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Abstract—Grangeat-based Consistency Conditions (GCC) and
Fan-beam Consistency Conditions (FBCC) are two ways to de-
scribe consistency (or redundancy) between cone-beam projections.
Here we consider cone-beam projections that are collected in
the linear tomosynthesis geometry. We propose a theoretical
comparison of these two sets of consistency conditions and illustrate
the comparison with numerical simulations of a thorax Forbild
phantom.

Index Terms—Cone-beam computed tomography (CBCT), data
consistency conditions (DCCs), tomosynthesis.

I. INTRODUCTION

In Computed Tomography (CT), the 3D density map of a
patient (or an object) is reconstructed from a set of 2D radio-
graphs. Should the acquisition be realized in perfect conditions
and neglecting physical side-effects (like scattering or beam-
hardening), these radiographs (after their log-transform) follow
the forward line-integral model. Unfortunately, these conditions
are never fullfilled and systematic effects always degrade the
projection data. One way to detect such effects is to quantify
how inconsistent the data are, using the concept of data consis-
tency conditions (DCC). DCC are equations that characterize the
image of the forward operator. A large amount of research has
been published on DCC. In parallel geometries, the well-known
Helgason-Ludwig DCC [1], [2] provide necessary and sufficient
conditions on the Radon transform. In divergent geometries,
[3] and [4] also give necessary and sufficient conditions for
a source moving along a linear trajectory (in 2D) or planar
trajectory (in 3D) respectively. When a set of DCC is known to
be complete (necessary and sufficient conditions), no additional
information can be expected from another set of DCC. On the
other hand, if two sets of DCC are known to be necessary
but no information on the sufficiency is available, one may
wonder which to use. Some works have introduced necessary-
only conditions, like Grangeat-based DCC (GCC) [5], [6] and
fan-beam DCC (FBCC) [3] extended to 3D projection data as
suggested by [7]. As explained below, FBCC refers to what
would be called zeroth-order conditions in [3].

Various applications of GCC and FBCC have been published.
Geometric calibration in circular cone-beam CB [5] and in x-ray
tomosynthesis [8] were described using GCC, and also jitter-
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correction in x-ray CT [9]. For FBCC, a circular cone-beam
micro CT application appeared recently [10].

In this work, we focus on GCC and FBCC and propose a
theoretical comparison of these two sets of DCC. We carry
this work in the specific context of tomosynthesis, with an X-
ray source moving along a line. It is proved that the FBCC
are stronger than the GCC, in the sense that if the FBCC are
satisfied, then so are the GCC, but not conversely. We also show
that if all the projections are complete (non-truncated) then the
FBCC and GCC are equivalent. Furthermore the hypothesis of
complete projections is essential; we show that under particular
circumstances (with truncated projections), the FBCC are more
restrictive, i.e., the FBCC can fail even when the GCC are
satisfied. We finally prove that neither of these two sets of
conditions are sufficient. The theory is detailed in Section II.
Numerical aspects are presented in Section III and finally,
Section IV contains discussion and conclusion.

II. THEORY

A. The forward X-ray model

We consider X-ray projection data g of an object function
f , acquired along a 1D trajectory of the source parametrized
by a scalar λ ∈ Λ ⊂ R. The source position is denoted ~sλ.
A projection gλ associates to each unit vector ~α ∈ S2 the
corresponding line integral:

gλ(~α) =

∫ +∞

0

f(~sλ + t~α) dt. (1)

B. The tomosynthesis geometry

In the following, we consider a tomosynthesis geometry,
where an X-ray source moves along a line parallel to the plane of
the detector. Let (O, x, y, z) be a 3D coordinate system. Without
loss of generality, the detector, denoted D, is assumed to lie in
the z = 0 plane. It is equipped with 2D coordinates (O, u, v)
where the detector origin O and the u- and v- axes coincide with
the 3D origin and the x- and y- axes respectively. Note that the
coordinates (u, v) are independent of the source position, as if
the detector was large enough to capture every projection of the
scan. (In the numerical simulations though, the detector was
displaced horizontally.) The X-ray source moves along a line L
such that ~sλ has coordinates (λ, 0, d) for λ ∈ Λ, where d is the
source-to-detector distance and Λ is an interval. The object of
interest is assumed to be entirely contained between D and the
plane parallel to D and containing L. See Figure 1.

C. The family of planes containing the source trajectory

We now focus on the family of planes which contain the
source line. They will play an important role both in the
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Fig. 1. Top-view of the tomosynthesis acquisition geometry. The X-ray source
moves at constant distance d from the detector plane, along a horizontal line.
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Fig. 2. The family of planes Pθ . Each plane is defined by a normal vector ~nθ

which makes an angle θ with the central plane. To each detector pixel (u, v)
is associated a unit vector ~α together with its spherical coordinates (θ, ϕ).

Grangeat case and in the fan-beam case. For θ ∈
]
−π2 ; π2

[
,

we let Pθ denote the plane which contains the line L and
makes an angle θ with the central plane (y = 0). We let
~nθ = (0, cos θ, sin θ) denote the unit vector orthogonal to
this plane. There is a one-to-one correspondence between the
detector’s horizontal rows (with offset v) and the planes Pθ via
the relation d tan θ = v. See Figure 2.

We assume that the detector is fixed so from de-
tector coordinates (u, v), the unit vector ~α from Equa-
tion 1 is given by ~α = ((u, v, 0)− ~sλ) /‖(u, v, 0) −
~sλ‖ = (u − λ, v,−d)/

√
(u− λ)2 + v2 + d2. Furthermore

~α can be expressed in spherical coordinates ~α(θ, ϕ) =
(sinϕ, cosϕ sin θ,− cosϕ cos θ) where θ corresponds to the
definition above, and ϕ is the latitude with respect to the
polar axis x. (Note the unusual orientation of the spheri-
cal coordinates.) With a slight abuse of notation, we write

gλ(u, v) = gλ(~α(θ, ϕ)). We also use g̃λ to denote the projection
gλ weighted by the cosine of the incidence angle of the ray.
Given the coordinates of the source position (λ, 0, d), we have:

g̃λ(u, v) = gλ(u, v)
d√

(u− λ)2 + v2 + d2
(2)

D. Grangeat-based consistency condition
Consistency conditions are equations derived from the for-

ward model that ideal projection data must satisfy. Consistency
conditions can be used to detect - and possibly correct for -
inconsistencies introduced in the data by systematic effect such
as mis-calibration, motion, scattering or beam-hardening.

Let Rf(Pθ) denote the 3D Radon transform of f over the
plane Pθ. We recall the well-known result of Grangeat [11]
(expressed with our notation):

1

cos2 θ

∂

∂v

∫ +∞

−∞
g̃λ(u, v) du =

∂

∂s
Rf(Pθ)

∣∣∣∣
s=~sλ·~nθ

(3)

where the derivative of Rf is taken in the direction ~nθ. Again,
v and θ are related through v = d tan θ.

For fixed Pθ (equivalently, for fixed v = d tan θ), we note
that ~sλ · ~nθ = d sin θ is constant throughout the trajectory,
so the right-hand-side of Equation 3 does not depend on the
source position (it only depends on v, not on λ). We let
G(λ, v) = ∂

∂v

∫
g̃λ(u, v) du, so the left-hand-side of Equation 3,

(1/ cos2 θ)G(λ, v), must be independent of λ. We thus obtain
the following necessary DCC for this particular acquisition
geometry:

The projection data (gλ)λ∈Λ are consistent only if, for all v,
G(λ, v) is a constant function of λ.

This is what will be called in the sequel, the Grangeat-based
Consistency Conditions, GCC for short.

Grangeat’s result, Equation 3, is also the basis of Epipolar
consistency conditions described in [6].

E. Fan-beam consistency conditions
Another way to quantify the redundancy/consistency of a

set of projections is to fix the v coordinate and consider the
corresponding plane Pθ and the fan-beam projections therein.
We then consider fan-beam consistency conditions (see [3] for a
complete proof) extended to 3D cone-beam projections acquired
in our particular tomosynthesis geometry: the set of projections
(gλ)λ∈Λ is consistent if and only if, for each n = 0, 1, 2... and
each θ ∈

]
−π2 ; π2

[
, the function:

Jn(λ, θ) =

∫ π
2

−π
2

gλ(α(θ, ϕ))

cosϕ
tann ϕdϕ, (4)

is a polynomial of order n in λ.
In particular, for n = 0, the quantity J0 does not depend on

the source position λ. It only depends on θ. And since there is a
one-to-one correspondence between θ and v, we will write (with
another small abuse of notation) J0(λ, v). These zeroth-order
fan-beam consistency conditions will be referred to as FBCC.
(When non-zero orders are being considered, we will state them
explicitly.) These necessary conditions can be restated as:

The projection data (gλ)λ∈Λ are consistent only if, for all v,
J0(λ, v) is a constant function of λ.
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Fig. 3. a) Computation of both DCC for a single projection λ: projections gλ are weighted with the cosine of the incidence angle. Integrals of g̃λ over detector
rows are computed: up to a fixed factor of d, this is J0(λ, v). For each λ, J0(λ, v) is differentiated with respect to v to get G(λ, v). The dotted line indicates
the detector row used in Figures 5 and 6. b) The functions J0(λ, v) and G(λ, v) plotted as gray-value images. Note that the gray scales are different in the two.

F. Relationships between FBCC and GCC

We can now prove the theoretical contribution of this abstract:

Proposition 1 (FBCC ⇒ GCC). If the projection data satisfy
FBCC, then they necessarily satisfy GCC.

Before proving this statement, a few comments are in order.
First, the proposition means that (order-0) FBCC carry at least
as much information as GCC. Second, under some specific
circumstances, we will prove that this assertion is strict, in the
sense that we can design a projection example which satisfies
GCC but breaks FBCC. Finally, neither GCC nor FBCC are
sufficent consistency conditions because the zeroth-order fan-
beam conditions alone are insufficient; it was shown in [3] that
all orders n = 0, 1, 2... are necessary and sufficient.

Proof of Proposition 1: We start with FBCC (Equation 4)
and change the spherical variables (θ, ϕ) to the (u, v) detector
coordinates with v = d tan θ and u =

√
v2 + d2 tanϕ. After

elementary computations, we get:

J0(λ, v) =
1

d

∫ +∞

−∞
g̃(u, v) du. (5)

The FBCC state that for each v, J0 is a constant function of λ.
Therefore, J0(λ, v) is independent of λ. Now, it is clear from
the definition of G that:

G(λ, v) = d
∂

∂v
J0(λ, v), (6)

which proves that G is also independent of λ. Therefore, for
each v, G(λ, v) is a constant function of λ, so the GCC are
satisfied and the proof is complete.

If the converse of this statement holds then the two sets of
DCC would be equivalent.

Proposition 2 (FBCC ⇔ GCC). The FBCC and GCC are
equivalent in the ideal case of untruncated projections.

Proof of Proposition 2: In light of Proposition 1, we only
need to prove that if the GCC are satisfied, then the FBCC are
satisfied. From Equation 6, we obtain:

J0(λ, v) =
1

d

∫
G(λ, v) dv + κλ, (7)

where κλ depends on λ but not on v. The GCC are assumed
to be satisfied, so G(λ, v) is independent of λ, and therefore
the integral term in Equation 7 is also independent of λ. So for

each λ, J0(λ, v) is the same function of v except for the additive
constant κλ (which varies with λ). Now, since the projections
are assumed to not be truncated, there exist some v∗ (which
corresponds to an actual row of the physical detector) such that:

∀λ ∈ Λ, ∀v ≥ v∗ gλ(u, v) = 0. (8)

In particular, gλ(u, v∗) = 0 for all λ, and therefore J0(λ, v∗) =
0 for all λ. For each λ, the functions (of v) J0(λ, v) all agree
for v = v∗, and therefore the additive offsets κλ must be the
same, so κλ = κ is a constant (independent of λ). Therefore
J0(λ, v) is independent of λ and the FBCC are satisfied.

We now show that the hypothesis of untruncated projections
cannot be relaxed in Proposition 2.

Proposition 3. FBCC and GCC are not equivalent; a counter-
example.

Proof of Proposition 3: Let us modify one single projection
gλ0

as follows:

γλ0
(u, v) = gλ0

(u, v) +

√
(u− λ0)2 + v2 + d2

Ld
. (9)

Note that the modified projection is non-zero everywhere, so
it would be considered a truncated projection and would not
satisfy the hypotheses of Proposition 2. The added term is the
inverse of the cosine of the incidence angle, weighted by the
inverse of the width of the detector (L). It is easily seen that
this modification adds a constant term to J0(λ0, v) for all v,
hence breaks the FBCC without affecting the GCC.

Note that this modification of the projection is equivalent (up
to a constant) to filtering the X-ray beam with a flat filter of
constant thickness, placed perpendicularly to the z-axis.

III. NUMERICAL SIMULATIONS

We simulated 40 projections of a thorax Forbild phantom (see
Figure 3a for a sample projection). The acquisition geometry
was described in Section II-B. The source-to-detector distance
was fixed at 600 mm. The source positions were (λ, 0, 600)
where λ varies evenly from −200 mm to +190 mm. The detec-
tor size was 500× 300 pixels, with pixel size 0.3 mm2. In our
reference projections, the phantom center of mass was placed at
(0, 12, 300) (centered in x, at mid-distance between the source
and the detector plane and with a vertical offset of 12 mm). All
simulations were carried out with the Reconstruction ToolKit
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Fig. 4. Quadratic residues of the linear regression of the functions G(λ, v)
and J0(λ, v) as a function of v. On the last 60 detector rows, the signal is 0,
so are G and J0. The residues are not represented on this log-scale figure.

(RTK, [12]). The implementation of FBCC in this set up only
requires a sum over the rows of the projections. The derivative in
the v-direction involved in GCC is implemented with a central
finite difference. Note that the two DCC involve computing line
integrals in the u-direction of the projection images. Hence,
projections must not be truncated in that direction.

A. Are G and J0 constant ?

Saying that the projection data satisfy GCC or FBCC amounts
to saying that for each v (i.e. each detector row), the 1D
functions G(·, v) and J0(·, v) are constant functions of λ. For
each projection, we computed G(λ, v) and J0(λ, v) for all v
according to Equations 3 and 4 respectively (see Figure 3a) and
concatenated those 1D signals to get 300 (number of detector
rows) supposedly constant signals (see Figure 3b). To quantify
how constant those signals were, we computed the slope of their
linear regression. In both cases (FBCC and GCC), the mean over
all planes and the standard deviation were numerically zero,
as stated by the theory. To further investigate the respective
behavior of each consistency measure, for each v we computed
the sum of squared difference between the signals G(·, v) and
J0(·, v) and their regression line. These residues are presented
in Figure 4.

Both the GCC and FBCC results are theoretical in the sense
that the functions G and J0 cannot be exactly constant in
λ practically since they required numerical approximation of
integrals. The errors in this approximation are amplified by the
differentiation step in the computation of G. This amplification
of the discretization errors is the probable explanation for why
the residues for G are 106 times greater than J0.

B. Illustration of inconsistency

We examined the effect on the GCC and FBCC of a small
rigid motion of the object. After 20 projections, the phantom
was displaced vertically and 15 projections were collected in
the displaced position. The phantom was then returned to the
original position for the last 5 projections. We repeated the
study with 3 different magnitudes of displacement: 2.5 mm,
1.0 mm, and 0.2 mm. We restricted the study to one plane
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Fig. 5. Sensitivity of each DCC to a vertical motion of the object. The object
is displaced between projections 20 and 35.

(row index 150) when calculating the consistency conditions.
Figure 5 shows that G(λ, v) and J0(λ, v) were both constant
(to within small numerical errors) for the consistent collections
of projections, but that the constant changed when the object
was displaced to a new position. As the displacement became
larger, the change in FBCC increased, as was expected. On the
other hand, the GCC over-reacted to the 1.0 mm displacement,
due to particular features of the phantom.

C. FBCC and GCC are not sufficient conditions

In order to illustrate the fact that both GCC and FBCC
are not sufficient conditions, we simulated 40 projections of
the same phantom which was displaced horizontally (in the x-
direction) at projection 20 and left in the displaced position for
the remaining projections. The first and last 20 projections alone
were consistent, but not the full 40 projections. Since both GCC
and FBCC involve computations of integrals along horizontal
detector rows, it is intuitive that they will fail in detecting
inconsistencies resulting from motion in the horizontal direction.
In Figure 6, we show that FBCC and GCC erroneously indicate
consistent data (both are constant as expected), while FBCC-
1 detects inconsistency (severe discontinuity in J1(λ), the
theoretical order-1 polynomial) when the object was displaced.
This study was conducted in the plane corresponding to the row
index 192. (This plane is such that J0 and G have the same order
of magnitude, which facilitates convenient plotting on a single
figure.)

IV. DISCUSSION AND CONCLUSION

In this abstract we proved that FBCC carry at least as much
information as GCC. In the non-truncated case, FBCC and GCC
are equivalent and in the truncated case, we designed projection
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Fig. 6. From projection index 20, the object was moved horizontally by 5 mm.
While GCC and FBCC fail to detect the inconsistency induced by the motion,
FBCC-1 does.

data which satisfy GCC but not FBCC. We illustrated that
both the GCC and FBCC are not sufficient conditions for this
tomosynthesis geometry. In practice, neither of the DCC are
perfectly satisfied, due to numerical errors in the quadrature
methods involved in FBCC and GCC. Based on our simulation
studies, the FBCC seem to be more robust to GCC in the
presence of numerical errors.
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