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Calibration for Circular Cone-Beam CT
Based on Consistency Conditions

Jérôme Lesaint, Simon Rit, Rolf Clackdoyle, and Laurent Desbat

Abstract—In cone-beam computed tomography (CT), impre-
cise knowledge of the acquisition geometry can severely impact
the quality of the reconstructed image. This paper investigates
geometric calibration using data consistency conditions (DCCs).
Unlike the usual marker-based off-line methods, the proposed
method does not require the extra-scan of a calibration phantom.
It is based on the minimization of a cost function, which mea-
sures the inconsistency between pairs of projections. The method
has been applied to both simulated and real data. The latter were
acquired from a micro-CT system with circular trajectory, for
which the problem reduces to identifying global misalignments
of the system. When compared to uncorrected reconstruction,
the method significantly improved the image quality. When com-
pared to marker-based calibration method, the image quality was
similar but no calibration scan was required. Finally, the method
can handle axially truncated data. Axial truncation is very com-
mon in the medical context but often considered intractable for
DCC-based methods. We also demonstrate DCC calibration from
real data with axial truncation.

Index Terms—Cone-beam computed tomography (CBCT),
data consistency conditions (DCCs), geometric calibration,
micro-CT.

I. INTRODUCTION

IN CONE-BEAM computed tomography (CBCT), a 3-D
image is reconstructed from a set of 2-D projections

acquired from a point-like X-ray source. Poor reconstructed
image quality can arise due to many possible causes. One
of these causes is an inaccurate calibration of the system.
Calibration is the process through which the geometry of
acquisition of the projections is accurately determined. By
geometry of acquisition, we mean the position and orienta-
tion of the detector and the position of the X-ray source in a
fixed reference frame.

Calibration of a CBCT system has been studied for a long
time. Early works used the scan of a dedicated phantom to
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estimate the geometric parameters. These are known as off-
line methods, to emphasize the need for a preliminary scan.
The calibration scan provides accurate geometry information
as long as the misalignments that were estimated are repro-
ducible over time. In the extreme case, where mechanical
flexibility of the system makes the reproducibility assump-
tion false, these methods become invalid. More recently,
on-line (or self-) calibration methods have been developed. For
each acquisition, and before reconstruction, the calibration is
computed directly from the projections.

This paper presents an on-line method based on the
minimization of a cost function, that quantifies the incon-
sistency of the set of measured projections. The data con-
sistency conditions (DCCs) that are incorporated in the cost
function have been described in many different works (see
Section II-C). They are essentially fan-beam consistency con-
ditions for a linear trajectory. They have been adapted to a
circular trajectory CBCT system by resampling each pair of
projections into a virtual detector parallel to the line connect-
ing pairs of source positions. This idea was already proposed
in [1] but, to the best of our knowledge, never implemented or
applied to any CT reconstruction problem. This paper is very
similar in its geometric approach to other recent works [2], [3]
but differs fundamentally in the DCCs which are used. The
proposed method was applied to simulated and real data, and
compared with a robust off-line method.

II. NOTATION AND BACKGROUND

The micro-CT system to which the calibration method was
applied is made of a 2-D flat detector and a fixed X-ray source.
A turntable placed between the two allowed a full 360◦ rota-
tion of the object (see Fig. 1), so the acquisition geometry was
equivalent to a circular trajectory of the source and detector.
We will describe the geometry in detail, together with the
calibration parameters that we are trying to estimate.

A. Description of the Geometry

We use the same geometric description as that given in [4].
The detector cells are perfect squares (same width and height,
arranged on a Cartesian grid). Let (x, y, z) be a fixed ref-
erence frame, defined as follows: the y-axis is the axis of
rotation of the turntable. The origin is set so that the source
lies in the y = 0 plane. The z-axis contains the source at rota-
tion angle 0 and points in the direction of the source. The
x-axis is defined so that (x, y, z) is a right-handed coordi-
nate system. The flat panel detector is equipped with a direct
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Fig. 1. Picture of the CT system. Source (left) is fixed. Turntable (middle)
and detector (right) are adjustable. Detector size: 35 × 35 mm. Pixel size:
17.09 μm.

Fig. 2. Illustration of the eight geometric parameters. The detector orientation
is defined by three Euler angles. η is the in-plane angle. φ and θ are out-of-
plane rotations about the v-axis and the u-axis, respectively.

(u, v) coordinate system whose origin is the center of the
detector and whose axes coincide with the pixel rows and
columns, respectively. The geometry of one projection can be
unambiguously described with eight parameters (see Fig. 2).

• The rotation angle λ, taken from the z-axis.
• The radius of the source trajectory R.
• Three orientation angles of the detector (φ, θ, η).
• The source to detector distance D (or focal distance).
• The coordinates (u0, v0) of the principal point (orthogonal

projection of the source onto the detector plane).
With this parametrization, for λ ∈ [0; 2π [, the source posi-

tion is given by �sλ = (R sin λ, 0, R cos λ). The orientation of
the detector is described with three Euler angles η, θ , and
φ (called yaw, pitch, roll, respectively, in [5] and skew, tilt,
slant in [6]) applied in this order (respective axes of rota-
tions are illustrated in Fig. 2). The normal to the detector
is defined with two out-of-plane angles θ and φ about the u-
and v-axes, respectively. The in-plane rotation (about the focal
axis) is given by η. The circular geometry thus consists of 8
degrees-of-freedom, unless the relative position and orientation

Fig. 3. Cone-beam geometry with circular trajectory. For a given scalar λ

(typically in [0, 2π ]), �sλ denotes the position of the source. �α is a unit 3-D
vector (∈ S2) that gives the direction of one X-ray. Note here that the system
is perfectly aligned: the v-axis is parallel to the rotation y-axis (θ = η = 0).
The u-axis is perpendicular to the direction of the source (φ = 0) and the
detector is not shifted (u0 = v0 = 0).

of the source and detector can vary across projections. In our
micro-CT system, the source and the detector are fixed, so the
only projection-specific parameter is the rotation angle. The
other seven parameters remain constant through the acqui-
sition cycle. We call these parameters global misalignment
parameters or global geometric parameters and refer to the
corresponding geometry as true geometry. The system is per-
fectly aligned when (1) the principal axis (orthogonal to the
detector plane and passing through the source) contains both
the world origin and the detector origin and (2) the u and
v axes of the detector are parallel to the x and y axes of
the world frame at rotation angle λ = 0. In terms of the
geometric parameters, these two conditions are equivalent to
θ = φ = η = u0 = v0 = 0. We refer to the corresponding
geometry as nominal geometry.

B. X-Ray Line-Integral Model

If f (�x) = f (x, y, z) denotes the object density function, the
projection g(λ, ·) is defined by the usual line integral model

g(λ, �α) =
∫ ∞

0
f (�sλ + t�α)dt, ∀�α ∈ S2 (1)

where S2 denotes the unit-sphere of R
3. The projection g(λ, ·)

vanishes for all �α such that the line originating at �sλ and
directed by �α does not intersect the support of f (see Fig. 3).

C. Review of Existing Calibration Methods

Much work has been done on the calibration of CT systems.
We give a quick review of the methods and briefly summa-
rize the relative importance of each parameter with respect
to their impact on the reconstruction quality. If N denotes
the number of acquired projections, the most general calibra-
tion problem consists of estimating—for each projection—the
eleven independent coefficients of the 3 × 4 projection matrix
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in homogeneous coordinates (see [7]). If the detector rows and
columns are known to be perpendicular with the same sam-
pling in both directions (i.e., square pixels) then two degrees
of freedom are eliminated and the task reduces to estimating
nine projection-specific geometric parameters (three for the
source position, three for the detector position, and another
three for the orientation of the gantry). As described in the
previous section, the circular trajectory we are considering in
this paper is completely described by seven global geomet-
ric parameters. The only projection-specific parameter is the
rotation angle.

Imaging-based calibration methods fall into two broad
categories. One category consists of the off-line meth-
ods [4]–[6], [8]–[12]: they all require prescanning of a
calibration phantom, usually made up of small ball bear-
ings (BBs) whose relative positions are accurately known.
Then the theoretical projections of the BBs (which depend
on the geometric parameters) are compared with their
actual projections to derive—iteratively [8], [9] or analyti-
cally [4]–[6], [10]–[12]—the calibration parameters. In [12],
they solve the complete calibration problem and analytically
derive all nine parameters for each projection.

The other group of techniques consists of on-line tech-
niques. All methods in this category solve the calibration
problem without a specific calibration scan of a calibra-
tion object. They only use the data from the projections of
the imaged object. Beyond this common feature, this group
encompasses substantially different techniques. In [13]–[15],
they minimize a cost function, whose evaluation requires the
reconstruction of the object from the current estimate of the
geometric parameters. The metric is based on entropy in [13],
the L2-norm of the image gradient in [14] or the mutual infor-
mation between reprojected image and projection data in [15].
The limitation of such methods is the computational load,
which may not fit clinical workflow (though [14] limits this
drawback by only reconstructing a fraction of the volume).
In [16], they use the 3-D reconstruction of a planning CT
and compute projection-specific geometric parameters by reg-
istering the actual projections with the reprojected CT image.
Other works in this category utilize the redundancy of the
projection data (i.e., the DCCs). In the 2-D parallel beam
case, Basu and Bresler [17], [18] solved uniquely and effi-
ciently the problem of unknown projection angles and shifts
with the Helgason–Ludwig DCCs. Some works use the trivial
“opposite-ray” condition [19]–[21]. In [19], this DCC, which
normally only applies in the central plane (the plane of the
trajectory), is extended to cone-beam projections of a par-
ticular class of symmetric 3-D object functions and shows
accurate calibration results when approximated in a central
region of a generic object. More closely related to this paper
is a series of publications on epipolar consistency condi-
tions (ECCs) [2], [3], [22]. These DCCs are based on the
Grangeat theorem and relate the derivative of the 2-D Radon
transform of the projections to the derivative of the 3-D Radon
transform of the imaged object.

The comparison of previous works is not easy due to the
parametrization which may differ with authors. Nevertheless, it
is widely documented that the detector shift u0 and the in-plane

angle η are of crucial importance [4]–[6], [11]. On the other
hand, [11], [15] demonstrated that the two out-of-plane angles
(φ and θ ) may be set to zero without affecting the image qual-
ity if their true values are kept below 2◦ (which is a reasonable
manufacturing accuracy requirement). Finally, miscalibration
of the source-to-center and source-to-detector distances does
not introduce artifacts in the reconstructed volume and are
therefore not calibrated. However, these two parameters affect
the magnification of the reconstructed volume, which would
not be acceptable in some cases, such as a metrology-oriented
application.

III. METHODS

A. Cone-Beam DCCs for Linear Trajectory

DCCs are conditions which must be satisfied by the pro-
jection data in order for them to be the image of an object
function through the forward projection model described
in (1). DCCs have been applied to various CT artefact cor-
rection techniques, e.g., motion compensation [23]–[25] and
beam hardening correction [26]. The simplest condition is
the “opposite-ray condition.” In parallel projection geome-
try, it states that the projections must be even: Rf (�α, s) =
Rf (−�α,−s), where Rf denotes the 2-D Radon transform of
an object function f . This condition was applied to the cali-
bration problem in [19]. Still in the parallel geometry, there
exists a complete set of DCCs, known as Helgason–Ludwig
DCCs (see [27], [28] and standard textbooks on the Radon
transform, e.g., [29] and [30]), which relates the nth order
moments of each projection to a homogeneous polynomial of
order n. In the 2-D divergent geometry (fan-beam projections),
complete DCCs, similar to Helgason–Ludwig polynomial con-
ditions, were derived in [31] for the particular case of an X-ray
source moving along a line. We will be using the order-0 case,
which was known much earlier than the latter work (see their
various guises in [32]–[36] for a review).

The description of cone-beam pair-wise consistency condi-
tions follows [1]. Let �sλi and �sλj be two source positions and
Li,j be the line connecting them. Suppose that both projections
are acquired with one common flat detector, parallel to Li,j.
Any plane containing Li,j intersects—if it does—the detector
on a row, parallel to Li,j, which we will index with k. We will
denote that plane Pi,j,k. The situation in Pi,j,k reduces to a
pair of fan-beam projections along the virtual linear trajectory
Li,j and with the kth detector row playing the role of the 1-D
fan-beam detector. The order-0 DCCs state the following.

Lemma 1: For any pair of projection indices i, j and any
integer k, let

Gi,j,k =
∫ π

2

− π
2

g
(
λi, �αk

φ

)

cos φ
dφ (2)

where �αk
φ denotes a unit vector in Pi,j,k, φ denotes the

angle between �αk
φ and the perpendicular to Li,j in that plane.

Furthermore, the line Li,j is assumed to not intersect the
support of the object function f . See Figs. 4 and 5.

If the data are consistent, then

Gi,j,k − Gj,i,k = 0 (3)
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Fig. 4. View of one plane Pi,j,k . Order-0 fan-beam DCCs state that the
integral of the cosine-weighted projections are equal.

Fig. 5. Two sources on a circular trajectory. Both projections are backpro-
jected in a virtual detector, parallel to the line connecting �sλi and �sλj .

Let ci,j,k denote the square difference of the left-hand side
of (3). The sum Ci,j = ∑

k ci,j,k is a measure of the pair-wise
consistency between two cone-beam projections g(λi, ·) and
g(λj, ·).

B. Resampling in Virtual Detector

These DCCs only apply if the detector is parallel to the
virtual linear trajectory Li,j connecting two source positions.
In the circular trajectory we are considering in this paper, this
detector condition is obviously not fulfilled. To remedy this
problem, each pair of projections is resampled onto a virtual
detector Vi,j by means of a backprojection. The virtual detector
is placed at the origin of the world system of coordinates
and oriented in such a way that the rows and columns of Vi,j

are parallel to Li,j and the axis of rotation, respectively. The
situation is illustrated in Fig. 5.

The orientation of the virtual detector allows a simple eval-
uation of the integral Gi,j,k in (2) by changing the φ-variable
to the u-pixel coordinate of the virtual detector with

u =
√

v2
k + D2

virt tan φ

Algorithm 1 Pseudo-Code for the Cost Function
1: procedure COST(p)
2: Initalize C = 0
3: for Each pair of sources (i, j) ∈ �: do
4: Backproject projections onto Vi,j.
5: Pre-weight the virtual projections acc. to Eq. 4.
6: for Each row k: do
7: Compute the line integrals Gi,j,k and Gj,i,k.
8: Compute the squared difference ci,j,k.
9: Add to C.

10: end for
11: end for
12: end procedure

where vk is the intercept of the plane Pi,j,k with the vir-
tual detector’s v-axis and Dvirt denotes the distance from the
source to the virtual detector. Applying this change of variables
leads to

Gi,j,k = 1√
v2

k + D2
virt

∫
R

g(λi, u)

√
v2

k + D2
virt√

u2 + v2
k + D2

du. (4)

Note that the weight inside the integral is exactly cos φ.
The change of variables has moved this cosine term from the
denominator to the numerator.

When applying these DCCs to the calibration problem, we
note that the backprojection onto the virtual detector will use
the projection geometry as input. Hence, the dependency of the
cost function (described in the next section) on the calibration
parameters via this backprojection.

C. Consistency Metric

Estimation of the geometric calibration parameters is
achieved by minimizing a cost function based on the pair-
wise consistency conditions described above. Let p =
(φ, θ, η, u0, v0, R, D) denote the 7-uple of sought parameters.
We define the cost function C(p) as follows:

C(p) =
∑

(i,j)∈�

Ci,j =
∑

(i,j)∈�

∑
k

ci,j,k (5)

where Ci,j was defined above with the dependence on p buried
in the backprojection onto the virtual detector, � is the chosen
subset of pairs of projections to which the DCCs are applied.

The size of the virtual detector Vi,j is computed to account
for the distortion resulting from the backprojection step (see
details is Section V-C1). For each pair of projections, the cost
function is evaluated over all rows k of Vi,j.

The computation of the cost function can be summarized in
Algorithm 1.

IV. NUMERICAL EXPERIMENTS ON SIMULATED DATA

We first studied the properties of our cost function on sim-
ulated projections of a Shepp–Logan phantom and estimated
the accuracy that can be expected from our method. All sim-
ulated projection data were generated with the reconstruction
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Fig. 6. Cost function as a 1-D function of each estimated parameter, eval-
uated on the simulated projection data of a standard Shepp–Logan phantom.
90 equally spaced projections were simulated over a full 360◦ circular acqui-
sition. For each parameter, the cost function is evaluated at 50 equally-spaced
parameter values, ranging from −2 to 2. Note that the minimum function
value is not zero due to numerical errors.

toolkit (RTK) software package [37]. All reconstructions were
computed with the Feldkamp algorithm [38] available in RTK.

In all our experiments, the set � was composed of 27
projections pairs, constructed as follows: nine equally spaced
projections (spaced by 40◦) were selected and all possible pairs
were included in �, except those separated by ±160◦. This
particular choice for � arose from a tradeoff between the com-
putational load and the amount of data we inject in the cost
function for robust parameter estimation. Pairs separated by
±160◦ were removed because they are too close to the limit
situation where the line Li,j (hence the virtual detector) would
be perpendicular to the physical detectors. Also, the maximum
separation of the remaining pairs was 120◦ which eliminated
any risk of the connecting line intersecting the scanned object.

A. Cost Function Study

We first studied the behavior of our cost function on the
simulated projections of a 3-D Shepp–Logan phantom [39].
Projections were simulated with a perfectly aligned system
(R = 100, D = 200 and all other geometric parameters set to
zero). Then, we computed the cost function as a 1-D-function
of each separate parameter, over a symmetric interval [−2, 2]
(in degrees for η, θ , and φ and in millimeters for u0, v0,
R, and D). Fig. 6 shows corresponding plots. Note that the
cost function has very low dependence on the two distances
R and D. For this reason, these two parameters will not be
optimized in our calibration method. Our procedure focuses
on the remaining five global parameters. The plots in Fig. 6
indicate that the cost function is locally convex with respect
to each of them. The convexity of the 1-D-functions does not
guarantee the convexity of the multidimensional cost function
but is still encouraging for the optimization procedure to find
a suitable minimum. Of the five parameters, the vertical shift
v0 shows the least sensitivity to the DCCs. This fact has a

TABLE I
RESULTS ON SIMULATED DATA

direct effect on the errors we obtained with simulated data
(see section below).

B. Calibration on Simulated Data

We applied our calibration method to simulated projections
of a 3-D Shepp–Logan phantom. The data were generated
using the misalignment parameter values indicated in the first
row of Table I. The simulated projections were 256 × 256
pixels, with pixel size set to 0.25 mm. The source-to-center
and source-to-detector distances were set to 100 and 160 mm,
respectively. The larger half-length of the outer ellipsoïd of
the Shepp–Logan phantom was 15 mm. We used the Numpy
implementation of the order-0 minimization method from
Powell [40]. Results are recorded in Table I.

In the first experiment (see Exp. 1 in Table I), the calibra-
tion procedure was initialized with a nominal geometry (all
five parameters equal to 0). This initialization corresponds to
the best guess we could make on the real μCT system, which
is designed to be perfectly aligned. In Fig. 7, we present one
frontal slice of the 3-D numerical Shepp–Logan phantom (top
left). We reconstructed the 3-D volume from the simulated
projections data using three different geometries: 1) the true
geometry; 2) the DCC-calibrated geometry (resulting from our
minimization procedure); and 3) the nominal geometry. The
reconstructions are shown in Fig. 7. The reconstruction with
the nominal geometry shows severe artifacts (see middle left
in Fig. 7) with a root mean square error (RMSE) of 0.311
when compared to the 3-D numerical phantom (top left). No
visible difference between the two reconstructions with the
true geometry (top right) and with DCC-calibrated geometry
(middle right) is apparent. In both cases, the quality of the
reconstruction is significantly improved, with RMSE of 0.107
and 0.106, respectively. Note also that the procedure can eas-
ily be extended to a short scan trajectory. In the bottom row
of Fig. 7, we present a 220◦ short-scan reconstructions with
the nominal geometry (left) and the DCC-calibrated geom-
etry (right). The set � was built with nine equally spaced
projections over the 220◦ angular range.

The second experiment focuses on the dependency of the
cost function on the initial guess. We ran the procedure with
100 random initial values taken from a normal distribution and
computed the mean and standard deviation of each geometric
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Fig. 7. Top and middle rows: full-scan results. Top left: 3-D Shepp–
Logan phantom. Top right: reconstruction with true geometry. Middle left:
reconstruction with nominal geometry. Middle right: reconstruction with
DCC-calibrated geometry. Bottom left: short scan reconstruction with nom-
inal geometry. Bottom right: short scan reconstruction with DCC-calibrated
geometry.

parameter. The results are presented in Table I, Exp. 2. We
noticed that the out-of-plane angle θ and the vertical shift of
the detector v0 deviated significantly from their true values
(mean errors: 1.28 and 2.16, respectively), with large variabil-
ity (standard deviations: 1.48 and 4.11, respectively). But this
does not affect the quality of the reconstruction as shown in
Fig. 7. We observed that the imaged object was well recon-
structed but possibly at a slightly different place in space and
the reconstruction with DCC-calibrated geometry had to be
manually registered on the reference Shepp–Logan by a small
translation in the v direction. On the other hand, when one of
these two parameters was fixed to its true value, the optimized
value of the other was estimated with a high precision and
with very low variance (see Table I, Exp. 3, and Exp. 4). This
reveals the difficulty of evaluating the quality of a calibration
procedure. To better illustrate this compensation phenomenon,
we computed the cost function value as a function of θ and v0

Fig. 8. Consistency metric as a function of θ and v0 (top: 3-D plot of
the function. Bottom: gray-value 2-D map and contour lines). All three others
geometric parameters were set to their true values. The white solid line shows
the valley along which inconsistency is minimal.

(the other three parameters being fixed to their true values).
The plot in Fig. 8 reveals a long flat valley in a direction which
is a linear (for small θ ) combination of θ and v0 directions.
All the values of θ and v0 along this valley minimize the cost
function and visual inspection of the resulting reconstruction
suggested equally good quality.

V. NUMERICAL EXPERIMENTS ON OUR μ-CT SYSTEM

A. Description of the Experimental Set-Up

We applied our method to real data acquired on the micro-
CT system depicted in Fig. 1. The X-ray source is fixed. The
imaging object is placed on a turntable. The distance between
the source and the turntable can be manually adjusted. The
source to detector distance can also be manually adjusted, but
both distances remain fixed during one complete 360◦ scan.
The detector size is 2048 × 2048 pixels with pixel size of
17.092 μm2. The X-ray tube voltage was set to 30 kV, the
current was set to 0.25 mA and exposure time was set to
2 s. To reduce the computational burden, the projections were
down-sampled by a factor of 8 to 256 × 256 pixels. In each
experiment, 360 equally-spaced projections were acquired.
Dark-field and flat-field corrections were applied to raw-data.
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Fig. 9. Top row: pictures of the imaged objects. Bottom row: one projection
of each object. (a) Glue cap. (b) Concrete sample. (c) Sponge sample.

TABLE II
CALIBRATION USING DIFFERENT SUBSETS � OF PROJECTIONS

The negative-log transform was then applied so that the pro-
jection data correspond to the line-integral model described
in (1). We report results on three different datasets: the first
one is the projection data of the plastic cap from a tube of
glue, approximately 1 cm wide. The rotating support platform
was in the flat-field images and therefore subtracted from the
projection of the glue-cap. The glue-cap was small enough to
be completely contained in the projections. Consequently, no
projections were truncated. The values of R and D were physi-
cally measured to be 219 and 295 mm. The second dataset was
acquired from a sample of concrete foam. All projections were
truncated in the direction of the rotation axis (axial truncation).
Measures of R and D were 114 and 137 mm, respectively. For
this sample, a 0.4 mm aluminum filter was placed in front of
the X-ray tube to harden the X-ray beam to make the pro-
jection data better fit the line integral model. The third data
consisted in a piece of sponge placed into a plastic syringe.
Projections were also axially truncated. Measures of R and D
were 195 and 259 mm, respectively. See pictures and sample
projections of the three objects in Fig. 9.

B. Reconstruction With Complete Data

The calibration method was applied to the projections
acquired from each scan, using the nominal geometry as first
guess. The output values are indicated in Table II. Each of the
eight rows in this table corresponds to a different subset of pro-
jections, from which the cost function was computed. The first

Fig. 10. Coronal (left) and transverse (right) slices of the reconstructed image
without calibration (top row), with DCC-based calibration (second row) and
with marker-based calibration (third row). The intersection of both slices is
represented by the white line. The corresponding intensity profiles are plotted
on the bottom figure.

one was composed of nine equally spaced projections, start-
ing with projections at angle 0. Each subsequent subset was
shifted by 5 projections (5◦). Fig. 10 shows coronal and trans-
verse slices from the reconstructed images with the nominal
geometry and compares them to reconstructions with a geom-
etry estimated using an off-line marker-based method and our
DCC-calibrated geometry. The alignment problem described in
Section IV-B was encountered here too and the two calibrated
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Fig. 11. Axial truncation management: only those rows between the two
dashed lines are retained in the virtual projection.

reconstructions were registered manually in the y direction for
comparison. Note first that subdegree angular misalignments
and submillimeter detector shifts lead to severe artifacts in
the reconstruction, especially at the edges of the object (see
top-row of Fig. 10). Second, the image quality was signifi-
cantly improved when reconstruction was computed with the
DCC-calibrated geometry. The edges are sharp as illustrated
by the profiles in Fig. 10. Of course, the calibration procedure
does not correct for other CT artifacts which degrade both un-
calibrated and calibrated reconstructed images (e.g., cupping,
probably due to beam hardening, and ring artifacts).

C. Reconstruction With Axially Truncated Data

This section explains how our calibration procedure can deal
with axially truncated data with application to the truncated
data acquired on the same μ-CT system (Fig. 9 middle and
right).

1) Handling Axial Truncation: Our cost function is the sum
of square differences between integral over rows of the virtual
detector. For that reason, truncation in the v-direction does
not cause any difficulty as long as there is no truncation in
the u-direction. This feature is specific to the nature of the
DCCs used in the cost function. In our implementation, care
must be taken at the backprojection level because the square
physical detector is backprojected to a trapezoidal shape on
the virtual detector, with horizontal pixel rows backprojected
to oblique pixel rows of varying angle (except for the central
line, which remains horizontal). The situation is depicted in
Fig. 11. The virtual projection can therefore be limited to those
horizontal rows of the virtual detector that are not truncated
(rows between the two dashed lines on Fig. 11 right).

2) Results: The calibration procedure was applied to the
concrete and the sponge datasets. The nominal geometry
served as initial guess. For the concrete sample, the scanning
distances R and D were set to 114 and 137 mm, respec-
tively. The resulting cone-angle was approximately 14◦. For
the sponge sample, R = 195 mm and D = 259 mm.
Axial and transverse slices of the reconstructed volumes are
shown in Figs. 12 and 13. In the uncalibrated reconstructions,
small structures of the object are barely distinguishable. In
the calibrated reconstruction of the concrete sample, though
cone-beam and beam-hardening artifacts are still present,

Fig. 12. Concrete sample. Coronal (left) and transverse (right) slices of the
reconstructed volume without calibration (top row) and with our DCC-based
calibration (bottom row).

Fig. 13. Sponge sample. Coronal (left) and transverse (right) slices of the
reconstructed volume without calibration (top row) and with our DCC-based
calibration (bottom row).

the detailed structures (air bubbles in the concrete foam) are
much more sharply reconstructed.

VI. CONCLUSION

We proposed an on-line calibration method to estimate five
geometric parameters of a μ-CT system. The method is based
only on consistency of the “production” scan. It requires no
prior (off-line) calibration scan. The quality of the recon-
structed images in the experiments compares with the robust
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“classical” marker-based calibration method. Furthermore, the
calibration method can correctly handle axially-truncated data,
which is an untypical feature for DCC-based application.

The design of our cost function can probably be refined.
A short study on the individual contribution of a pair of pro-
jections revealed that pairs angularly separated by more than
90◦ contributed more than close pairs. Hence, a cost function
built from such pairs may convey more independent infor-
mation and hence lead to more robust estimation. Another
question is related to the dependency of the cost function on
the object. We have carried out some simulations (similar to
those in Figs. 6 and 8) on objects with sharp edges (a simplex-
like simulated object) or plate-like objects (very small extent
in the v-direction). In all cases, the cost function behaved simi-
larly to the Shepp–Logan study, with regards to each individual
parameter or with regards to the (θ, v0) pair. However, the
cost function behaved differently when the plate-like object
was placed in the central plane (containing the source trajec-
tory). But, in this case, the geometry collapses to fan-beam,
with its own geometric parameters (for example, θ plays
no role).

The investigation of the interplay between geometric param-
eters is a possible future direction of research. Fig. 8 reveals
that a large error on one parameter can be compensated by a
large error on the second in terms of consistency. We are also
extending this paper in two directions. The first one applies
the same principles to estimate projection-specific calibration
parameters, by using a similar cost function for each projec-
tion. Second, the comparison of our method with the work
in [2], later described as ECCs [3]. ECCs are also applied to
pairs of projections and use a similar geometry of lines on
the two detectors (as shown in Fig. 5). However, the theoret-
ical foundations are different because the ECCs are based on
Grangeat’s formula and require the computation of a deriva-
tive. Whether these conditions are equivalent to the conditions
used in this paper still needs to be understood and is ongoing
work.
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