scattering is the dominant interaction in
steel and other metallic materials for photons in the iridium-192
spectrum. For large specimen thickness, most photons undergo
several scattering events before reaching the detector or being
destroyed by photoelectric absorption. In this section, we show
that, in comparison with the primary component, the flaw in-
formation content in the scattered component is so poor as to
be disregarded. In a first analysis, we assume that each detected
photon experiences at most one scattering event; this suggests a
useful approximation that is validated by Monte Carlo simula-
tion.

Let us focus on the simple transmission imaging geometry
shown in Fig. 5, where and are vectors in the detector plane

with equation . Without loss of generality, we assume
that the scattering medium is between the planes and

. Consider a thin pencil of rays of frequency and cross-
sectional area , and let be the global attenuation
factor along line segment , that is, .
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A volume element situated along the pencil at a
distance from receives the primary fluence rate

where is the incident fluence rate, and the fluence rate per
unit solid angle scattered by is

(15)

where is the spatial distribution of atom density and where
and are respectively the differential

Rayleigh and Compton scattering cross sections per atom [10]
(both quantities depend on and ). The number of pho-
tons scattered in the direction of a detector element of area
located at is obtained by multiplying (15) with the differ-
ential solid angle , where

Moreover, these photons are attenuated before they emerge from
the inspected object. Therefore, under the single-scatter approx-
imation, the amount of energy scattered by and received by

per unit time is

(16

where and where denotes the frequency
of Compton photons deflected through angle , that is,

with ( is the electron
rest-mass and is the velocity of light). Then, if we assume
a distant point source, integrating (16) over and gives the
total amount of scattered energy received by per unit time,
that is, . It comes up that can be connected
to the primary irradiance via an inhomogeneous Fredholm
equation of the first kind:

(17)

where and where the
kernel is given by

(18)

Let us apply this result to the arrangement shown in Fig. 6(a),
which is closely representative of the acquisition geometry de-
scribed in Section II. The inspected iron specimen, with uni-
form thickness of 7 cm, includes a spherical defect of radius
5 mm (the spherical shape assumption simplifies computations).
Clearly, if the distance from to is large enough (e.g., of the
order of the sample thickness), then for all
, where denotes the shift-invariant point spread function ob-

Fig. 5. Simple transmission imaging arrangement in which a scattering
medium (the inspected object) is irradiated by a thin pencil of rays.

tained from (18) in the case of a flawless specimen. In fact, the
most marked difference between and is observed for

. These kernels are displayed in Fig. 6(b) for the two extreme
spectrum lines of iridium-192 with transition probability greater
than 0.05% (i.e., MeV and MeV). In
both cases, and are close enough to con-
clude that is a suitable approximation for
all and for all . It follows that (17) is well described by a
convolution whose modulation transfer function is depicted in
Fig. 6(c) for MeV and MeV. The cor-
responding 20 dB cut-off frequencies (about 0.11 mm and
0.06 mm ) indicate that the unscattered defect signal is atten-
uated by a factor of at least 10 if one of its local dimensions is
smaller than 9 mm, which is the case in practice.

The preceding observations show that, under the single-
scatter approximation, for any spectrum line of iridium-192,
the flaw information to be found in the scattered component
is substantially smoothed out and may therefore be neglected.
Since the real (i.e., multiple-scatter) point spread function is
broader than , there is reasonable evidence that ,
where denotes the scattered irradiance in the absence of
defect. To substantiate this approximation, we simulated the
exposure producing the radiograph in Fig. 2(a) by Monte Carlo
calculation. Without going into details, we considered a 230

230 detector array in contact with a 2 mm lead filter and
we computed the trajectories of photons. The resulting
primary and scattered components are shown in Fig. 7(a) and
Fig. 7(b), respectively, while Fig. 7(c) compares the associated
row-means over the regions delimited by the dashed lines. The
magnitude of the little bump in the scatter profile is ten times
smaller than the magnitude of the primary flaw signal. Using
this ratio, we can estimate the value of the peak signal-to-noise
ratio (PSNR) of the scattered flaw signal in the real radiograph,
which is about 3.5 dB PSNR , where
is the peak-to-peak value of the considered signal and is the
standard deviation of the noise). This example suggests that, as
a first approximation, the field
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Fig. 6. Single-scatter approximation: (a) schematic of transmission imaging
geometry; (b) point spread functionsK(r; r ) from (18) (dashed lines) and their
shift-invariant approximations K(r � r ) (solid lines) for h� = 0:201 MeV
and h� = 1:062 MeV; (c) modulation transfer functions of the shift-invariant
approximations in (b).

in (7) can be replaced by , that is, by the spa-
tial distribution of the build-up factor corresponding to the flaw-
less specimen. This approximation is more accurate in real sit-
uations, since the real defects of interest produce signals with
lower SNR. However, should it be questionable whether the
scattered flaw signal can be ignored, we take advantage of the
fact that is substantially smoother than .

V. FROM RAW RADIOGRAPHS TO LINE-INTEGRAL PROJECTIONS

Let us review the present situation. From (7), and considering
the conclusion of Section IV, we have

Fig. 7. Monte Carlo simulation of the radiograph shown in Fig. 2(a): (a) pri-
mary exposure �I ; (b) scattered exposure �I ; (c) means of the rows lo-
cated between the dashed lines.

where is the amount of energy released by
the equivalent monochromatic source during exposure, is
given by (9), and the notation ( , , or )
stands for . Hence, from (11) and (14), the
common logarithm of a digitized radiograph can be described
by

(19)

where is a smooth distribution representing the drift intro-
duced by and by the digitization system, and where

. In this model, and are unknown
fields, and can be estimated based on the knowledge of
the specimen geometry, and , and are unknown scalars.

This section is devoted to the elaboration of processing tech-
niques leading to a set of reduced size pro-
jections of the form

(20)

where is a constant close to one and independent of , and
where is some noise component to be characterized. We first
show in Section V-A that the original data (19) can be subsam-
pled without loss of flaw information. Then, in Section V-B, we
propose a novel field-flattening algorithm which allows us to ob-
tain projections of the form (20), but with depending on . The
removal of this residual dependency is discussed in Section V-C.

A. Subsampling

The useful bandwidth of the flaw signal is very limited be-
cause of geometric blurring as well as the presence of noise. We
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can therefore reasonably assume that the available digital radio-
graphs can be subsampled without risk. But how far can we go?
Up to a multiplicative constant, dividing (19) by leads to the
superposition of a very low frequency drift with the flaw infor-
mation component corrupted by some noise .
Reasoning in the continuous domain and temporarily assuming
that is constant, the Fourier domain signal-to-noise ratio
can be defined by , where

and where and denote the power spectral densi-
ties of and , respectively. Since is a transient signal,
we have , where is the area of the
support of and stands for the 2-D Fourier transform of

. Besides, because the noise cut-off frequency is located be-
yond the bandwidth of , we can model by a band-limited
white noise with density , where

if , 0 otherwise. Hence, set-
ting , we obtain

for all in the Nyquist domain.
The information located in the frequency domain

is of no use for 3-D reconstruc-
tion. Consequently, if there exists a positive integer such that

(21)

then the corresponding digitized radiograph can be subsampled
by a factor of . In order to safely estimate , we consider
the very unfavorable (artificial) situation where the gamma-ray
source and the defect are cuboids with edges parallel to the axes
of a rectangular coordinate system whose -plane coincides
with the detector plane. Let be the area of the -base of
the source and let be the maximum angle of incidence (25
degrees in our case). Under approximation (8), it can be shown
[2] that

with

where and respectively denote the minimum and max-
imum -coordinates of the defect and is the distance from
the source to the detector plane. It follows that

(22)

is a sufficient condition for (21) to hold. Note that, as we might
expect, the upper bound is an increasing function of the
source dimensions, the sampling rate and the noise standard
deviation. As an example, is depicted in Fig. 8 as a
function of and for the testing conditions associated
with radiographs (a)–(d) in Fig. 2. The corresponding pairs of
values for and are located between the level curves

and , which shows
that subsampling by a factor of 4 does not affect the flaw

Fig. 8. Upper bound J (22) for the logarithm to base 2 of the subsampling
factor as a function of the area of the support of � and of the minimum noise
standard deviation. The “�” marks correspond to radiographs (a)–(d) in Fig. 2.

information content (similar observations were made for radio-
graphs (e)–(h) in Fig. 2). In practice, subsampling is achieved
by keeping the low resolution residual stemming from subband
decomposition of the original data (we use Johnston’s filters
[11]). This operation leaves description (19) unchanged, except
for the noise standard deviation which must be divided by the
subsampling factor.

B. Field-Flattening

Our goal here is to get rid of the smooth field in (19) so as
to give access to . We start from the data obtained by dividing

by , that is, projections of the form

(23)

where , , and
with (the factor of is due to
subsampling). Since metal thickness does not vary significantly
over the projection region of interest, is nearly constant out-
side the support of and its immediate neighborhood
(for instance for the simulation results depicted in Fig. 7,

if ). Consequently, approximately
reduces to a constant, say , outside , whereas
within . With this in mind, the field-flattening operation is to
produce an estimate for in order to obtain projections pro-
portional to according to

(24)

where . This is a non-trivial
estimation task, not only because the spectra of the unknown
fields and significantly overlap, but also because
cannot be assumed to be known in the prospect of automatic
processing. In particular, spatial low-pass filtering is ineffective
and standard polynomial fitting techniques produce biased es-
timations. Alternatively, a sophisticated method that apparently
yields good results has been proposed in [12] and [13], but the
resulting algorithm is cumbersome and has many parameters,
some of which are difficult to set. For these reasons, we propose
a new field-flattening approach that jointly estimates and
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together with a continuous-valued representation of . The
corresponding algorithm is fairly simple to implement and
involves few parameters that can be set without difficulty.

Let be the regular grid supporting .
Since is the sampled version of a smooth surface, we identify
it with the bicubic spline interpolant of a reduced size represen-
tation defined on a coarse grid with
node spacing ; we shall use the notation for
short. Assume for the moment that is known and let be
the field defined by

if
otherwise

where the constant assures that . Let us
put

and

where stands for the 2-D discrete convolution operator over
and where is a Gaussian function with standard deviation

satisfying . Then, can be approxi-
mated by with

(25)

where the regularization term is the discrete version of the
thin plate spline functional (see, e.g., [14], [15]) and the free pa-
rameter adjusts the degree of stabilization of the solution.
In practice, this minimization task can be solved efficiently by
means of fast surface approximation algorithms such as the ones
described in [16], [17] or [18]. We also have with

(26)

In the case where is unknown, these observations suggest
to design an iterative algorithm that jointly evaluates and
through alternate updating of the associated estimates together
with a hidden field representing the accumulated knowledge
about . Let us respectively denote the estimates for , and

at step by , and . Appealing to definitions (25) and
(26), and given , the proposed algorithm is of the fol-
lowing form:

(27)

The role of the constant is to guarantee that
and the updating mechanism is

designed to relax the hidden field at locations that are likely

to be within . The precise specification of relies on
the definition of the local noise standard deviation estimate

together with an additional parameter that expresses
the noise standard deviation tolerance outside . De-
noting the total number of iterations of the algorithm by ,
we wish to have for all

. To see how this can be achieved, note that we always
have either or because of the bias produced by
the flaw signal together with the fact that is a very smooth
discrete surface. Hence, means that

is likely to be in so that should be relaxed
at this location. Moreover, in such a situation, the greater the dif-
ference , the more should be
loosened. There are, of course, many ways to get this behavior.
We suggest the following point-wise updating scheme:

if
otherwise

where .
The algorithm described above involves four parameters,

namely the node spacing of the coarse grid , the regular-
ization parameter in (25), the positive real fixing the stop
criterion, and the noise standard deviation tolerance . The
choice of these parameters does not pose any special problem
under testing conditions similar to those described in Section II.
For instance, a 20 20 grid is sufficient to capture the
variations of the drift . Also, because of prior smoothing by

, the solutions we are looking for via (25) are very close to
the ’s at those locations where ; consequently,
setting is enough for the resulting surfaces to fit the
thin plate constraint tightly (note that can always be selected
by means of generalized cross-validation [19] or by using the
L-curve method [20] at the expense of a substantial increase
in computational load). Finally, choosing gives
satisfactory precision and setting permits one to
cope with low contrast flaw information.

As a first example, let us consider the case of projection
(d) in Fig. 2. In accordance with the results of Section V-A,
the associated input projection (23) shown in Fig. 9(a)
was computed after subsampling by a factor of 4. Using
the proposed set of parameter values, our algorithm took 90
iterations to produce the estimates for and respectively
depicted in Figs. 9(b) and (c). The absolute value of the re-
sulting projection (24) is displayed in Fig. 9(d). A few
insignificant irregularities caused by film manipulation are
visible. Aside from these, the estimated hidden field provides a
faithful representation of that can be used for computing a
3-D region of interest for reconstruction. The second example
depicted in Fig. 10 concerns projection (c) in Fig. 2; the results
displayed in Figs. 10(b) and (c) were obtained in 63 iterations.
Fig. 10(d) superimposes the intensity profiles of the input
projection and the estimate for along the indicated dashed
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Fig. 9. Application of the field-flattening algorithm to projection (d) in Fig. 2: (a) associated input projection P (23); (b) estimate for �; (c) estimate for '; (d)
absolute value of the resulting projection P (24).

Fig. 10. Application of the field-flattening algorithm to projection (c) in Fig. 2: (a) associated input projection P (23); (b) estimate for '; (c) absolute value of
the resulting projection P (24); (d) intensity profiles of (a) and (b) along the dashed lines.

lines. It shows that the algorithm behaves well in very low
constrast situations.

C. Calibration

The field-flattening process leads to a set
of projections of the form

(28)

where . While the film sensitivity measure obvi-
ously does not depend on , it is not so clear that is the same for
each projection. In fact, is defined by the quantum efficiency
of the detector and by the mean number of halide grains that are
made developable per absorbed quantum. Strictly speaking, be-
cause of the latter dependency, is a function of both incidence
angle and metal thickness and hence varies with . However,
within our framework, the angle of incidence and the specimen
thickness latitude are limited enough to disregard the variations
in between any two projections of a same set.

We want to remove the unknown factor in (28) up to
some multiplicative constant independent of and close to one.
Recall that our field-flattening algorithm provides an estimate
for the noise standard deviation in (23) outside . More
specifically, for each , we have the value of

(29)

where stands for the mean build-up factor over the support
of projection . Since can be estimated via Monte Carlo

simulation in a reasonable amount of time, we choose to mul-
tiply each by , which leads to projection data of
the form plus some noise. We are then left with
the problem of estimating . Because we are not actually

looking for a very sharp estimate, we can resort to mean be-
havior approximations. Let us drop the index for a moment.
According to (14), the standard deviation of is approx-
imately equal to and thus
where and respectively stand for the mean standard
deviation of the density and the mean exposure over .
Hence, from (10),

where is the average film density fixed by testing specifica-
tions (about 2.5 in our case). Substituting into (29) gives

(30)

At the same time, relations (11) and (23) show that is also an
estimate for the mean standard deviation of the fluctuations of

outside . Therefore

(31)

where . It follows from (30) and
(31) that

(32)

The value of can be estimated from either (29) or (32).
Setting the corresponding expressions equal to each other, we
obtain

(33)
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Fig. 11. Processing of projections (a)–(d) in Fig. 2: (a)–(d) final outputs; (e)–(h) representation of the corresponding simulated flaw signals using the same gray
level mappings (the background intensity value is zero).

Fig. 12. Processing of projections (e)–(h) in Fig. 2: (a)–(d) final outputs; (e)–(h) representation of the corresponding simulated flaw signals using the same gray
level mappings.

In the end, multiplying each (28) by pro-
duces data of the required form, that is, a set
of projections such that

(34)

where is close to one and . To confirm this
result, Figs. 11(a)–(d) and 12(a)–(d) show the outputs of the
full processing procedure for the raw data in Fig. 2. The cor-
responding simulations of
(see (8)) are respectively represented in Figs. 11(e)–(h) and
12(e)–(h) using the same gray level mappings for suitable
comparison. Apart from noise, each processed projection is
very close to its simulated counterpart, which gives strong
credit to our image formation model as well as to the proposed
processing techniques. Note that if the metal thickness exhibits
moderate variations over the projection regions of interest, then

so do and , and it follows that the noise component
in (34) is approximately stationary outside . Besides,
although is unknown, the mean noise variance outside
can be easily estimated by appealing to the description of
provided by the field-flattening algorithm.

VI. SUMMARY AND CONCLUSION

We have proposed a complete radiographic image formation
model together with a detailed processing procedure to set the
basis for 3-D reconstruction of defects in thick metal compo-
nents. The raw data consists of a set of
projections whose common logarithm has been shown to sat-
isfy

where is Gaussian white noise with mean zero and variance
(we refer to the very beginning of Section V
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for details). Starting from this model, extraction of the flaw in-
formation signals is completed in four stages.

1) Subsampling: replace each by the low resolution
residual of its subband decomposition at level
(see (22)).

2) Perform preliminary computations based on the knowl-
edge of the specimen geometry: (i) compute the equiv-
alent monochromatic source energies defined in
Section III-A; (ii) compute the fields according to
(9); (iii) estimate the mean build-up factors by Monte
Carlo simulations.

3) Field-Flattening: estimate the fields
by applying algorithm (27) to each

This gives projections of the form

together with some estimates for the noise standard de-
viation in outside the support of .

4) Calibration: Multiply each by , where
is defined in (33), to obtain the final projection data

, where the constant is close to one and
where is a Gaussian white noise field whose variance is
proportional to .

Using approximation (8), the fully processed projections are
of the form

(35)

To see why these data are suitable for reconstruction, let us in-
troduce a 3-D voxel lattice and let be the

-valued distribution defined as follows: for all , is lin-
early proportional to the volume of the intersection of with the
defects and if is entirely included in a defect. Then

where is the length of the intersection between and
. Besides, the integrals

can be estimated by Monte Carlo integration:

where and are some
sets of points picked uniformly at random from and ,

respectively. It follows that

that is

where the matrix representation of the linear map from
to has the ’s as entries.

Finally note that reconstruction from
cannot be binary-valued as is not perfectly known. However,
since the order of magnitude of is fixed, reconstruction can be
carried out by considering a finite set of possible voxel values
(e.g., an 8-bit volume). This issue is addressed in another paper
[1] in which we propose a new stochastic approach whose re-
sults further validates the present work.
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