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Abstract—Data consistency conditions are equations that
should be satisfied by the projection data if the underlying
line integral model perfectly matches the physical reality. In
this work, we propose two cone-beam consistency conditions
based on previous theoretical works. The source trajectory is
circular, with the detector oriented perpendicularly to the plane
of the trajectory, as usual. The conditions apply equally well to
any planar source trajectory. We introduce two DCC functions
that are applied to the cone-beam projections, such that the
same constant function value occurs for all projections provided
the data are consistent. Evaluations of the functions are easily
implemented and any projection whose DCC function value
deviates from the constant indicates inconsistency with the rest
of the data.

I. INTRODUCTION AND RELATED WORK

Characterization of the range of integral operators involved
in Computed Tomography (CT) has been studied for decades,
from the classical Helgason-Ludwig data consistency condi-
tions (DCCs) [1], [2] for parallel beam geometry to more
recent DCCs in fanbeam geometry [3]–[5]. For the 3D cone-
beam (CB) geometry, DCCs have been derived in [6]–[9].
Beyond their theoretical interest, DCCs can be used to detect
some systematic effects like patient motion [10], [11] or failing
equipment [12], to automatically calibrate CT systems [13] or
to correct scatter [14]. In this work, we build upon existing
CB theory [15], [16] within a common framework [17]–[19] to
develop simple DCCs for the standard circular CB geometry
and other planar source trajectories.

II. NOTATION AND THEORETICAL BACKGROUND

We consider a CB-CT system made up of an X-ray source
and a flat detector, both undergoing a planar source trajectory
(typically, a circle) around the object of interest. The plane
containing the trajectory is denoted ΠS . The source location
is ~aλ parametrized by the angle λ ∈ Λ where Λ ⊂ R is an
interval. Throughout the trajectory, the detector plane Πλ is
perpendicular to ΠS . We let ~u denote one of the two possible
unit vectors in the direction of the intersection ΠS ∩ Πλ (for
example, the one parallel to the motion of the source). For each
projection, we define a detector reference frame as follows:
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Fig. 1. Description of the geometry and choice of coordinate system. The
source ~aλ moves along the circle. And the detector moves accordingly.

the origin is the orthogonal projection of the source onto the
detector (the principal point). The normal to the detector is
~w, pointing in the direction of the source, so that ~aλ = d ~w
(where d is the distance from the source to the detector). We
set ~v so that (~u,~v) define a reference frame of the detector
and (~u,~v, ~w) is a 3D reference frame. A point on the detector
can be written u~u+ v~v. See Fig. 1.

The 3D Radon transform of an attenuation function f is
defined by:

Rf(~β, s) =

∫

~β⊥
f(s~β + ~y)d~y

with ~β ∈ S2 (S2 denotes the unit sphere in R3) and s ∈
R. Given a fixed ~β ∈ S2, we also denote Rβf the 1D-
function:Rβf(s) = Rf(β, s). The CB projections are defined
over the set Λ× S2 by :

g(λ, ~α) = Df(λ, ~α) =

∫ +∞

0

f(~aλ + t~α)dt (1)

Early CB CT reconstruction methods are based on links
between filtering CB data and filtering 3D Radon transform.
Following [17] an intermediate function G is defined on the
set Λ× S2 by:

G(λ, ~β) =

∫

S2
h(~α · ~β)g(λ, ~α)d~α, (2)

where the generalized function h is positively homogeneous
of degree -2, i.e. ∀k > 0, h(ks) = (1/k2)h(s). In this work,
h can be either odd (∀x ∈ R, h(−x) = −h(x)) or even (∀x ∈
R, h(−x) = h(x)). The relation between the function G and
the 3D Radon transform of f is given by:

G(λ, ~β) = sh

(
h ∗ R~βf

)
(~aλ · ~β), (3)
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where sh = 1 if h is even and −1 if h is odd. A proof of
this result can be found in [18]. Note that if the projection
data are given by Eq. (1) and if some plane Π(~β, s) - defined
by its normal direction ~β and its signed distance to origin s
- contains two source positions ~aλ1

and ~aλ2
(meaning that

~aλ1 · ~β = ~aλ2 · ~β), then:

G(λ1, ~β) = G(λ2, ~β). (4)

Equation 4 provides a consistency condition.

III. IMPLEMENTATION

In this section, we investigate two practical aspects of the
implementation of these DCCs: the evaluation of the function
G and the choice of the filter h.

A. Evaluation of the function G

In order to evaluate the function G in practice, we need to
express Eq. 2 in terms of detector coordinates. With the (u, v)
coordinates of the detector (see Sec. II and Fig. 1), one can
write:

~α = ~α(u, v) =
u~u+ v~v − d~w√
u2 + v2 + d2

.

This change of variables leads to the following expression:

G(λ, ~β) = sh

(
h ∗ R~βD

g̃λ

)
(~aλ · ~β), (5)

where g̃ denotes pre-weighted projections:

g̃λ(u, v) = g̃(λ, u, v) =
d√

u2 + v2 + d2
g(λ, ~α(u, v)).

In Eq. 5, Rg̃λ is the 2D Radon transform at fixed direction
~βD of g̃λ:

R~βD
g̃λ(s) =

∫

R
g̃λ(s~βD + l~β⊥D)dl

and ~βD denotes the normalized orthogonal projection of ~β
onto the detector plane Πλ. As Eq. 5 shows, the evaluation
of G(λ, ~β) is three steps : pre-weighting the projection, com-
putation of the 2D Radon transform along lines perpendicular
to ~βD and convolution of this 1D function with h at ~aλ · ~β.
While pre-weighting in step 1 is familiar, step 2 may be more
involved if ~βD is not aligned with pixel lines and may require
complex re-binning and/or backprojection of the data in a
virtual detector. The particular choice which is made in this
work, makes computations in step 2 considerably easier. This
choice is ~β = ~v. The main result of this work is the following:

Proposition 1. Let g = Df for some object function f , with
a planar source trajectory

{
~aλ ∈ R3, λ ∈ Λ

}
⊂ ΠS ; Let h

be positively homogeneous of degree −2, odd or even ; the
function G defined by:

G(λ,~v) =

∫

S2
h(~α · ~v)g(λ, ~α)d~α (6)

is constant (independent of λ).

To better understand this statement, we replace ~β with ~v in
Eq. 5. For all λ, ~aλ ·~v = 0 and R~βD

g̃λ is R~v g̃λ, the 2D Radon

transform of the pre-weighted projection in the direction ~u (i.e.
along pixel lines) thus depending only on v. Let lλ be this 1D
function defined (in the (u, v) coordinates of the detector) by:

lλ(v) = R~v g̃λ(v) =

∫
g̃λ(u, v)du, (7)

Plugging (7) into (5), Eq. (6) now reads:

G(λ,~v) = sh(h ∗ lλ)(0). (8)

B. Choice for the function h

The intermediate function G defined in [17] provides with
a unifying framework for various early 3D reconstruction
formulas such as the ones from Smith [15] and Grangeat [16],
[20]. Both approaches correspond to different choices for the
function h. Smith’s approach is based on the ramp filter:

hR(s) =

∫

R
|σ|e2iπσsds.

Grangeat’s approach is based on the derivative filter:

hD(s) =

∫

R
2iπσe2iπσsdσ.

It is easily verified that both hR and hD are positively
homogeneous of degree -2 and that they are even and odd
respectively.

The choice of h will impact the implementation of Eq. (8).
In the case h = hD, Eq. (8) reduces to: −l′λ(0), the derivative
of lλ taken at v = 0. The function l will only need to be
evaluated in a neighbourhood of v = 0 in order to estimate
this derivative. In the case h = hR, Eq. (8) remains a standard
convolution and the function lλ will have to be evaluated for
all possible v (i.e. on all detector lines). hD is a local filter
whereas hR is global.

IV. EXPERIMENTS AND RESULTS

The following experiments aim to demonstrate that the
consistency condition claimed in Proposition 1 can detect
unwanted systematic effect in the data. Moreover, the ability
to choose between two filters provides flexibility in the task
under study.

A. Material and methods

We used a standard Shepp-Logan phantom for the simula-
tions, as described in [21]. Projections were computed using
the Reconstruction ToolKit [22]. The trajectory of the source
was a circle with radius 100. 72 projections were computed
over a full angular range of 360 degrees (λ ∈ [0, 2π)). The
source-to-detector distance was 200. The exterior ellipsoid of
the phantom has axis semi-lengths of (55.2, 73.6, 72). Each
projection has 1024 × 1024 pixels. And the cone angle was
104◦ in both directions. The extremely large cone-angle was
intentional, to emphasize the divergent ray effects because
the function lλ(v) is the same for all projections in the
parallel case and the consistency conditions are then trivial.
The detector is assumed to be perfectly aligned so that pixel
lines are aligned with the u-coordinate. Hence, no interpolation
was necessary to evaluate the function lλ as described above.
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Projection #0 Projection #10

Projection #40 Projection #55

Fig. 2. Scenario 1 : projection truncations. Among the 72 projections, three
were truncated as indicated. The dotted line indicates the line v = 0.
Truncation of proj. #10 (top right) is away from the line. Truncation of proj.
#40 (bottom left) impacts the line. Truncation of proj. #55 (bottom right) is
closer to the line. See text for analysis.)

i=0 i=55 i=71

Fig. 3. Scenario 2 : organ motion. The phantom is kept fixed from projections
#1 to #20. From projection #21 to the end, one of the ellipsoids is moving. The
motion is linear, perpendicular to the line v = 0 (dotted line). The moving
ellipsoid is a ball of radius 4 and has density 1.0. It intersects the central line
in the range of projections #47 to #65.

The derivative filter was implemented with a central difference
approximation. The ramp filter was implemented as described
in [21]. We also applied a smoothing filter in the v-direction,
to account for numerical instabilities. The filter has a support
of length 11 pixels. It is applied after the ramp (or derivative)
filter.

In the sequel, GD and GR denote the function G with the
corresponding hD and hR respectively. In our first experiment,
we study the behaviour of GR and GD with respect to
truncations. In three projections (#10, 40 and 55), part of
the projection is set to zero. Truncation of projection #40 is
symmetric around the line v = 0 in the detector and simulates
a large patient. Truncation of projection #10 is a trans-axial
truncation (see Fig. 2). Projection #55 simulates a defect on
the detector or an occlusion.

In the second experiment, we simulated an organ motion
by moving an ellipsoid along a linear trajectory that crosses
the line v = 0. The ellipsoid keeps a fixed position during the
first 20 projections, then undergoes its motion till the end of
acquisition cycle (see Fig. 3).

For each experiment, we compute and plot the function GD
and GR. And as Proposition 1 states, if the data are consistent,
we expect a constant plot.

B. Results

Figure 4 shows the results.
1) Truncation: The use of the ramp filter allows for the

detection of any truncation, wherever this truncation occurs
whereas only the lateral truncation is detected by the derivative
filter (see Fig. 4, left). Because the ramp filter has an infinite
support, it will detect truncation anywhere in the data (see
Fig. 4, bottom left). On the other hand, the derivative filter is
local and will only detect truncation in the neighbourhood of
the line v = 0 (see Fig. 4, top left). It should be noticed that
truncation in projection #10 was detected by the ramp filter
because the inconsistency was ”massive”. It would not be able
to detect a lighter modification that was far from the central
line. The reason being that the lower response of the DCC
would be indistinguishable from the background numerical
instability.

2) Motion: For the motion experiment, we observed similar
behaviour. The derivative filter detected the motion only when
the object crossed the line v = 0 (see Fig. 4, top right). On the
other hand, with the ramp filter (see Fig. 4, bottom right), the
function GR deviated from its (approximately) constant value
long before the object crossed the line v = 0. This, again,
reflected the global nature of the ramp filter, which makes the
DCC able to detect almost any consistency, almost anywhere
in the data.

V. DISCUSSION

In this paper, we have revisited existing theoretical results
from the DCC perspective. The necessary consistency con-
ditions we derived are easy to implement, comprehensive in
the sense that they scan all the data at once and valid under
reasonable assumptions on the acquisition geometry. First
numerical experiments demonstrate the potential to use the
DCC for the detection of data inconsistencies, e.g. truncation,
motion. The interesting point in the above experiments is the
complementary role that the two filters hR and hD can play in
the detection of systematic effects directly from the projection
data. The ramp filter is able to detect any inconsistency
anywhere in a projection. The ramp filter is global. On the
other hand, the derivative filter only detects inconsistencies
in the neighbourhood of the central plane. The derivative
filter is local. As an example, the derivative filter does not
detect truncation not affecting the central plane. Depending
on the problem under study, this may be an advantage or a
disadvantage (consider the case where motion in the central
plane needs to be identified while truncation away from this
plane occurs). We also noticed the limits of both filters: one
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Fig. 4. Numerical simulations : plot of the function GD (top) and GR
(bottom) with respect to projection number in the case of truncation (left)
or motion (right). The x-axis is the projection index. The dotted line on the
right-hand column is the mean value of the function with no inconsistency.

of them is the numerical instability that prevents detection of
low-level inconsistencies far from the central line. The use of a
smoothing filter to reduce this noise comes with the attenuation
of respective specificities of the two functions.

We emphasize the fact that the DCC with the ramp filter is
a truly CB DCC: all the data in each projection are involved
in the evaluation of the DCC function. On the other hand, the
derivative version is equivalent to a 2D fanbeam DCC: only
the data on the intersection of the projection plane with the
central plane are used.

Finally, note that we could have considered different ~β (not
in the ~v direction) in order for the derivative version to access
other parts of the projection data. In this case however, the
DCC would only be able to compare the projections pairwise
(only two cone-beam projections at a time), because for ~β
different from ~v, the plane orthogonal to ~β will intersect the
source trajectory in at most two points. Whereas, with the
specific choice we made for ~β, all the projections can be
checked at once.
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