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Abstract—The aim of this work was to propose an analytic
reconstruction of two-dimensional CT images in the presence
of both patient motion and truncation of the projection data.
The proposed method is based on the method of differentiated
backprojection with Hilbert filtering (DBP-H). There is a variant
of this algorithm which suits our purpose because it begins
with a simple backprojection of the unprocessed projection data.
The motion correction can be achieved by incorporating an
analytic deformation compensation at the backprojections step,
then the algorithm proceeds as usual. A simulation experiment
was performed on a slice of the Shepp Logan phantom subject to
a geometry-preserving deformation. The setup was such that the
solutions of the deformation problem alone or of the truncation
problem alone are known, but not that of both at the same time.
The results demonstrate the efficacy of our approach, and that
this type of reconstruction is feasible.

I. INTRODUCTION

THIS work describes an analytic reconstruction method for

two-dimensional (2D) motion-compensated tomographic

image reconstruction from laterally truncated projection data.

Combining region-of-interest (ROI) reconstruction with mo-

tion compensation is a challenging and pertinent issue in

the field of tomography. So far, existing analytic methods

only handle one problem or the other in isolation. ROI

tomography has emerged during the 2000s [1] [2] [3] [4]

[5] [6], after having been considered impossible for two

decades. One of the main analytic reconstruction methods

capable of handling lateral truncation belongs to the family

of Differentiated Backprojection algorithms with Hilbert fil-

tering (DBP-H), introduced in 2004 [1]. DBP-H algorithms

can provide mathematically correct reconstructions along any

line segment completely traversing the object provided this

line segment remains completely visible in all projection

views [5] [6]. Motion compensated reconstruction based on

analytic motion models are known for a variety of motion

classes, rigid, affine and even more general [7] [8] [9] [10]
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[11]. However, although algorithms belonging to the DBP-

H family are known to be capable of exact reconstruction

from laterally truncated data [1] [5] and have been used in

the context of motion-compensated reconstruction [9] [12], to

our knowledge, handling both analytic motion compensation

and truncated projections simultaneously is new.

II. THEORY

A. Notation

Let ~x = (x, y)T be a point in the image space, the origin

being set at the center of rotation of the gantry. Let f(~x)
be the density function describing the imaged object. The

parallel projections of this object are defined as (see Fig. 1

for illustration)

p̄(s, θ) =

∞
∫

−∞

f(s~θ + r~θ⊥)dr (1)

with

~θ =

(

− sin θ
cos θ

)

(2)

~θ⊥ =

(

cos θ
sin θ

)

(3)

and for fan-beam projections,

p(α, β) =

∞
∫

0

f(~vβ + t~α)dt (4)

with

~vβ = R

(

sinβ
cosβ

)

(5)

~α =

(

sin(α+ β)
− cos(α+ β)

)

(6)

where the angles are measured counterclockwise and R is the

radius of the source path.

It can be shown directly from (1) and (4) that

p̄(s, θ) = p(α, β) (7)

with

θ = α+ β −
π

2
(8)

s = R sinα (9)
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Figure 1. The fan-beam projection geometry. The source is at ~vβ and
the trajectory radius is R. A measurement ray in the fan-beam geometry
is parametrized by (α, β). Also shown are the equivalent parameters (s, θ)
expressing the same ray in parallel projection geometry.

B. Motion model

Following [11], we consider the restrictive class of motions

that can be modelled by a geometry-preserving deformation

Γ, which maps a fan to a different fan. The deformation is

assumed to be known.

Mathematically, this deformation can be described by a

bijective function Γβ which depends on the gantry angle β

Γβ : [−αm, αm] −→ [−αm, αm] (10)

with

Γβ(−αm) = −αm (11)

Γβ(αm) = αm (12)

for every value of β. The dynamic density function fβ(~x),
which evolves with increasing gantry angle β, can be linked,

via the deformation function Γ, to the reference object f0:

fβ(~x) = fβ(~vβ + t~α) = f0(~vβ + t~α′) (13)

for some t ∈ R
+, where

~α′ =

(

sin(Γβ(α) + β)
− cos(Γβ(α) + β)

)

. (14)

C. Method

Our reconstruction method is based on an algorithm from

the DBP-H family. The principle of the DBP-H reconstruction

lies in the following relation

bφ(~x) = −2πHφf(~x) (15)

where bφ(~x) is defined as the backprojection of the differen-

tiated parallel projections,
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Figure 2. Geometry-preserving deformation: A fan in the reference image
(left) will be transformed into a fan of the same size and position, but
individual rays within the fan will be found under a different in-fan angle
(right).

bφ(~x) =

φ+π
∫

φ

∂

∂s
p̄(s, θ)|

s=~x·~θ
dθ (16)

and where Hφ denotes Hilbert filtering along the vector
~φ⊥ = (cosφ, sinφ)T [1]. For φ = 0, the Hilbert filtering will

be carried out along the horizontal axis.

Equation (15) describes the backprojection from parallel

projections with the partial derivative taking place along the

detector, in sinogram space. Our aim being to reconstruct the

image from a deformed fan-beam sinogram, the following

changes will be made to the basic DBP-H method:

1) Switch the order of backprojection and derivative so

that the latter takes place in the image space, thus

allowing motion correction to take place immediately

at backprojection time, without the complication of the

derivative in the projections.

2) Convert the backprojection formula from parallel to fan-

beam geometry.

3) Adapt the backprojection according to the deformation

model.

Because we reverse the backprojection and differentia-

tion steps, we prefer to use the name “BP-D-H” (for

BackProjection-Derivative-Hilbert filtering), rather than the

usual DBP(-H) for “Differentiated BackProjection” or the

sometimes used BPF (BackProjection-Filtration).

1) Backproject first: Zeng [13] exchanges the order of the

backprojection and the differentiation steps. The following

result is obtained and can be demonstrated by evaluating the

right hand side using the chain rule for differentiation.

bφ(~x) =
∂

∂x
bs,φ(~x) +

∂

∂y
bc,φ(~x) (17)



where

bs,φ(~x) =

φ+π
∫

φ

p̄(~x · ~θ, θ)(− sin θ)dθ

bc,φ(~x) =

φ+π
∫

φ

p̄(~x · ~θ, θ)(cos θ)dθ

(18)

are backprojections from parallel projections, weighted by

− sin(θ) and cos(θ) respectively.

2) Fan-beam data: We now need to modify (18) for full

scan fan-beam data. First, if we use full scan parallel data,

every ray is measured twice, once at θ and a second time at θ+
π. To take this into account, we need to modify the sin θ and

cos θ weighting terms so that they become π-periodic (in order

for the weight to be the same for both measurements of the

ray). The π-periodic weights are | sin(θ)| and cos(θ mod π)
respectively.

Then we can do the change of variables to pass to fan-

beam data. Using similar steps to Wei [14], we obtain the same

formulas as in [13] and [14], up to the angular convention (see

(8)) which modifies the weighting terms and makes a cosine

expression appear in bs,φ and a sine expression in bc,φ:

bs,φ(~x) = −
1

2

φ+2π
∫

φ

p(α, β)| cos(α+ β)|dβ (19)

bc,φ(~x) = −
1

2

φ+2π
∫

φ

p(α, β) (sin(α+ β)sgn(cos(α+ β))) dβ

(20)

where α = arcsin((x cosβ + y sinβ) /L) and where L is the

ray length, L = ‖~x− ~vβ‖.

3) Motion compensation: When motion is present, the

projections pm of the dynamic image fβ can be linked to

the static projections p by

pm(α, β) =

∞
∫

0

fβ(~vβ+t~α)dt =

∞
∫

0

f0(~vβ+t~α′) = p(Γβ(α), β)

(21)

Therefore, since Γβ(α) is bijective, we also have p(α, β) =
pm(Γ−1

β (α), β), and replacing the former by the latter in

(19) and (20) yields the motion compensated backprojection

formulas

bs,φ = −
1

2

φ+2π
∫

φ

pm(Γ−1

β (α), β)| cos(α+ β)|dβ (22)

bc,φ = −
1

2

φ+2π
∫

φ

pm(Γ−1

β (α), β)(sin(α+β)sgn(cos(α+β)))dβ

(23)

with, again, α = arcsin((x cosβ + y sinβ) /L).
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Figure 3. The elliptic phantom, the full (full circle) and reduced (dashed
circle) fields-of-view and their associated detector lengths. Using a reduced
field-of-view induces lateral truncation of the projections measured. In gray,
the zone theoretically reconstructible from truncated projections using hori-
zontal Hilbert filtering. See main text for an explanation of the dimensions of
the detector and the two FOVs.

4) Finite Hilbert inverse: Combining (15) and (17) yields

∂

∂x
bs,φ(~x) +

∂

∂y
bc,φ(~x) = −2πHφf(~x) (24)

where bs,φ and bc,φ can be obtained either using (18) or (22)

and (23), depending on whether we are using the static or

motion-distorted sinogram. The last part of the reconstruction

method consists of applying the inverse Hilbert transform to bφ
(which equals the right hand side of (24)) to obtain the final

image. As in [1], we used the finite Hilbert transform from

[15] to invert Hφf(~x). In the following simulation, we used

horizontal filtering, φ = 0, and therefore this finite inversion

was performed on horizontal lines. The a priori image support,

on which this finite inversion is performed, was assumed to

be completely contained within the disk centered at origin and

with a radius of 120 mm (slightly larger than the major half-

axis of the elliptic phantom).

5) Truncation geometry: Fig. 3 shows the full and limited

FOV around our phantom. The smaller FOV intersects the

phantom, causing truncation. The zone for which all horizontal

lines are measured even with a reduced FOV, and therefore the

DBP-H / BP-D-H reconstruction is theoretically possible [6],

is highlighted in gray.

III. SIMULATIONS

We tested our method on an off-center slice of the 3D

Shepp-Logan phantom [16], whose support is an ellipse with

half-axis lengths of 113 and 85 mm, for the following cases:

1) static phantom, no truncation

2) dynamic phantom, no truncation

3) static phantom, truncated and

4) dynamic phantom, truncated.

The deformation function used for the dynamic phantom was

described in Desbat et al. [11]. Fig. 4 shows the phantom

deformed by our function Γβ(α) for various values of β.

The truncation was turned on and off by setting the detector

length to different values. For the non truncated simulations,



the virtual flat detector had a length of 340 mm, yielding a

field-of-view with a radius of approximately 150 mm. If the

truncation was to be present, the virtual detector length was

reduced to 280 mm, which in turn constrained the FOV radius

to approximately 100 mm. In both cases, the source-to-detector

distance was 480 mm and the source-to-isocenter distance was

360 mm. There were 768 projections generated for regularly

sampled values of β between 0 and 2π.

IV. DISCUSSION AND CONCLUSION

Fig. 5 shows the results of our simulation. The second

column shows the catastrophic effect of uncorrected motion

deformations. By comparing the bottom row to Fig. 3, we

can note that the theoretical prediction of the reconstructible

ROI was correct. Visually, there is little to no difference

between the first and third column, therefore we can consider

the motion compensation successful.

However, the horizontal profiles on Fig. 6 show a small

underestimation of the reconstructed values in the motion

compensated case, more visible in the truncated case. The

exact source of this offset is currently under investigation

and seems to be related to rounding errors and similar

implementation problems.

As for future development, using multiple runs of the

algorithm with different Hilbert filtering directions, we can

expect to extend the correctly reconstructed ROI. It would

also be interesting to adapt our algorithm to other motion

models (for example, combining in-fan deformation as in here

with source displacement). Multiple phantoms, truncation

geometries and a test on noisy data or clinical data with

artificially computed motion would also be interesting.

Overall, we consider this result to be a successful proof of

concept and encouraging for our future work on CT recon-

struction techniques aiming to handle truncation and motion

compensation simultaneously.
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Figure 4. The deformed phantom visualized at different moments during the measurement. Due to different angular conventions here and in [11], the motion
was parameterized by (β − π/2) mod 2π instead of just β. From left to right: β = 90◦ (reference time), β = 210◦, β = 10◦, β = 89◦.

Figure 5. Top row: Reconstructions obtained from non-truncated data. Ratio of the phantom half-axes to FOV radius 4:3:5. Bottom row: Reconstructions
from truncated data. Ratio of the phantom half-axes to FOV radius 12:9:10. Columns from left to right: 1. Reconstructions from static projections. Gray level
range: [1.0,1.06]. 2. Reconstructions obtained from applying the static algorithm to dynamic projections. Gray level range: [0.8,1.2]. 3. Motion compensated
reconstructions from dynamic projections. Gray level range: [1.0,1.06]. 4. Difference between static and motion-compensated reconstruction (column 1 -
column 3). Gray level range: [-0.01,0.01].



Figure 6. Horizontal profiles across the reconstructed image at y = 15.75 mm. Left: Full data. Right: Laterally truncated data.


