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Abstract
Proton computed tomography (CT) has been demonstrated as a promising 
image modality in particle therapy planning. It can reduce errors in particle 
range calculations and consequently improve dose calculations. Obtaining a 
high imaging resolution has traditionally required computationally expensive 
iterative reconstruction techniques to account for the multiple scattering of the 
protons. Recently, techniques for direct reconstruction have been developed, 
but these require a higher imaging dose than the iterative methods. No 
previous work has compared the image quality of the direct and the iterative 
methods. In this article, we extend the methodology for direct reconstruction 
to be applicable for low imaging doses and compare the obtained results 
with three state-of-the-art iterative algorithms. We find that the direct method 
yields comparable resolution and image quality to the iterative methods, even 
at 1 mSv dose levels, while yielding a twentyfold speedup in reconstruction 
time over previously published iterative algorithms.

Keywords: proton CT, iterative reconstruction, stopping power

(Some figures may appear in colour only in the online journal)

1. Introduction

The primary advantage of particle therapy in cancer treatment is the sparing of healthy tissues 
thanks to the finite range of charged particles in matter. However, a very accurate prediction 
of the particle range is required in order to exploit the full benefit of the treatment, and range 
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uncertainties are currently the largest contributor to the dose margins employed (Paganetti 
2012). Several methods have been proposed for improving particle range prediction and 
verification (Knopf and Lomax 2013), including prompt-gamma imaging (Min et al 2006), 
positron-emission tomography (PET) (Bennett et al 1978, Knopf et al 2011), dual energy CT 
(Yang et al 2010a, Hünemohr et al 2014) and ionoacoustics (Assmann et al 2015). With the 
exception of dual energy CT, all of these methods are mainly concerned with in vivo range 
verification and cannot be used for dose calculation and planning. While dual-energy CT 
yields better range estimates than traditional CT, there are still significant errors, particularly 
for metals but also in tissue (Hünemohr et al 2014, Hansen et al 2015). An alternative is to 
image the patient using proton CT, where an imaging proton beam is shot through the patient 
at low intensity, the energy-loss measured, and a map of the stopping-power throughout the 
patient reconstructed. This approach was originally proposed by Cormack (1963) but suffered 
from low spatial resolution due to the effects of multiple scattering. Huesman et al (1975) 
proposed to compensate for the scattering by measuring the angles and positions of every 
individual proton, before entering and after leaving the patient. Only within the last decade, 
detectors have become fast enough to perform such measurements and computers fast enough 
for the corresponding image reconstruction.

Two prototype proton CT scanners that allow for path modelling are currently in operation 
(Hurley et al 2012, Sadrozinski et al 2013). Several papers have investigated fast iterative 
methods for proton CT (Penfold et  al 2010a, 2010b, Hansen et  al 2014a). Nonetheless, a 
medium sized computing cluster is required to achieve clinically useful reconstruction times 
even when applying such accelerated methods (Karonis et al 2013). Two faster, direct recon-
struction methods have been proposed: a filtered backprojection approach (the path-FBP) (Rit 
et al 2013) and a backprojection-then-filtering (BPF) approach (Poludniowski et al 2014). 
Barring interpolation and a truncation approximation in the BPF, the two methods are math-
ematically equivalent, but it is more straight forward to use the path-FBP method for fan and 
cone-beam type scans. Additionally, the path-FBP method was recently extended to work 
with two-step Hilbert transform-type reconstructions (Noo et al 2004), allowing for recon-
structions from truncated projections (Rit et al 2015). In this work, we demonstrate that the 
path-FBP method breaks down at low imaging doses. We consequently extend the method to 
become applicable at low imaging doses using a sinogram interpolation technique, and com-
pare the proposed technique with state-of-the-art iterative methods.

2. Proton CT reconstruction

For proton CT, the basic problem of tomographic reconstruction corresponds to solving

= + εAx f (1)

where x is the desired reconstruction of water equivalent stopping power (WESP), f con-
tains the measured water equivalent path length (WEPL) of each individual proton and ε  is 
the noise. A is a linear operator modeling the path integral of each individual proton path 
through the image. Several options exist for estimating the individual proton paths from 
the measured angles and positions, including the most-likely-path (MLP) (Williams 2004). 
Another option is to simply use a cubic spline to approximate the path (Li et al 2006), which 
was used in our previous works (Hansen et al 2014a, 2014b). The latter approach results in 
a slightly poorer spatial resolution than the MLP (Li et al 2006, Wang et al 2011). It does 
however have the advantage that it allows for fast GPU calculation of Ax without explicitly 
storing A as a matrix, as the coefficients are easily calculated on the fly. This allows for 
processing of much larger images and proton datasets, as the matrix easily contains on the 
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order of 1010 non-zero elements. For this reason, the cubic spline approach was chosen for 
this work.

2.1. Path-FBP

In parallel x-ray CT, the standard filtered backprojection is given by

( )†= ∗Au k p1D (2)

where ∗k p1D  represents the convolution of the projection data p with the 1D kernel k1D. †A  
indicates the adjoint of A, which in this case is the backprojection operator. Rit et al (2013) 
generalized this formula for proton paths. For each scanned angle θ, a 3D projection is made 
via the equation

( ) ( )† †=θ θ θ θA ⊘Ap f 1 . (3)

θf  refers to the protons measured at angle θ, ⊘ denotes elementwise division, and 1 is the vector 
with 1 in every entry and the same length as f. The second term can be seen as a normalization 
factor and the entire equation simply as the average WEPL through each voxel. If the protons 
move along straight line trajectories, no variation would be observed along the beam direction 
and equation (3) would simplify to the backprojection of a standard 2D tomographic projec-
tion. The final reconstruction from t projections is computed as

∑= ∗
θ

θ

θ θ
=t

x k p
1

0

t

 (4)

where ∗θ θk p  is the convolution of the filter orthogonal to the beam direction and the axis of 
rotation. In this work we use the Hann weighted ramp filter, with a cutoff frequency of 80% at 

=CTDEI 1 mSv and 50% and =CTDEI 0.5 mSv (Hansen et al 2014a).

2.1.1. Low dose. One problem of the path-FBP is that for low doses and high image reso-
lution, there is no guarantee that protons will pass through every image voxel from every 
scanning angle. This leaves holes in the backprojection, causing the filtering to break down. 
In fact, for the doses used in this study, such holes are almost guaranteed to appear in every 
projection (99.96% probability, assuming straight lines and uniform distribution). We propose 
a very simple approach to fix this: missing pixels are interpolated based on an average of the 
four neighbours in the projection, excluding any that might be themselves be missing. For 
a single slice scan, this only works when no three holes are adjacent. However, at doses of 

=CTDEI 1 mSv and 0.3 mm voxel width, the probability of this occurring is about 0.02% per 
scan. This increases sharply with decreasing doses, but below 1 mSv, iterative methods are 
also known to start showing artefacts (Hansen et al 2014a). This is however also dependent on 
things such as voxel size, proton energy and size of the scanned phantom, so the results may 
not be directly comparable. For even lower doses, the interpolation could be done iteratively, 
until all holes are filled.

2.2. Statistical reconstruction

Statistical image reconstruction is a widely studied topic in x-ray CT (Beister et al 2012) and 
was recently applied to proton CT as well (Hansen et al 2014a). In statistical reconstruction, 
the goal is to reconstruct the image that matches the measured data with the highest probabil-
ity given some statistical model of the noise and the image to be reconstructed. Accurately 
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modelling this for proton CT is inherently complicated and varies heavily with the energy loss 
(ICRU Report 49 and International Commision on Radiation Units and Measurements 1993). 
In this work, two different statistical models were used. In both, variance was assumed to be 
normally distributed (Gaussian); in the first the noise was assumed to be equal for all detected 
particles while in the second a more complicated model was employed. The variance of the 
ith proton was assumed to be the root mean square of the variance from the detectors (σdet) and 
the variance coming from the energy straggling of the protons (σstragl):

σ σ σ= + .i
2

det
2

stragl
2 (5)

Under the assumption that the straggling happened in a uniform medium σstragl can be calcu-
lated via the theory of Tschalär (1968). The corresponding penalized weighted least squares 
(PWLS) reconstruction problem becomes

x f x xmin s.t. 0i j k
x

2
2

, ,λ− +W A R∥ ( )∥ ( ) ⩾ (6)

where W is a diagonal matrix containing the inverse of the variance squared σ= −Wii i
2. In 

the case of uniform variance, the problem reduces to a penalized least squares problem (PLS). 
( )R x  is a noise suppressing roughness penalty and λ the corresponding weight. In this work 

the Huber norm is applied, defined by

( )
( )

( ) ⩽
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 (7)

where ( )xTV i j k, ,  indicates the well-known total variation at voxel i, j, k

( ) ( ) ( ) ( )= − + − + −− − −x x x x x x xTV i j k i j k i j k i j k i j k i j k i j k, , , , , , 1
2

, , , 1,
2

, , 1, ,
2 (8)

Equation (6) was solved using an ordered subset momentum accelerated augmented 
Lagrangian algorithm (Kim et al 2015) with 5 iterations of the Arrow-Hurwicz primal-dual 
algorithm for solving the inner denoising problem (Arrow et al 1958, Chambolle and Pock 
2011). The regularization weight λ was set to 1 for the PLS algorithm and 0.001 for PWLS for 
the Gammex phantom and 10 and 0.01 for the ICRP phantom. In both cases α = 0.02. Details 
are provided in the appendix.

2.3. Total variation superiorisation

Another iterative reconstruction method used successfully for proton CT is total variation 
superiorization (TV-SUP) (Penfold et al 2010a, Censor et al 2010). In this approach, an itera-
tive algorithm for the solution of the reconstruction problem =Ax f is modified such that 
after every iteration, an additional denoising step is taken. This relies on the iterative algo-
rithm to be robust to small pertubations and similarly relies on the denoising step to be rela-
tively small. The performance of superiorization in the presence of noise (where =Ax f does 
not have a solution) has not been studied, but the algorithm performs well for a number of 
practical applications (Censor et al 2010). In this work, an implementation of the diagonally 
relaxed orthogonal projection (DROP) algorithm (Penfold et al 2010a) was used. Again, fur-
ther details are provided in the appendix.
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3. Monte Carlo simulation

In order to evaluate the performance of each algorithm, a simulated proton CT scan was 
performed using the Monte Carlo transport code Geant4 (Allison et al 2006). The setup was 
model led after the proton CT scanners in Sipala et al (2011a) and Sadrozinski et al (2013) 
(shown on figure 1). It consists of two pairs of two silicon strip detectors, each  µ200 m thick, 
placed on each side of the phantom, allowing for detection of position and direction of indi-
vidual particles. The distance between each silicon strip detector was  5 cm, and the detec-
tors were given a spatial accuracy of  σ µ= 200xy m. A YAG:Ce calorimeter was placed after 
the position detectors, modelled after the PRIMA detector Sipala et al (2011b). Based on 

Sipala et al (2011b), an energy resolution of ( ) (   ) σ = ⋅ +E Emax 3% , 1.76 MeVE E
24.15 MeV2

 was 

assigned. Only protons were considered in the scoring. This setup was also used in a previ-
ous publication on proton CT (Hansen et al 2015). First, a phantom was scanned using 360 
angles at an energy of  250 MeV, at a dose of =CTDEI 1 mSv (Hansen et al 2014a), which 
corresponds to about 7500 protons per slice per angle. The phantom used was a replica of the 
Gammex RMI 467 electron density phantom (Gammex, Middleton, WI, USA), which has a 
diameter of  33 cm. In addition, a patient scan was also simulated, again using 360 angles but 
at an energy of  330 MeV. Here we used the female ICPR computational phantom (ICRP 2009) 
(see figure 2), and did a scan of a  10 cm slice of the lungs and a dose of =CTDEI 0.5 mSv. The 
voxelised phantom has a voxel size of × ×1.775 1.775 4.84 mm3 and consists of 141 different 
materials. After both simulations, all events in which less than 0.5% of the initial energy was 
lost and the angle between entrance and exit were more than σ3  were removed, as has been 
done in several other publications (Schulte et al 2008, Hansen et al 2014a).

3.1. Reconstruction

All reconstructions were performed on an NVIDIA Titan X GPU using the CUDA program-
ming language and the Gadgetron image reconstruction framework (Hansen and Sørensen 
2013). The reconstruction code is matrix-less, meaning that the matrix-vector products 
were implemented without explicitly forming the matrix, significantly reducing memory 
requirements. For the Gammex phantom, images were reconstructed on a ×1024 1024 grid 

Figure 1. Geometry of the simulated proton CT scan, consisting of two position 
detectors in front of the phantom and two after the phantom, followed by a calorimeter.

D C Hansen et alPhys. Med. Biol. 61 (2016) 5868
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with a 34 cm 34 cm×     size. For the Path-FBP, the generated projections had a resolution of 
×1536 64 before interpolation. For the iterative methods, 200 iterations were used to ensure 

convergence.
For the patient simulation, a voxel size of × ×0.5 0.5 0.5 mm3 was used for reconstruc-

tion, on a × ×1024 1024 200 grid. For the path-FBP, the projections then had a resolution of 
× ×1536 64 1536 before interpolation. For PLS and WPLS, 10 iterations were used, while 60 

iterations were used for the TV-SUP method. This was based on the results obtained with the 
Gammex phantom.

Further details of the code can be found in previous publications (Hansen et al 2014a, 
2014b) and the code is freely available at https://github.com/dchansen/protonCT. For all the 
iterative algorithms, 12 subsets were used as suggested by Penfold et al (2010a).

4. Evaluation

For the Gammex phantom, image resolution was evaluated by taking the task specific modula-
tion transfer function (MTF) (Richard et al 2012) of the cortical bone insert of the phantom. 
The MTF was assumed Gaussian and the =MTF 10% (MTF10%) point is reported as has been 
done in previous studies (Hansen et al 2014b, Seco et al 2013). For stopping power accuracy, 
the mean error was evaluated for each of the phantom inserts, and the largest one is reported 
for each reconstruction method.

For the patient simulation, projections of the containing the integral stopping power 
was calculated via the Radon transform for 30 different angles in a !180  span, in a grid of 

×1450 198. Points for which the ground truth projection was less than 10 cm WEPL were 
excluded to avoid edge effects. The data was summarized in an error-volume histogram (simi-
lar to a dose-volume histogram). In this analysis, the background, as well as the first and the 
last slice of the images were excluded.

Figure 2. Slice of the ICRP phantom used in this study.

D C Hansen et alPhys. Med. Biol. 61 (2016) 5868
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5. Results

5.1. Gammex phantom

The standard path-FBP is displaying a high degree of artefacts, reducing the visibility of 
the inserts as shown on figure 3. In comparison, the version using projection interpolation is 
artefact free. For the iteratively reconstructed images (shown on figure 4), all three methods 
show clear and sharp images but also small noise artefacts near the edge of the phantom. 
Additionally, a few streak artefacts can be observed across the PWLS reconstruction. The res-
olution study is presented in figure 5. The PLS and PWLS methods both show a resolution of 

    −4.0 lp cm 1, while the TV-SUP method has a slightly higher resolution of     −4.0 lp cm 1 and the 
path-FBP method a slightly lower resolution of     −3.8 lp cm 1. For the PLS and PWLS methods, 
the maximal resolution is reached after 9 iterations, while the TV-SUP method needs about 
60 iterations to reach the level of the other methods, and more than 150 iterations to reach the 
final resolution. For the error study (figure 6), the PLS method reaches a stopping power error 

Figure 3. Left: 1 mSv proton CT of the Gammex phantom, reconstructed using the 
standard path-FBP. Right: proton CT reconstructed using path-FBP with projection 
interpolation. Window level is 0 to 2 WESP.

Figure 4. Iterative reconstruction algorithms after 200 iterations. Left: penalised least 
squares (PLS), middle: weighted penalised least squares (WPLS), right: total variation 
superiorisation.

D C Hansen et alPhys. Med. Biol. 61 (2016) 5868
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of ±0.56 0.11%, the PWLS method ±0.89 0.38%, TV-SUP ±0.83 0.04% and the Path-FBP 
±0.44 0.10%. Both the PLS and PWLS methods have converged to their final value at 10 

iterations, whereas TV-SUP is not converged until after 60 iterations. The total time for the 
Path-FBP reconstruction was  8 s. For the iterative algorithms, 200 iterations took  480 s for the 
PLS and WPLS, and  450 s for the TV-SUP method. Assuming the PLS and WPLS algorithms 
were converged after 10 iterations and the TV-SUP algorithm after 60, the reconstruction time 
was  25 s,  26 s and  138 s respectively.

5.2. ICRP patient simulation

Looking at the error projection histogram on figure 7, 91% of all beampaths of the PLS image 
are within 3.5% of the true WESP value. For WPLS, this is 0% and 69% for total variation 
superiorisation. The path-FBP method falls inbetween with 28% and 34%, with and without 
interpolation respectively. Looking at the reconstructions themselves as well as the reconstruc-
tion error (figures 8 and 9), a high degree of streak artefacts can be seen in the WPLS image, 
while both TV-SUP and path-FBP methods show a moderate degree of noise. In the PLS image, 
the noise is more suppressed, and it is possible to distinguish different tissue types visually.

Reconstruction time was 240 min for both the PLS and WPLS methods, 1130 min for 
TV-SUP and 12 min for the Path-FBP.

6. Discussion

One surprising result of this study is the low spatial resolution obtained as reported by the 
MTF measurements. While our findings are consistent with the values reported by Li et al 

Figure 5. Plot of resolution (as calculated from the MTF  =  10% point (Richard et al 
2012)), as a function of the number of iterations for four different reconstruction 
algorithms. Note that the Path-FBP is not an iterative algorithm.

D C Hansen et alPhys. Med. Biol. 61 (2016) 5868
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Figure 6. Plot of the largest mean stopping power error of the inserts in the phantom 
as a function of iterations for the four different reconstruction algorithms. Note that the 
Path-FBP is not an iterative algorithm.

Figure 7. Plot of the relative error projection histogram of the patient simulation for the 
four different reconstruction algorithms. The plot denotes the percentage of beampaths 
below a specific error threshold.

D C Hansen et alPhys. Med. Biol. 61 (2016) 5868
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(2006), later studies by Hansen et al (2014a), reported an    = −MTF 9 lp cm10%
1 and in Penfold 

et al (2010a) the MTF10% was reported to be over     −60 lp cm 1. However, in both studies smaller 
phantoms were used, and in Hansen et al (2014a), detector resolution was not considered. 
In this study, while the TV-SUP algorithm does reach slightly higher resolution, it does so 
at the cost of accuracy. The convergence of the algorithm is also slower than what has been 
reported previously. We do however note that the data in this study is significantly more noisy, 
both due to the detector noise but also due to the larger phantom. This is well known to affect 
the performance of iterative optimization algorithms (Kelley 1999). For the patient phantom, 
TV-sup reached a much higher noise level than for the Gammex phantom, presumably due to 
the lower dose per voxel. It is possible that reducing the step-size and the number of subsets 

Figure 8. A mid slice of the simulated ICRP patient scan, reconstructed with the 
four different reconstruction algorithms. Top row, left: penalised least squares (PLS), 
right: weighted penalised least squares (WPLS). Bottom row, left: total variation 
superiorisation, right: path-FBP with interpolation. Window level was set from 0 to 2 
WESP and the background was removed.

Figure 9. Images showing absolute error for a single slice of the simulated ICRP 
patient scan. Top row, left: penalised least squares (PLS), right: weighted penalised 
least squares (WPLS). Bottom row, left: total variation superiorisation, right: path-FBP 
with interpolation. Window level was set from 0 to 2 WESP and the background was 
removed.
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could have improved this, however as the authors were using previously recommended values, 
such modifications was considered beyond the scope of the present work.

Another result worth emphasizing is that the PWLS method performs worse than the sim-
pler PLS method. There can be two explanations for this: first of all, the basic assumption of 
Gaussian distribution and uniform medium might not be sufficiently accurate, in particular for 
complex geometries such as a patient. Secondly, greater weight is given to protons that have 
lost little energy, meaning that the method is less robust if the estimated path of such events is 
not accurately predicted. This could for instance be the result of nuclear collisions. This expla-
nation is consistent with the streak artefacts seen across the reconstructed Gammex phantom.

For the path-FBP, the resolution is slightly lower than the other methods due to the fre-
quency cutoff in the Hann filter. Harder filters were considered but resulted in a much higher 
noise level and visually inferior image quality. As it is, the path-FBP has a significantly lower 
error than both the WPLS and TV-SUP methods and a much faster reconstruction time. While it 
is only three times faster than the PLS and WPLS method, it is 22 times faster than the TV-SUP 
method in 2D. It is expected that this will also hold at higher dose levels, as the forward and 
backprojection dominate the computational cost for both the path-FBP and iterative methods. 
Additionally, at higher dose levels the noise levels for the path-FBP are expected to drop sig-
nificantly. In 3D, for the patient phantom, the speed gain was much more significant, with the 
path-FBP method being 20 times faster than PLS and WPLS, and almost 100 times faster than 
the TV-SUP method. This is due to the larger data size, which means that not all data can fit on 
the GPU at once, and there is a significant overhead in transferring data to and from the GPU. 
If the order of magnitude of the data was fixed (as would be the case in a clinical setting), the 
algorithms could be optimized to hide some of this overhead, reducing the speed difference.

For the ICRP phantom, the errors are generally larger than the often used 3.5% Yang et al 
(2012) for x-ray CT. The error for proton CT is however random, while x-ray CT yields sys-
tematic, tissue dependent, errors which may be larger for certain patients Yang et al (2012). 
Other authors have also reported stopping power errors as high as 8% in a clinical setting 
Moyers (2014). Even so, at these dose levels the error in the path-FBP images is larger than 
what would be used for treatment planning. They would still make a useful tool for identifying 
systematic deviations or changes in patient stopping power however.

While the PLS method yielded the best results for ICRP phantom, it is important to stress 
that the original phantom is piecewise constant. The Huber norm used for regularization was 
thus highly effective, as the phantom had many large and uniform areas. While it would have 
been possible to do simulations based on x-ray CT scans, these would have suffered from the 
noise and beam-hardening artefacts in the original x-ray images. The presented images are 
thus a good compromise, until real proton CT scans become feasible.

Further studies should also investigate the impact of each reconstruction technique on 
proto n dose distributions as done with the path-FBP method by Arbor et al (2015).

7. Conclusion

In this study, we have compared three different iterative methods and a single direct method 
(path-FBP) for the reconstruction of low dose proton CT. The direct method, together with 
the iterative penalised least squares method yielded the lowest reconstruction error, while the 
difference in resolution of the investigated methods was less than 10%. We have also demon-
strated that proton CT of clinically relevant size and resolution can be reconstructed in less 
than 15 min using a desktop using a single GPU. In short, the path-FBP algorithm provides 
high quality reconstructed images, while being an order of magnitude faster than previously 
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published iterative algorithms and three times as fast as the fastest iterative algorithm pre-
sented in this paper.
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Appendix. Algorithms

Algorithm 1. Momentum accelerated ordered subsets method with augmented 
Lagrangian multipliers for penalized weighted least squares (PWLS) (Kim et al 2015).

1 function OS-MOM(f)
2      x0 ← 0
3      g † †AW WA1 ▹ SQS diagonal preconditioner

4      t0 ← 1
5      for ←    k 1 to iterations do
6        for ←    l 1 to subsets do ▹ Loop over subsets
7         m ← + ×l k subsets
8         ∗ym  ← ( )†⋅ − −A A ⊘f x gsubsets m

l l l
1 ▹ ⊘: elementwise-division

9         ym ← DENOISE( ∗ym ,g) ▹ Denoise using algorithm 2

10         tm ← + + ⋅− −( )t t1 1 4 m m1
2

1 1

11         xm ← ( )+ −− −−
y y ym t

t
m m1 1m

m

1 Momentum acceleration step

12    return xfinal

Algorithm 2. Arrow Hurwicz denoising (Arrow et al 1958, Chambolle and Pock 
2011).

1 function DENOISE(x g,0 )
2    τ1 ← 10−3

3    γ ← 0.35

4    σ1 ← 
τ

1
16 1

5    for ←    k 1 to iterations do
6      pk ← ¯σ+− −Ky xk k k1 1 ▹ K calculates the finite difference

7      yi
k ← ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

σ α

σ α

+

+
max 1,

i
k

k

i
k

k

p

p

1

1

8      ∗xk  ← †τ− + τ
λ

− K ⊘x y x gk k k1 0k

9      xk ← ∗⊘x gk

10      θk ← 
γτ+

1
1 2

11      τ +k 1 ← θ τk k

12      σ +k 1 ← σ
θ

k

k

13     return ( )P xfinal ▹ P sets all negative elements to 0
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