
Abstract-- New data consistency conditions (DCC) have
recently been published for fanbeam projections. We explore the
potential of applying fanbeam DCC to detection and tracking of
motion of a small known object inside an unknown background
without the need for image reconstruction. Two scanning geome-
tries are considered that have different data consistency proper-
ties. A downhill simplex search for 3 nonlinear parameters by
minimizing inconsistency was successful. Various issues on the use
of fanbeam DCC are discussed. 

I. INTRODUCTION
In image reconstruction from projections, the simple line-

integral model presents a large system of linear equations. Data
consistency conditions (DCC) analytically describe the redun-
dancies in this integral equation, and they can play a useful role
in image reconstruction. The idea is that by verifying the DCC
of the measured data, other systematic and possibly nonlinear
effects can be identified and possibly corrected before per-
forming the tomographic reconstruction step. It was probably
Natterer who pioneered this approach over 30 years ago, when
he explored the use of consistency conditions on the attenuated
Radon transform to identify unknown attenuation coefficients
from SPECT emission measurements [Nat83]. This general
approach has been followed numerous times, with a range of
medical imaging applications in PET, SPECT and CT. See for
example, [Nat93, Gli94, Men99, Bas00, Erl00, Pat02, Wel03,
Lay05, Yu07, Tan11, Def12] among others. 

At the heart of such approaches are the consistency condi-
tions themselves. These are mathematical equations that
describe the consistency (arising from redundancy) of the mea-
surements. For the simple (non-attenuated) line-integral model
which is valid for CT imaging, the well-known Helgason-
Ludwig (HL) conditions [Lud66] [Hel80] apply, and are partic-
ularly useful because they can be expressed in terms of subsets
of parallel projections. In other words, consistency of a sub-
collection of measured projections can be checked without

obtaining a full collection of projections. The situation for sub-
sets of fanbeam projections is more complicated although such
consistency conditions for linear trajectories have recently
been published [Cla13]. 

In this work, we are only concerned with unknown density
functions in the plane, and with fanbeam projections. The pur-
pose is to explore the use of fanbeam consistency conditions
and study issues that might arise in applications. We define an
artificial 2D problem in motion detection which is both chal-
lenging yet within reach of fanbeam consistency methods. 

II. FANBEAM PROJECTIONS AND CONSISTENCY CONDITIONS
As usual in classical tomography, we let  represent

the unknown density function. We define a fanbeam projection
with x-ray source at position , by 

                    (1)

where  with  ranging over some interval
of length at most  which may depend on the source position

. The source trajectory is parameterized by  for some
bounded interval . Our example trajectories will be a straight
line segment, and a conventional circular scan.

Fanbeam consistency conditions can be stated for the case
of a straight line trajectory that does not cut through the object.
By rotating and translating the coordinate system if necessary,
we can assume that the straight line trajectory is the -axis (so

), and that the object lies entirely in the  half-
plane. In this situation, the range of  is . Now
for any fixed non-negative  strictly less than the number of
measured projections , we convert each projection to a scalar
function  as follows:

                   (2)

If the projections are consistent, i.e. if  satisfies equation 1
for some , then  is a polynomial in  of degree at
most . These necessary conditions are easily verified and also
turn out to be sufficient [Cla13]. 

The case  has been known in various guises for
some time [Fin83, Noo02, Che05, Lev10] (see the discussions
in [Tan12] and [Cla13]), and this case has the following special
feature which will be relevant for the studies presented in sec-
tions III and IV below. For , the expression  =

 is a constant (does not depend on ) and
the constant is given by 
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                           (3)

We notice therefore that any translation of the object in the
direction parallel to the trajectory line (the  direction) will not
affect this constant. Furthermore, equation 3 remains constant
even when replacing  by  for any
translation  of the  component of . So multiple pieces of
the object translating independently in the trajectory direction
also leave  unchanged. 

III. MATERIALS AND METHODS

A. Phantom description
We used a highly simplified 2D phantom consisting of two

components. The static component is a bounding elliptical
shell containing 5 ellipses, and we refer to this phantom as .
The second component, referred to as , consists of two disks
undergoing motion during the simulated measurement proce-
dure. Tables 1 and 2 give details of the ellipses making up the
static and dynamic components of the phantom. Note that Dx
and Dy refer to the full axis lengths of the ellipses.

For the dynamic component of the phantom, an oscillatory
motion of amplitude  occurs in the horizontal direction
during the time period  where  and
where  is the total duration. We take  = 10 seconds in this
work. The precise description of the motion is given by

 and  other-
wise, where

                         (4)

The amplitude of the motion is fixed at some value in the range
. The standard motion parameters used in the simu-

lations will be . The phantom is illus-
trated in Fig 1. 

It is assumed that the static component of the phantom in
Table 1 is unknown, but that the dynamic component in Table 2
is known except for the motion parameters . The
main purpose of these experiments is to determine if the
motion parameters can be extracted from projection measure-
ments without (or before) performing image reconstruction. If

the motion parameters can be determined, then a full dynamic
reconstruction is possible because the moving component is
then fully specified, and can be subtracted from the projections
leaving the static part which can then be fed to any standard
reconstruction algorithm. 

B. Measurement geometry 1: linogram mode
In the first measurement geometry, the x-ray source trajec-

tory follows a straight line  for  =
. A total of 101 projections are taken along the line,

starting at the position (-25, 20) and ending at (+25, 20) in
steps of 0.5. The source is assumed to move at constant speed
along the line, during the collection time of  = 10 seconds, so

 = . Each projection is considered to be instanta-
neously measured, with a temporal spacing of 0.1 seconds
between projections.

For this geometry, a suitable range of  would be
, however we assume a flat immobile detector with

“equispaced” sampling (in the terminology of [Kak88]) posi-
tioned along the line . Using the equispaced variable

 instead of , our projection measurements become

                       (5)

where  is the unit vector leaving the source at  =
 and pointing at the detector position . To

ensure that there is no truncation of these projections for the
larger static phantom, the detector extent runs from (-140, -15)
to (140, -15). See Fig 2(a).  

When the appropriate changes of variables are applied to
equation 2, we find that

              (6)

where  here refers to the angle of incidence of the ray with
the detector, so .
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Fig 1. Illustration of the phantom. (a) scale drawing of the positions of the
component ellipses, also showing the extent of the motion for  = 7. (b) plot of
the motion function given by equation 4.
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Table 1: Static Component

Ellipse Center (Dx, Dy) Density
1a (0, 0) (40, 25) 0.5
1b (0.5, 0) (38, 24) -0.5
2 (-5, -2) (8.75, 8.75) 0.1
3 (2, 3) (3.75, 2.5) 0.1
4 (4, 10) (5, 2.5) 0.1
5 (-7, 9) (1.25, 2.5) 0.1
6 (-3, 10) (1.25, 1.25) 0.1

Table 2: Dynamic Component
Ellipse Center (Dx, Dy) Density

7 t (-4, 6) (2.5 2.5) 0.2
8 t (-2, 6.5) (1.5, 1.5) 0.2
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Fig 2. The two scanning geometries. (a) The linogram geometry, drawn to scale
except for the extent of the detector which is long enough to avoid truncated
projections. (b) The conventional circular scanning geometry.
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This geometry, of parallel detector and trajectory, is the
well-known linogram geometry [Edh87], and the quantity

 is a linogram. The finite length of the trajec-
tory segment however, means that the system is tomographi-
cally incomplete so mathematically-correct image recon-
struction is not possible.

The 101 linogram projections were simulated using ana-
lytic line-length calculations for the elliptical elements in the
phantom, with dynamic parameters  =  and

 seconds. The simulated linogram is shown in Fig 3(a).
Using the known dynamic component of the phantom, the
unknown motion parameters  were sought by apply-
ing the DCC (equation 6) of orders  =  and calculating
the residuals of the polynomial fits. If incorrect motion param-
eters are used to model the linogram projections, then resulting
DCC may not be satisfied. Note that order  is not useful
because the motion is parallel to the trajectory and order zero
consistency is always maintained in that case.  

An optimization cost function  was formed
for each feasible triple  by simulating linograms 
of the dynamic component of the phantom (using pixelized
representations to avoid “inverse crime”) and computing DCC
functions  from them according to equation 5. The dif-
ference  was fit to an -degree polynomial in

 to determine a residual vector  (recalling from
equation 2 that consistency implies that  is a polynomial
of degree at most ). If  = 0 then the subtraction of the sim-
ulated movement from the measurement represented a consis-
tent linogram and the unknown motion parameters were
considered to be found. The cost function was defined as  =

. 

C. Measurement geometry 2: circular trajectory
The second fanbeam geometry is standard, consisting of

600 projections taken over a circular source trajectory of radius
30. Thus  for , and we
note the clockwise motion of the source, starting at the “12
o’clock” position. The projections are collected at constant
speed over  = 10 seconds, so . The projections
were simulated on a “virtual” flat detector passing through the
origin and oriented perpendicularly to the tangent of the source
motion; we use  for the detector variable. The projections are
now represented by  where

 is the unit vector pointing from the source to the -posi-
tion on the detector which is . See Fig. 2(b).
The fanbeam sinogram for this 360o circular scan is shown in
Fig.3(b). Standard FBP reconstructions are shown in Figs.3(d)
and 3(c) respectively for the dynamic phantom and for a static
version of the phantom, frozen at .

For circular trajectories, fanbeam consistency can be
achieved by converting an entire fanbeam dataset to parallel
projections and using the standard HL conditions (e.g. [Pat01,
Yu07]). Alternatively, fanbeam projections can be handled
pairwise by considering the line connecting two sources as a
pseudo trajectory, and applying the DCC of equation 2. With
only two sources on the trajectory, only the  term is
available (it is possible to check for equality of  for two
values of , but higher order polynomials cannot be handled).
Recalling the restriction that the trajectory line not intersect the
object, we find that there are a total of 96,000 pairs (pseudo tra-
jectories). 

We write  for the DCC value corresponding to
source  with the (pseudo) trajectory line connecting the two
sources  and . Note that the cosine term in equation 2 is
with respect to angle  measured perpendicularly to the
pseudo trajectory line. Furthermore the projection is equis-
paced, not equiangular (using the [Kak88] terminology) so a
change of variables is needed. We skip the details of this deri-
vation and present the final formula, which is

    =   (7)

where  = 30 is the trajectory radius, and  is the
signed angular difference between the two source locations.
Zeroth order consistency of a pair of projections simply means
that

                               (8)
Note that if the line connecting sources  and  is hori-

zontal then the pseudo trajectory is parallel to the motion of the
dynamic component of the phantom, so even though projec-
tions  and  were of different temporal phases of the
object, consistency of order zero is still maintained in this situ-
ation.
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Fig 3. Top row: (a) linogram and (b) fanbeam sinogram simulations of the
phantom with moving feature (more evident in linogram than sinogram).
Bottom row: FBP reconstruction from (d) dynamic sinogram above and (c) from
the sinogram of the frozen  instant of the phantom. The horizontal
movement manifested itself as a triangular-shaped blurring in the reconstruction.
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IV. RESULTS AND DISCUSSION

A. The linogram scan
The cost function was calculated on a coarse grid through-

out the feasible range and its behavior was studied. For order
, it was found to be virtually constant, correctly reflect-

ing the known theory that any horizontal motion would remain
consistent for this linogram geometry. For orders  = 1, 2, 3 a
single deep global minimum was found at the correct motion
parameters as shown in the plots of Fig. 4. The few isolated
local minima lay in shallow “bowls” in different locations for
the different orders, suggesting that a single cost function of

 would be suitable. The cost function was
re-calculated and re-examined after adding 3% Gaussian noise
to the linogram data elements. The resulting plots (not shown
here) were very similar except the global minimum increased
slightly for  = 1, 2, 3. 

The downhill simplex method was used for the nonlinear
optimization of  using each of the four value of . In each
case, the routine converged in roughly 200 to 300 iterations,
with the following results. For each of  respec-
tively, the estimated parameters were  =

, , ,
 (recalling that the true motion parameters

were ).
Further studies are underway, including using different

true motion parameters, different initialization locations, and
quantifying the effects of additive noise in the projection data.        

B. The circular scan
The order zero DCC condition was calculated for every

pair of source points whose connecting line (pseudo trajectory)
lay outside the 20 cm field-of-view. For each pair, the percent

relative difference was calculated. The results were grouped
into parallel trajectory lines because the horizontal or nearly
horizontal lines would not reveal inconsistency, being aligned
with the movement of the dynamic component. 

At a fixed orientation, there were always 160 parallel tra-
jectory lines, 80 on each side of the field-of-view (FOV).
These lines varied from 20 cm to 30 cm from the center of the
system. We grouped the lines as shown in Fig 5, and displayed
the average percent relative difference over all the parallel
lines lying on one side of the FOV. We also plotted the average
relative difference for just the lines between 20 cm and 25 cm
from the center, because they represent source pairs that are
more separated temporally: from 1.83 second minimal separa-
tion to 2.67 seconds of separation, whereas consecutive
sources are only separated by 0.017 seconds. (For the pairs of
source positions that cross the starting point, the lines between
20 cm and 25 cm from the center respectively have temporal
separation between 8.17 and 7.33 seconds.)

The results of the graph show two effects. One is that, as
predicted by the theory, the horizontal (0o or 180o) movement
does not cause inconsistency, because horizontal and nearly
horizontal trajectory lines showed very low relative differ-
ences. The other effects are due to temporal behavior of the
phantom. Each condition compares one pair of snapshots and
there are many instances when the phantom can be in the same
position for the two snapshots. The 1 second immobile period
at the start and the 2 seconds at the end maintain consistency
during these periods, as do snapshots that are temporally sym-
metric about the midpoint of the motion, which occurs at =
4.5 seconds. The flat region in Fig 5 near 160 degrees is attrib-
uted to this symmetry effect. 

We note that the average relative errors appear quite small,
all under 0.5%, but it is important to note that the mass of the
moving part of the phantom is a small fraction of the total.The
total number of lines (conditions ) in this
simulation was 96000. These conditions could be exploited in
a similar way to those of the linogram to provide estimates of
the motion parameters.

The flat areas of the plot of Fig 5 can be used to roughly
identify the direction of the motion, because a strictly linear
motion will enforce two angles, separated by 180 degrees, for
which consistency will generally hold.

V. SUMMARY AND CONCLUSIONS
With two different fanbeam geometries, various features

of the application of DCC have been explored. The order zero
condition can not detect motion parallel to the trajectory, but
can potentially be used to detect the direction of linear move-
ment. In our simulations, the higher order conditions could be
used to build a suitable cost function for finding three motion
parameters for a simple motion of a known component of the
phantom. The DCC are linear in the components of the image,
so they might become swamped if a large static background
object were involved. There are many potential applications of
fanbeam DCC, and we have illustrated various approaches and
and discussed their features and limitations.
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Fig 5. Average relative differences. (a) illustration of a group of parallel
trajectory lines showing the  cm group (shaded) and  cm group
(light shading). (b) Plot of average relative difference as a function of line angle
for all lines (lower curve) and for just those lines closer than 25 cm (upper curve).
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