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Abstract—In this paper, we compare analytic and iterative fan-beam
reconstruction approaches when the object undergoes some rigid motion
during the scan, and in the situation of truncated projections. Based
on our recent work presenting an exact analytic reconstruction method
for this problem, we are able to predict the field of theoretically
reconstructible points for our method. The object motion is handled by
using a reference frame attached to the object, which therefore appears
static while the source trajectory undergoes a non-circular “virtual”
motion. We implemented the iterative reconstruction as the convex
minimization of a data-fidelity term under non-negativity constraint and
regularization to solve this static problem with virtual source trajectory.
We compared the reconstructed field of view for the two methods on
2D fan-beam Shepp-Logan phantom simulations. Our results show that
both methods validate the predicted reconstructible zone and correlate
well in terms of reconstruction quality. The iterative reconstruction also
demonstrates that in certain cases it is possible to recover structures
beyond the strict analytic frontier of reconstructibilty.

Index Terms—Tomography, Region-Of-Interest Tomography, Dynamic
Tomography.

I. INTRODUCTION

In [1], we reported on a method for performing exact analytic
2D fan-beam reconstruction when the object of interest has under-
gone a perfectly known rigid translation during the circular scan,
also involving data truncation. Rigid object motion transforms the
circular source trajectory into a virtual one which can involve data
truncation. The method exploits the data redundancy from the 2π
source trajectory to extend the field of reconstructible points where
Differentiated Back-Projection with Hilbert filtering (DBP-H) [5] can
be performed. The algorithm was tested in a proof-of-concept study
on Shepp-Logan phantom simulations with several motion cases and
detector sizes.

In this paper, we compare the results given by our analytic
algorithm with an iterative reconstruction approach, particularly in
terms of the predicted field of reconstructible points. Our results
from Shepp-Logan phantom simulations show a very good match
regarding the almost perfectly reconstructed zone of the phantom, and
highlight possibilities for the iterative method to reconstruct beyond
the predicted field of view.

II. MATERIALS AND METHODS

A. Geometry

Our work takes place in the context of 2D fan-beam reconstruction
from a circular scan around the object. The geometry is illustrated
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Fig. 1. The fan-beam projection geometry. The source is at ~vβ and the trajec-
tory radius is R. A measured ray in the fan-beam geometry is parametrized
by (α, β). Also shown are the equivalent parameters (s, θ) expressing the
same ray in the parallel projection geometry.

in Fig.1. Fan-beam projections of a density function f(~x) can be
written as:

p(α, β) =

∫ ∞

−∞
f(~vβ − t~αβ)dt (1)

with β the polar angle of the source from the vertical axis and
~vβ = R~β = R(− sinβ, cosβ)T the source position. The fan angle is
denoted α and ~αβ = (− sin (α+ β), cos (α+ β))T is the direction
of the ray emanating from the source. The angular conventions taken
here are illustrated Fig. 1.

Fan-beam data p(α, β) can be related to equivalent parallel-beam
projections p̄(s, θ) via the following change of variables:

θ = α+ β − π

2
(2)

s = R sinα, (3)

therefore
p(α, β) = p̄(R sinα, α+ β − π

2
). (4)

B. DBP-H Formula

We summarize here our analytical reconstruction method, which
was presented in [1]. This method belongs to the DBP-H fam-
ily, sometimes called simply DBP, or BPF, for Backprojection-
Filtration. More specifically, the DBP-H algorithm used here is of
the “backproject first” approach [9], which begins by performing two
backprojections of the unprocessed sinogram data onto the target
pixel grid. Then, via a simple sum of partial derivatives of each
weighted backprojection, we obtain the same Hilbert image of the
object of interest as if we had performed a differentiation along the
flat detector before backprojecting.

The general DBP-H reconstruction formula is given by

Hφf(~x) =
−1

2π
bφ(~x) =

−1

2π

∫ φ+π

φ

∂

∂s
p̄(s, θ)

∣∣∣
s=~x·~θ

dθ. (5)
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where Hφf denotes a 1D Hilbert transform along the vector ~φ =
(cosφ, sinφ)T . With the “backproject first” approach, we obtain
bφ(~x) by the following relation (see [1] or [9] for full derivation):

bφ(~x) =
∂

∂x

∫ φ+π

φ

p̄(~x · ~θ, θ)(− sin θ)dθ (6)

+
∂

∂y

∫ φ+π

φ

p̄(~x · ~θ, θ)(cos θ)dθ

where ~θ = (− sin θ, cos θ)T .

1) Handling motion and truncation for DPB-H reconstruction:
The “backproject first” DBP-H algorithm is useful in the context of
motion-compensated reconstruction, since all motion corrections can
be included before the sinogram data is processed in any manner.
Our algorithm from [1] does just that when it rearranges motion
contaminated full-scan fan-beam data into an equivalent, static,
parallel-beam geometry.

When the object undergoes a (rigid) translation, the sinogram data
may become truncated (when part of the object “leaves” the scanner’s
field-of-view during the scan). Since a rigid displacement of the
object (described by a vector ~dβ parametrized by the gantry angle)
is equivalent to a deformation of the X-Ray source trajectory by
subtracting the same vector from its physical path, static truncation
(due to limited detector width) and dynamic truncation (induced by
object motion) can be handled as the same problem.

Observing the virtual trajectory ~vβ − ~dβ , we recall that with the
DBP-H methods, we can compute a Hilbert image of a point if it is
observable from a large enough segment of the (here, virtual) trajec-
tory [5][6][8]. Such a point becomes theoretically reconstructible via
(5). We refer to this type of point as a Hilbert point.

Taking advantage of the data redundancy inherent to a full scan,
our algorithm can also recover points for which such a segment of the
virtual trajectory is not available, but where data from the opposite
side of the scan can fill in the gap. See [1] for details.

In practice, to reconstruct the object, we also need to be able to
invert the Hilbert transform of the points we obtain. With a small a
priori about the image support, we can invert Hilbert points using
the finite-support Hilbert transform inversion formula from [3] on all
line segments of Hilbert points which cross the entire object support.
This condition also influences the choice of the angle φ.

C. Iterative reconstruction method for truncated projections and a
virtual trajectory

Our iterative reconstruction algorithm looks for the static image f
which minimizes the least squares criterion - the data-fidelity term -
under a non-negativity constraint, with a regularization term:

f+ = arg min
f≥0

{∥∥∥Rβ · f − pβ
∥∥∥
2

2
+ µJprior(f)

}
, (7)

where pβ = {pβk |k = 1 . . . Nβ} stands for the set of Nβ fan-beam
projections, and Rβ is the model of fan-beam projections along the
virtual (perturbed) source trajectory at the virtual angular positions
{βk|k = 1 . . . Nβ}.

The data-fidelity term ensures consistency of the model with
the data. A non-negativity constraint is added as the object to be
reconstructed is known to have positive values. The term Jprior

accounts for prior information. The constraint and the regularizer
are necessary for the reconstruction algorithm to effectively converge
to a relevant solution, avoiding artifacts amplifications and noise.
The hyperparameter µ controls the tradeoff between data fitting and
regularization.

We chose an edge-preserving smoothness regularizer expressed as
a relaxed total variation (TV) prior [7]:

Jprior(f) =
∑

i

√
‖∇i · f‖22 + ε2 , (8)

with ε > 0 the relaxation parameter and ∇i a finite difference
operator approximating the spatial gradient at position i.

The minimization of (7) was carried out by the VMLM algorithm
[4], a limited memory quasi-Newton method, for which we have
added the handling of the non-negativity constraint.

III. SIMULATIONS AND RECONSTRUCTIONS
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Fig. 2. Top left: Representation of motion 1. Bottom left: Representation
of motion 2. Top right and bottom right: virtual trajectory, static FOV and
regions of Hilbert points (in black) obtained respectively with the motions 1
and 2.

We simulated the projection data of an off-centered slice of the 3D
Shepp-Logan phantom [2] for two cases of rigid motion of the phan-
tom. Each case corresponded to a sequence of constant-velocity trans-
lations of the phantom during a circular scan of radius R = 360 mm
with a flat detector at 480 mm from the source. Motion 1 consisted of
translations that occurred only during scan intervals β ∈ [70◦, 90◦]∪
[159◦, 185◦] ∪ [240◦, 270◦], which were respectively translations by
vectors R(−0.05,−0.02)T , R(0.08, 0.02)T , R(0.05,−0.04)T . Mo-
tion 2 consisted of a single translation, occurring during the scan
interval β ∈ [45◦, 315◦], by the vector R(0.5, 0)T . The rigid motions,
as well as the equivalent (“virtual”) source trajectories, are illustrated
in Fig.2.

In this study the motion was assumed to be perfectly known,
so was the corresponding virtual trajectory. For both methods, we
reconstructed an image of 510× 510 pixels with a sampling rate of
1 mm in both directions.

The analytic method proceeds by first introducing a map of Hilbert
points. Its comparison with the a priori known phantom support helps
to identify convenient Hilbert filtering directions. Once the direction
is chosen, the corresponding Hilbert images are generated, and finite
Hilbert inversion carried out along Hilbert lines. More details can be
found in [1].
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a) b)

c) d)

Fig. 3. Reconstructions of simulated cases motion 1 (first column) and
motion 2 (second column) with the iterative reconstruction method. (a-b)
Reconstruction without non-negativity constraint and without regularization.
(c-d) Reconstruction with non-negativity constraint and without regularization.

For the iterative reconstruction, the value of ε was chosen to be
10−3, i.e. 1/10 of the minimum contrast value of the Shepp-Logan
phantom. Therefore structures with contrast larger than this value
would be preserved in the image, and smoothed otherwise. The
hyperparameter µ was carefully tuned “by hand” until a satisfactory
reconstruction quality was reached. A suitable value found was
µ = 103. The quality of the iterative reconstruction strongly depends
on the degree of regularization. In general, a low value of µ or no
regularization causes errors due to reprojection model approximations
and noise amplification. Therefore, it is essential to regularize the
solution, and preliminary results tended to verify this claim, as
illustrated in Fig. 3 compared to Fig. 4(f)(g). Furthermore, we
observed in our reconstructions a dramatic effect of the non-negativity
constraint appeared to drive the algorithm to “put the information in
the right zones”, see Fig. 3(c)(d) compared to Fig. 3(a)(b).

Fig. 4 shows the reconstructions obtained with both methods. Fig. 5
displays horizontal profiles taken across two different horizontal lines
through the phantom.

The analytic reconstructions were accurate in the predicted regions.
We recall that the method proposed is mathematically correct for
the intersection of the region of Hilbert points with all lines that
traverse the (known) support of the object without contracting a non-
Hilbert point. For motion 2, a set of Hilbert points not satisfying
this condition was easily identified and corresponds to the bright
white region of Fig. 4(e). For the reconstructions of motion 1 with
horizontal filtering (φ = 0), the profiles in Fig. 5 indicate excellent
quantitative reconstruction in the predicted regions (Fig. 4(c)). For
reconstructions with an oblique filtering directions (Fig. 4(d)(e))
however, there seemed to be at times a small positive bias related
to the difficulties of choosing the right constant for the finite Hilbert
inversion, visible as faint light bands along the filtering direction.

For the iterative reconstruction, we immediately note that the
effective reconstruction zone stretches beyond the boundary between
the theoretically reconstructible and non reconstructible points, even
though the error is higher in the zone of uncertainties (cf. Fig. 4(h)(i)
and Fig. 5). This behavior is probably due to these regions suffering

e)

f) g)

h)

d)

i)

c)

b)

Fig. 4. Reconstructions of simulated cases motion 1 (first column) and
motion 2 (second column) with both the analytic and iterative reconstructions
methods. (a-b) Predicted FOV of reconstructible points. (c-e) Reconstruction
with the analytic DBP-H method. (c) and (d) both correspond to motion
1, using different values of φ. (f-g) Iterative reconstruction. (h-i) Absolute
value of the difference’s map between ground truth image and iterative
reconstruction, superimposed with the predicted FOV (in cyan).

only small amounts of missing data that prevent an analytic solution.
The iterative algorithm was able to recover some structures. We note

The 4th International Conference on Image Formation in X-Ray Computed Tomography

591



a) b)

c) d)

(a-b)

(c-d)

truth

iterative
analytic

Fig. 5. Profiles taken in the reconstructions of Fig. 4. (a-c) motion 1. (b-d)
motion 2. Note that the vertical scale for (a) and (b) is magnified by nearly
2.5 times compared to the one for (c) and (d).

that the regularization played a strong role here because Fig. 3 showed
poor recovery of the iterative algorithm in exactly the “non-Hilbert
point” areas of the object. In general, the quality of such extrapola-
tions is strongly object-dependent, and some lines of response can
bring more information than others if the structures are oriented in
suitable directions. We also notice from the profiles of Fig. 5 that
injecting regularization causes some bias in the recovered values of
the finer structures even in the areas identified as reconstructible. This
can be mitigated by decreasing the value of the hyperparameter µ, but
at the cost of increasing the variance of reconstruction errors as seen
in Fig. 3. Hence the regularization in our experiments showed the
usual trade-off between bias and variance of the solution. However,
there is no indication in the “non-reconstructible” region which
features are correct and which are incorrect. Although, in Fig. 4(g),
the large black ellipsoid on the right is correctly recovered, the small
white ellipsoid at the bottom is completely missing.

IV. DISCUSSION AND CONCLUSION

The results of our simulations show good coherence of the re-
constructible regions predicted by the analytic method and the part
of the image where the reconstruction by the iterative method was
quantitatively successful. The iterative method, however, manages to
recover certain features outside that region in a way which is still
readable, although great care must be taken with interpreting such
features in the non-reconstructible zone.

Our results also showed that the regularization and non-negativity
constraint were essential for the iterative reconstruction to produce a
good trade-off between bias and variance.

The analytic method’s potential was constrained by the need to
have Hilbert points aligned on a segment crossing the object support
entirely in order to be able to recover that part of the image. Im-
plementing an iterative one-sided Hilbert transform inversion method
alongside the analytic backprojection could lead to a reconstruction
method where the whole reconstructible region is recovered.

REFERENCES

[1] J. Hoskovec, R. Clackdoyle, L. Desbat and S. Rit. Exact fan-beam recon-
struction with arbitrary object translations and truncated projections. To
appear in: IEEE Trans. Nucl. Sci., 2016.

[2] A.C. Kak and M. Slaney. Principles of Computerized Tomographic
Imaging. Piscataway, NJ, 1988.

[3] S.G. Michlin and A.H. Armstrong. Integral equations and their appli-
cations to certain problems in mechanics, mathematical physics and
technology. London, 1957.

[4] J. Nocedal. Updating quasi-Newton matrices with limited storage. Math-
ematics of computation, vol. 35, no. 151, pp. 773-782, 1980.

[5] F. Noo, R. Clackdoyle, and J.D. Pack. A two-step Hilbert transform
method for 2D image reconstruction. Phys. Med. Biol., vol. 49, no. 17,
p. 3903, 2004.

[6] J.D. Pack, F. Noo, and R. Clackdoyle. Cone-beam reconstruction using
the backprojection of locally filtered projections. IEEE Trans. Med. Imag.,
vol. 24, no. 1, pp. 70–85, 2005.

[7] L.I. Rudin, S. Osher and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, vol. 60, no. 1, pp.
259-268, 1992.

[8] D. Xia, E. Sidky, L. Yu, Y. Zou, and X. Pan. Exact ROI image
reconstruction with perturbed source trajectories in C-arm CT. Nuclear
Science Symp. Conf. Rec., vol. 4. IEEE, 2005, pp. 4–pp.

[9] G.L. Zeng. Image reconstruction via the finite Hilbert transform of
the derivative of the backprojection. Med. Phys., vol. 34, no. 7, pp.
2837–2843, 2007.

The 4th International Conference on Image Formation in X-Ray Computed Tomography

592


