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Abstract. Sliding motion is a difficult issue in regularised deformable
image registration. A typical example occurs in thoracic 4D CT images
where the lungs slide along the ribcage. Current solutions use a prior
segmentation which separates the image into different regions with the
sliding at the interface and register each region separately. However, this
can lead to physically implausible deformations at the interface. In this
paper, we locally separate the motion in the normal direction to handle
it with a single B-spline transformation on the whole image, defining a
motion field which varies continuously. The rest of the deformation is
separately handled in each label by a B-spline transformation allowing
discontinuity at interfaces. We compared our approach to prior solutions
and obtained similar target registration errors with more physically plau-
sible deformation.

1 Introduction

The measurement of breathing motion is required in many applications, e.g.,
the 4D radiotherapy of thoracic and upper-abdominal tumors. Motion estima-
tion is generally done between different phases of a 4D CT using deformable
registration.

Deformable registration is an ill-posed problem which requires regularization
to obtain smooth vector fields. However, true anatomical motion can be locally
non-smooth. This is the case at the pleura, where the lung slides along the
ribcage. Global regularizations would enforce smoothness everywhere, although
the result should display singularities at sliding locations.

Several approaches have been proposed to handle this problem. In [10,16], an
adapted regularization is used to preserve sliding motion. These regularizations
are based on the intensities of the CT image, making them sensitive to noise and
inadequate where the intensities are similar on both sides of the sliding, e.g., in
the upper abdomen. In [9], the regularization is expressed on the deformation
field to penalize physically implausible deformations while allowing sliding. In
[3,15,17], a segmentation is used to limit the motion estimation to a region, e.g.
the lungs, the rest of the thoracic region being separately registered. This solu-
tion allows discontinuity along the interface and preserves smoothness elsewhere
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(a) Labels (b) Vector field (c) Forward warp

Fig. 1. Gaps (white) or overlaps (dark gray) can appear with one B-spline per label.

Fig. 2. Normal vector field N .

(Figure 1(b)). However, two independent registrations are likely to produce in-
consistent motion estimates, resulting in gaps and overlaps at the interface of
the forward warp (Figure 1(c)). To handle this, [14,17] modified voxel intensity
values around the segmented region to constrain the deformation field. This so-
lution forces the segmentation to be done on both the fixed and the moving
image increasing the impact of a bad or inconsistent segmentation.

Moreover, although sliding motion implies a discontinuity at the interface,
it is smooth in the direction normal to the interface, called N : R3 → R3

in the following (Figure 2). This observation has lead Schmidt-Richberg et al.
to constrain diffusive registration by regularizing the motion field in the N
directions [13].

In this paper, we describe the motion parallel to this normal direction using a
B-spline deformable registration [12], which is among the most popular methods
for lung registration [7]. During registration, we locally decompose the transfor-
mations according to the normal direction to form a single B-spline transforma-
tion constrained to vary in the normal direction and one B-spline transformation
for each region handling the rest of the motion, thus allowing discontinuity at the
interface between regions in the direction parallel to the interface. By separating
the motion in the normal direction and handling it with a B-spline transform,
we force it to be continuous at any point.
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2 Method

2.1 Motion mask segmentation

Fig. 3. Left: coronal slice of a 4D CT. Right: Corresponding motion mask segmentation.

The patient is segmented, following the suggestion of Wu et al. [17] (Fig-
ure 3). The segmented motion mask Ω ⊂ R3 encompasses the organs with the
largest displacements during breathing, comprising the lung, the mediastinum
and the abdomen; the complementary region Ω encompasses the more static or-
gans, comprising the thoracic cage and the backbone. Automated segmentation
is achieved using the method described in [14], which is based on level-sets con-
strained by pre-segmented anatomical features, mainly the lungs and the bones.
The objective of this study is to improve the accuracy of the registration by
accounting for sliding motion at the border of Ω.

2.2 B-splines for sliding motion

As in previous works, we use one B-spline transformation per region Ω and Ω to
allow discontinuity of the estimated motion at the interface. However, the local
deformation in the direction N is separated in an additional B-spline transfor-
mation which covers the entire image. Thus, potential inconsistencies between
the deformations in Ω and Ω are prevented because deformation is smooth in
the direction N , while sliding is possible because the remaining deformations
are handled by the other two independent B-spline transformations.

Formally, let BN ,BΩ ,BΩ : R3 → R3 be three B-spline continuous de-
formations representing the deformation in the N directions, orthogonal to N
in Ω and orthogonal to N in Ω, respectively. All three deformations were de-
fined on the same set of knot points with their respective B-spline coefficients
cNi , c

Ω
i , c

Ω
i ∈ R3, e.g.,

BN (x) =
∑

i∈J

cNi βi(x)
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with x in R3, i ∈ J ⊂ Z3 the spatial indices of the B-spline knots and βi the
tensor product of one-dimensional B-spline kernels, βi =

∏3
j β

j
i . The sought

deformation T : R3 → R3 is defined as

T (x) =

{
BN (x) +BΩ(x) if x ∈ Ω,

BN (x) +BΩ(x) if x ∈ Ω.
(1)

During registration, the three B-spline transformations are constrained to
vary in fixed directions to respect their definitions: collinear to N for BN and
orthogonal to N for BΩ and BΩ. First, BN is set in the direction of N at
any point of space by constraining the motion of each B-spline knot in the N
directions at its location with

cNi = pNi N(i) (2)

where pNi ∈ R is a single parameter for the knot i of BN defining the amount of
its motion along N(i). The collinearity of N and BN is not strictly enforced but
it will be very close to the normal if N is locally smooth, which is a reasonable
assumption [13].

Then, BΩ and BΩ must be orthogonal to N at any point in space. We
compute two vector fields U ,V : R3 → R3 so that {N(x),U(x),V (x)} forms
a local base at any point x ∈ R3. U(x) and V (x) can be any basis in the plane
defined by N(x). We compute U(x) with the cross products between N(x) and
the unit vector of the image basis corresponding to the smallest component of
N(x) to ensure numerical stability. V (x) is deduced with the cross product of
N(x) and U(x). The motion of each B-spline knot of BΩ and BΩ is constrained
in a direction orthogonal to N with

cΩi = pΩ,U
i U(i) + pΩ,V

i V (i)

cΩi = pΩ,U
i U(i) + pΩ,V

i V (i)
(3)

where pΩ,U
i , pΩ,V

i , pΩ,U
i , pΩ,V

i ∈ R are two pairs of parameters constraining BΩ

and BΩ respectively.
Solving the registration problem with sliding motion comes down to esti-

mating the optimal parameters pNi , pΩ,U
i , pΩ,V

i , pΩ,U
i , and pΩ,V

i in the sense
of a chosen similarity measure to characterize the three constrained B-spline
transformations. Subsequently, the final transformation T can be derived from
equations 1, 2, and 3.

2.3 Partial derivatives

Several optimization processes use a matrix of partial derivatives of the out-
put components of the transformation with respect to the parameters. Since we
use a linear combination of B-spline transformations in each region, we obtain
a B-spline transformation per region with conventional properties (separable,
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derivable, . . . ). Therefore, we can derive partial derivatives of the transforma-
tion by combining the ones of each underlying B-spline transformation. The
combination is achieved by projecting the derivatives on N , U , and V :

∂xT (x)

∂pN
i

=
∂xB

N (x)

∂cN
i,x

×N(x)
∂xT (x)

∂pΩ,U
i

=
∂xB

Ω(x)

∂cΩ
i,x

×U(x).

3 Implementation and Evaluation

3.1 Implementation

Our implementation is based on elastix, which is a toolbox for intensity-based
medical image registration [4]. Elastix is based on the ITK registration frame-
work and extends it with, e.g., spatial regularization. The elastix framework
allows users to add their own components and to use them in combination with
other components.

We implemented a new transformation component which takes a segmented
image as a parameter. The vector field N is derived from this segmentation by
computing the normal on the interface and propagating it to the whole image
using an isotropic propagation. From N , we deduce U and V to instantiate the
three B-splines. The rest of the component dispatches transformation methods
(partial derivatives, point transformation, . . . ) on these B-splines.

We wrote an elastix wrapper allowing us to use our new component with
other elastix components (optimizers, metrics, samplers, . . . ). We used the rec-
ommended optimizer, metric and image sampler, i.e., the Adaptive Stochastic
Gradient Descent and a random sampler [5] and the Mattes Mutual Information
[6].

3.2 Results

Patients The method was applied to the exhale and inhale frames of 4D CT
images of the thorax of 16 lung cancer patients.

The first 6 patients were part of a radiotherapy planning protocol. The images
were acquired on a Brilliance Big Bore 16-slice CT scanner (Philips Medical Sys-
tems, Cleveland, OH). Retrospective respiratory-correlated reconstruction into
ten 3D CT images was made possible by simultaneous recording of a respira-
tory trace using the Pneumo Chest bellows (Lafayette Instrument, Lafayette,
IN). The original resolution was approximately 1 × 1 × 2 mm. All images were
resampled to a 2 mm isotropic voxel prior to processing, resulting in a typical
size of 256× 256× 150 voxels. All patients had 100 landmarks manually selected
by physicians on exhale and inhale frames.

The 10 following patients are from the dir-labs (DL) database which is freely
available at http://www.dir-labs.com. The original resolution of these images
was 0.97×0.97×2.5 with about 512×512×128 voxels, the five first were cropped
around the ribcage and then resampled to have about 256 × 256 × 100 voxels
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Patient Before Single region Multi regions Multi regions
with normal

Mean SD Max Mean SD Max Mean SD Max Mean SD Max
1 9.36 7.42 32.1 2.74 3.4 16.1 1.25 1.04 7.26 1.28 1.06 7.37
2 7.33 4.86 24.1 2.44 2.95 19.2 1.52 1.86 14.7 1.59 1.95 14.7
3 7.09 5.08 19.8 2.31 2.49 14.7 1.28 0.842 5.43 1.31 0.857 5.23
4 6.68 3.67 14.2 1.92 2.09 10.4 0.963 0.54 3.55 0.985 0.563 3.84
5 14 7.17 32.4 5.36 5.5 23.3 1.41 0.983 6.69 1.58 1.17 7.08
6 5.73 2.6 14 1.37 0.966 4.56 1.17 0.635 3.6 1.22 0.757 4.33

DL 1 3.89 2.78 10.9 1.51 1 6.47 1.11 0.498 2.66 1.13 0.514 2.82
DL 2 4.34 3.9 17.7 1.85 1.88 11.8 1.02 0.485 2.95 1.05 0.505 3.05
DL 3 6.94 4.05 16.6 3.21 2.36 12.9 1.49 0.773 5.51 1.79 1.02 6.16
DL 4 9.83 4.85 20.3 3.21 2.7 14.5 1.59 1.07 11.4 1.62 1.08 11.6
DL 5 7.48 5.5 24.8 4 3.72 15.8 1.83 1.51 15.8 1.87 1.55 16
DL 6 10.9 6.96 27.6 5.05 4.24 22.9 1.62 0.923 5.4 1.74 1.03 5.48
DL 7 11 7.42 30.6 6.97 6.14 26.8 1.74 1.04 6.39 2.1 1.34 7.37
DL 8 15 9 30.6 10.9 9.92 32.7 1.69 1.53 14.5 2.34 2.33 17
DL 9 7.92 3.97 15.8 4.27 2.86 13.5 1.53 0.816 4.68 1.65 0.95 5.41
DL 10 7.3 6.34 27.8 3.93 4.5 24.6 1.6 1.26 9.74 1.64 1.3 9.69
average 8.42 5.64 22.45 3.82 4.15 16.89 1.42 1.05 7.51 1.55 1.21 7.94

Table 1. Target Registration Error after 3 resolutions (in mm).

slightly changing the resolution, the five others were not cropped and kept their
original size and resolution. Each dir-labs patient has 300 landmarks on exhale
and inhale frames. The protocol used to obtain these landmarks is described in
[2] for the 5 first patients and in [1] for the others.

Protocol We used third order B-spline transformations with 32 mm between
knot points in all directions. The Mattes Mutual Information metric used 2048
voxels randomly chosen at each iteration. The moving image was interpolated
using third order B-splines. To take into account large deformations, we used
a multi resolution strategy by smoothing the image with a Gaussian kernel.
Results presented in Table 1 were obtained after 3 resolutions of 4000 iterations
each, using a 2.8 GHz single-thread processor. The multi regions methods took
around 7 minutes and 45 seconds and the multi regions with normal took around
9 minutes. This difference comes from some fixed costs like the normal vector field
computation at the beginning, the local base computation at each resolution, and
from costs involved at each iteration such as the parameters dispatch between
each underlying B-spline transform.

Results Compared to a single B-spline transformation, the use of a multi-
regions registration reduced the average target registration error from 3.82 mm
to 1.42 mm by allowing non-smooth motion on interfaces (Figure 4). The method
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(a) Single B-spline (b) Multi regions registration with nor-
mal regularization

Fig. 4. Deformation vector fields. (sampled each 4mm)

(a) Without normal B-spline (b) With normal B-spline

Fig. 5. Projection of the normal component of the deformations obtained with the two
multi region algorithms. (sampled each 4mm)

(a) Without normal B-spline (b) With normal B-spline

Fig. 6. The quality measure associated with Figure 5. (grey is better)
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presented in this study kept the target registration error low (1.55 mm) and en-
sured a better smoothness of the deformation vector field in the normal direction,
producing more realistic results (Figure 5). These results are close to the best
registered dir-labs results. Our mean registration error for dir-labs results is 1.52
mm for the multi-regions approach and 1.69 mm for the multi-regions with nor-
mal approach where best dir-labs results are 1.44 mm and 1.25 mm [1]. The
second model the 4D local trajectory using all phases of the 4DCT to obtain
such good results.

The regularity of a deformation field can be measured using the determinant
of the Jacobian of this deformation [8]. A Jacobian between 0 and 1 represents
a local expansion and a Jacobian superior to 1 a local shrinkage. We used a
logarithm to project these values on ] −∞,+∞[ (Figure 6) and took the mean
of the absolute value around the motion mask border to quantify the gain of the
separated normal B-spline transform. The quality measure

1

Nx

∑

x

| log(|Jac(proj(T (x),N))|)|

applied to our patient databases gave the results listed in Table 2 and showed
a better smoothness of the normal part of the deformation vector field with our
method.

Patient Multi regions Multi regions
with normal

1 0.206 0.165
2 0.162 0.124
3 0.168 0.123
4 0.197 0.170
5 0.328 0.215
6 0.198 0.122

DL 1 0.103 0.090
DL 2 0.135 0.116
DL 3 0.218 0.123
DL 4 0.180 0.128
DL 5 0.179 0.137
DL 6 0.318 0.204
DL 7 0.285 0.189
DL 8 0.378 0.284
DL 9 0.234 0.179
DL 10 0.224 0.164
average 0.220 0.159

Table 2. Smoothness measure of the normal part of the deformation field around the
sliding interface.
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4 Discussion and Conclusion

We presented a method to model the physiology of sliding motion using B-spline
transformations. This model was achieved by separating the motion component
collinear to the normal field from the rest of the motion and treating it on
the whole image. The tangential component was treated independently in each
region allowing discontinuity at the interface for this direction only.

Our method can be extended to handle more regions. For instance, one region
per organ can model a body in which organs are allowed to slide along each other.
The proposed method is also backward compatible with our previous workflow
based on two independent registrations. Since the normal is only required during
registration, the final result can be expressed using one B-spline per label by
reintroducing the normal coefficients.

Compared to the use of two registrations, i.e., one per label, the proposed
method has less parameters per control point around the interface (five instead
of six), showing the restricted degrees of freedom in this area. With two registra-
tions, there are three parameters for each label overlapping around the interface,
whereas our method requires two parameters for each label plus one for the com-
mon normal.

Methods that compute one registration per label also change voxel values
around the segmentation to constrain interfaces to match [14,17]. However, these
methods must segment both the moving and the fixed image, and the segmenta-
tion must be consistent between these images. In case of inconsistency, it forces
the mapping of both borders which do not represent the same physical region.
Our method, on the other hand, requires the segmentation of the fixed image
only, and the impact of a bad segmentation is less important since it only affects
the representation of the sliding motion in the mis-segmented part of the image.

In this work, the normal regularization relies on the intrinsic B-spline smooth-
ness, which depends on the knot spacing. If one increases the number of knot
points, the smoothness will be insufficient. It remains possible to use additional
regularizations expressed on the spatial derivatives of the underlying B-splines.
However, regularizations expressed directly on B-spline coefficients, such as dif-
feomorphic regularization [11], will be investigated because the direction of each
B-spline with respect to N must be enforced during registration.
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