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Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the
available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for
intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congen-
ital heart disease. To obtain such a reconstruction, the patient’s electrocardiogram (ECG) must be
recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D
reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition.
Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization
(short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume.
The algorithm alternates between a reconstruction step based on conjugate gradient and four regular-
ization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart
and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization.
Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan
phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior
image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with
sharp edges which can be used, for example, to estimate the patient’s left ventricular ejection fraction.
Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other
dynamic tomography areas. It can easily be adapted to other problems as regularization is decou-
pled from projection and back projection. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4860215]
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1. INTRODUCTION

Reconstruction of the beating heart in 3D + time in the
catheter laboratory using only the available C-arm sys-
tem would improve diagnosis, guidance, device sizing,
and outcome control for intracardiac interventions, e.g.,
electrophysiology,1 valvular disease treatment,2 structural or
congenital heart disease. However, the design of a suit-
able acquisition protocol and of the corresponding 3D

+ time reconstruction method is still a challenging problem.
A high resolution and almost artifact-free 3D reconstruction
can be obtained by performing an ungated Feldkamp (FDK)
reconstruction,3 but the resulting volume is static and moving
organs are blurred. The goal is to reconstruct a 3D + time
sequence of volumes in which the motion is rendered accu-
rately. For the acquisition part, the C-arm rotates around the
patient while acquiring projections and recording the patient’s
electrocardiogram. The length of the acquisition, the number
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of projections to be acquired, and whether the C-arm should
perform a single or multiple sweeps are still open questions,
since there is no standard protocol for cardiac C-arm imag-
ing today. Optimized cardiac C-arm computed tomography
(cardiac C-arm CT) acquisition protocols for cardiac imaging
prior to transcatheter aortic valve implantation (TAVI) have
been presented.2, 4 The parameters to optimize include rota-
tion speed, number of rotations, number of projections, elec-
trical settings of the x-ray tube, amount, rate and location
of contrast agent injection, and delay between injection and
acquisition.

The acquisition protocol used in this paper is a tradeoff
between clinical, mechanical, and algorithmic constraints en-
countered in the course of our study. The main clinical con-
straint is that the whole acquisition has to be performed dur-
ing a single breath hold to avoid breathing motion. As patients
with cardiac or vascular diseases often have reduced breath-
holding capabilities,5 and must start holding their breath be-
fore and stop after the acquisition, acquisition itself should
not last longer than 10 s. The amount of contrast agent should
also be limited, as it adds up to the contrast injected during
the intervention. This second constraint also pledges for a
short acquisition. On the other hand, because of mechanical
constraints, C-arms rotate much slower than CT scanners and
cannot perform step and shoot acquisitions.6 Current C-arms
perform a 200◦ rotation in a minimum of 3–5 s, which implies
that a cardiac acquisition always covers several cardiac cycles.
Therefore, the projections must be sorted a posteriori: each
phase of the cardiac cycle is reconstructed using only the pro-
jections acquired while the heart was close to this phase, and
discarding the others. In tomography with few views, the bet-
ter the projections cover the angular range around the object,
the better is the reconstruction.7 In cardiac C-arm CT, elec-
trocardiogram gating (ECG gating) results in a few clusters
of consecutive projections (one cluster per heart beat), sepa-
rated by empty angular regions (where other cardiac phases
were acquired). To obtain the best possible angular coverage,
it is desirable to have as many heart cycles acquired during the
C-arm rotation as possible, and thus a long acquisition time.
Therefore, the duration of the acquisition must be the result of
a tradeoff between the image quality and the safety and com-
fort of the patient. The 4D reconstruction method presented in
this paper targets a cardiac reconstruction from a single sweep
10 s acquisition.

In the last decade, several classes of 4D reconstruc-
tion methods have been proposed. Motion compensated
reconstructions8–11 attempt to estimate the motion of the
heart, and take it into account in the reconstruction process.
They depend on the accuracy of the motion estimation, and as
of now have not proven to be efficient on single sweep cardiac
C-arm CT data. Methods based on compressed sensing,12–14

and in particular the prior image constrained compressed
sensing method (short PICCS),7, 15 which is the current state
of the art in cardiac C-arm CT, compensate the loss of infor-
mation caused by ECG-gating by introducing sparsity-based
regularization priors in the solution. Methods12–14 attempt to
reconstruct each cardiac phase individually, and do not take
advantage of the strong similarity between successive car-

diac phases. By imposing that each cardiac phase be close
to a single “prior” image, PICCS indirectly enforces similar-
ity between cardiac phases, but this similarity is not stronger
between successive phases (e.g., midsystole and end systole)
than between distant phases (e.g., end systole and end dias-
tole), which would be a desirable property.

Recently, new algorithms introducing temporal regu-
larization between consecutive cardiac phases have been
proposed.16 The additional constraint introduced by tempo-
ral regularization restricts the space of admissible solutions
to the temporally consistent ones. As such, it allows the
reconstruction algorithm to better exploit the data. A 4D-
regularized reconstruction method, based on temporal non-
local means (TNLM), was proposed by Jia et al.17 Langet
et al. have proposed a 3D + time reconstruction algorithm
for injected arteries,18 which is a specific problem leading to
specialized algorithms. Momey et al. proposed a 2D + time
reconstruction method based on total variation (short TV)
regularization,19 and later extended it to 3D + time.20 In the
present paper, we introduce a new 3D + time reconstruction
method, which we name 4D ROOSTER (for 4D RecOnstruc-
tiOn using Spatial and TEmporal Regularization), by starting
from ECG-gated simultaneous algebraic reconstruction tech-
nique [SART (Ref. 21)] and adding regularization constraints
one by one: first positivity, then restriction of motion to a re-
gion of interest (ROI) containing the heart and the vessels,
and then spatial and temporal total variation minimization.

It is shown that the proposed method outperforms PICCS
both on simulated and real data, and can successfully recon-
struct a 3D + time sequence from a 10 s single sweep human
cardiac C-arm CT acquisition.

2. MATERIALS AND METHODS

2.A. The 4D ROOSTER method

The 4D ROOSTER method derives from the desired prop-
erties of the solution to the problem:

� (P1) Forward projection through the reconstructed 4D
volume should match the measured projection data as
accurately as possible.

� (P2) All voxels should have non-negative attenuation.
� (P3) No movement should occur outside the heart and

the vascular system.
� (P4) Each volume of the sequence should have some

kind of spatial regularity, i.e., be spatially smooth except
on the edges of the organs and be free of streak artifacts.

� (P5) Consecutive volumes in the sequence should be
similar.

Before describing the details of the reconstruction method,
let us express these requirements in a more formal way. Let
f1, f2, . . . fN be 3D volumes, each one representing a single

cardiac phase, and let f = (
f1...
fN

) be a 4D volume. Cardiac

phases are often expressed in percentage of the cardiac cy-
cle: here the volume fi represents the cardiac phase t = (i/N).
The f1, f2, . . . fN are column vectors of size M, where M is
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the number of voxels in a 3D volume. Thus f is a column
vector of size MN. For clarity, the intensity at a voxel (x,
y, z) in each volume fi will also be denoted fi(x, y, z). pθ is
the real projection measured at angle θ , and Rθ a ray-driven
forward projection operator (also called x-ray transform) for
angle θ . Note that Rθ is an approximation of the real x-ray
transform, and does not take into account scattering, beam
hardening, detector cross talk, or gain effects. Corrections
for these effects are applied by preprocessing the projections,
and the pθ are in fact the corrected projections. The pθ are
column vectors of size P, where P is the number of pixels
in a projection, and the Rθ are matrices with P lines and M
columns.

Sθ is an interpolation operator which, from the 3D + time
sequence, estimates the 3D volume through which projection
θ has been acquired. It is defined as follows: from the ECG,
we know in which phase t(θ ) the patient’s heart was when
projection pθ was acquired. The forward projection at angle θ ,
which will be compared to the measured projection pθ , should
be computed through an estimate of the patient’s thorax at
t(θ ), which by a slight abuse in notation we will denote ft(θ),
and which is obtained by interpolating between some of the
volumes fi. If N = 10, f1 is the volume at 10% of the cardiac
cycle, f2 the volume at 20%, and so on. With t(θ ) = 87%, the
interpolated volume would be Sθ f = ft(θ) = 0.3f8 + 0.7f9. In
this example, and in the implementation we used, Sθ is a linear
interpolator. However, other interpolation methods could be
tested, like nearest neighbors or splines. Note that Sθ is a huge
matrix with M lines and MN columns, but is not explicitly
computed in practice.

It is assumed that a ROI of the heart and main vessels is
available (for instance, derived from a rough segmentation of
the ungated FDK reconstruction), from which the operator H
is derived. H is a binary diagonal matrix with M lines, which
“selects” those voxels in a volume that are located outside the
heart. As a result, for any i,

{
Hfi(x, y, z) = fi(x, y, z) if (x, y, z) is outside the heart

Hfi(x, y, z) = 0 if (x, y, z) is inside the heart
.

(1)

Multiplication by the matrix H is the linear algebra equiv-
alent of multiplying by a motion mask. The mask’s edges are
sharp, which can lead to artifacts at its borders. The spatial
regularity constraint seems to be sufficient to mitigate these
artifacts in the cases we have studied. Should the need arise,
changing to a mask with soft edges would only require slight
modifications.

Now, let us formalize our five requirements on the solution:

� (P1), taken in the least squares sense, means that∑
θ ‖(RθSθf − pθ )‖2

2 should be small.
� (P2) is equivalent to imposing that ∀i and ∀(x, y, z),

fi(x, y, z) ≥ 0.
� (P3) means that for any i and j, Hfi = Hfj.
� (P4) can be enforced by numerous regularization meth-

ods. We chose to express it as a constraint on 3D total

variation on each volume fi. Total variation is defined by

TVspace(f ) = ‖
√

(∇xfi)2 + (∇yfi)2 + (∇zfi)2‖1. (2)

The ∇ operator accounts for the spacing between voxels,
which can vary from one direction to another.

� (P5) can also be expressed as a constraint on total varia-
tion, although this time a one-dimension total variation
has to be used. The following constraint is derived:

TVtime(f ) = ‖∇t f ‖1 (3)

should be small. The discrete gradient along time is
computed with a circular boundary condition because
the sequence of volumes is meant to be cyclic.

The algorithm we propose in order to derive a 3D
+ time sequence f that has the aforementioned properties con-
sists in the following steps:

� Start from k = 0 and f (k) = 0
� Until k = kmax

� Compute f̂ = argmin
f

∑
θ ‖(RθSθf − pθ )‖2

2 by a

conjugate gradient descent initialized with f (k)

� Set all negative voxels to zero
� In each f̂i replace the area outside the heart by its

temporal mean 1
N

∑
j H f̂j

� For each f̂i , compute ĝi = argmin
g

λspace‖g − f̂i‖2
2

+ TVspace(g) using a gradient descent, as described
by Chan,22 and concatenate the ĝi into ĝ

� Compute f (k+1) = argmin
f

λtime‖f − ĝ‖2
2 + TVtime

(f ) by the same method
� k = k + 1

The parameters of the algorithm are the number of main
loop iterations kmax (for all results presented throughout the
paper, except those used for Fig. 6, kmax = 30), the number of
nested conjugate gradient iterations (set to 4 throughout the
paper), the number of iterations used in the TV minimization,
the parameters λspace and λtime, which are data attachment co-
efficients for TV minimization, and the steps of the gradient
descents.

In order to account for the data truncation when working
on real cardiac C-arm CT data, the reconstruction volume was
chosen slightly larger than the field of view.23, 24

In order to demonstrate the impact of each individual reg-
ularization step, modified versions of this method have been
tested. Each regularization step has been turned off while all
others were turned on. The results are presented in Sec. 3.

2.B. The PICCS method

The PICCS method is based on minimizing the following
cost function:

Cost(f ) = G‖(Rf − p)‖2
2 + αT V (f − f ∗)

+ (1 − α)T V (f ), (4)

Medical Physics, Vol. 41, No. 2, February 2014



021903-4 Mory et al.: Cardiac C-arm computed tomography using the 4DROOSTER method 021903-4

where f is the 3D volume being reconstructed, f ∗ is a prior im-
age close to the solution we seek (usually the FDK reconstruc-
tion using all projections,3 also called “ungated FDK”), TV is
the total variation operator, R is the x-ray transform operator,
p is the set of measured projections, and G is an ECG-gating
operator. G is diagonal and, in our case, binary (ECG-gating
can be performed with various window shapes,25 and G is not
binary if the chosen shape is not a gate).

There are several ways to estimate a solution f that mini-
mizes this cost function. In this paper, we have implemented
a method very close to the one described by Chen et al.,15

in which it was proposed to alternate between iterations of
ECG-gated ART,25, 26 to minimize the data attachment term,
and steepest descent iterations, to minimize the rest of the cost
function, i.e., (1 − α)TV(f − f ∗) + αTV(f). We used SART
(Ref. 21) instead of ART, and turned the cost function mini-
mized by the steepest descent iterations into λ‖f − fSART‖2

2
+ αTV(f − f ∗) + (1 − α)TV(f ), where fSART is the volume
returned by the SART step. Adding such a data-attachment
term avoids blurring the edges of the reconstructed volume
when α → 0.

2.C. Implementation

Both PICCS and 4D ROOSTER have been implemented
using the Reconstruction ToolKit (short RTK), a library based
on the Insight ToolKit (short ITK).27 Data truncation was han-
dled the same way in both 4D ROOSTER and PICCS: the re-
construction volume was set larger than the field of view. RTK
supports CUDA, thus 4D ROOSTER and PICCS were imple-
mented mostly on GPU. Reconstructions were performed on
a 2.8 GHz Intel Xeon with 6 cores, equipped with an nVidia
Tesla C2070.

With our implementation of PICCS, it takes about 15 min
to reconstruct a single phase, meaning a single 284 × 216
× 284 voxels volume, from about 61 projections (20% of 308
projections) of 512 × 396 pixels each.

With our implementation of 4D ROOSTER, it takes about
90 min to reconstruct ten phases, meaning a 284 × 216 × 284
× 10 voxels 3D + time sequence, from 308 projections of 512
× 396 pixels each.

2.D. Simulations

4D ROOSTER is demonstrated on a 3D Shepp and Lo-
gan phantom, in which the size of one of the ellipses varies
periodically to simulate a beating heart. The simulated acqui-
sition geometry was chosen close to that of the real acquisi-
tion (308 projections regularly distributed over a 205◦ trajec-
tory, acquired over 10 s, and 60 beats/min). The instant when
the beating ellipse is the smallest is called “end systole,” and
the instant when it is the largest is called “end diastole.” The
ground truth images for end systole and end diastole are dis-
played in Fig. 1. The region in which movement is allowed,
and in which the local root mean square error (RMSE) is com-
puted (see Table II), is delineated by a circle on the end dias-
tolic image. It has been chosen a little larger than the beating

FIG. 1. Ground truth of the Shepp and Logan phantom with a beating ellipse,
in end systole (on the left) and end diastole (on the right). The region in which
movement is allowed, and in which local RMSE is computed, is delineated
by a circle on the end diastolic image.

ellipse in end diastole to illustrate the fact that the segmenta-
tion of the heart can be rough and include a margin of error.

2.E. Clinical data

The clinical datasets used in this paper were acquired at
the Division of Cardiology, University of Colorado, Denver,
USA. The C-arm CT acquisition was performed on an Allura
XPer FD20 (Philips Healthcare, Best, The Netherlands). 308
projections were acquired in 10.3 s over a 205◦ circular arc
trajectory, during a single breath hold. Each projection con-
tains 1024 × 792 pixels of 0.37 × 0.37 mm (note that for this
work the projections have been downsampled by a factor of 2
in both directions). The projections are corrected for detector
cross talk, pixel gain, beam hardening, and scatter.28, 29 The
tube was set to 83 kV, 650 mA, 10 ms per projection. The
CTDI dose delivered to the patient is 4.3 mSv.30 Patient 1 had
a heart rate of 90 beats/min (which is a favorable configura-
tion, see Sec. 1), and patient 2 a heart rate of 60 bpm (which
is the target). More details on the acquisition protocol can be
found in Schwartz et al.2 Projections 50 and 250 for both pa-
tients are displayed in Fig. 2.

As can be observed in projection 50, at its initial concentra-
tion, before it gets diluted into blood, the contrast medium has

FIG. 2. Projection 50 out of 308 (left column) and 250 out of 308 (right
column) of the injected C-arm CT scan performed on patient 1 (top row) and
patient 2 (bottom row). The arrows point out the highly concentrated contrast
agent in the superior vena cava in projection 50.
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a high absorption. This creates hyperattenuation artifacts in
the reconstructed volumes, just like metallic objects would do.

Moreover, the contrast medium flows in the vascular sys-
tem. Its distribution in space can be considered periodic inside
the heart if the injection is performed carefully, but is never
periodic outside the heart. Therefore, projections acquired at
the same ECG-phase can represent different volumes: the flow
of the contrast medium makes the projection data inconsis-
tent. Cardiac reconstruction algorithms are nevertheless built
on the assumption that the attenuation of a voxel depends only
on its position in space and on the ECG-phase considered, or
in other words, that the imaged object’s attenuation varies pe-
riodically like the ECG.

Another source of error is the truncation of data: patients
are typically larger than the field of view, so that certain parts
of their chest are visible on some projections and not on the
others. This also makes the projection dataset inconsistent. In
order to mitigate the artifacts caused by truncation, the recon-
structed volume has been slightly extended outside the field
of view.24

2.F. Quantitative evaluation of sharpness

Two methods were used to quantitatively assess the sharp-
ness of the reconstructed clinical data:

� Kriminski’s blur criterion,31 based on the work of
Boykov et al.,32, 33 which consists in creating a graph
from the image, performing a graph cut segmentation,
and using the maximum flow (or equivalently the min-
imal cut weight) as a measure of blur, as performed in
Rit et al.23

� Contrast to noise ratio (CNR).

Kriminski’s method provides a measure of blur derived
from a graph cut segmentation. It makes particular sense in
our case to introduce a segmentation-based criterion since one
of the main goals of the cardiac reconstruction we are tar-
geting is to segment the blood in the left ventricle, e.g., to
compute the left ventricular ejection fraction. Kriminski’s
blur criterion requires only one parameter, which can roughly
be interpreted as an intensity threshold and was tuned manu-
ally for each reconstructed image in order to obtain the best
possible segmentation.

CNR does not exactly measure sharpness, but it gives an
indication of how distinguishable from one another two adja-
cent regions are. It was computed as

CNR = |Mblood − Mmuscle|
σmuscle

, (5)

where Mblood and Mmuscle are the mean attenuations in the
blood and muscle ROIs, respectively, and σ muscle is the stan-
dard deviation in the muscle ROI.

Figure 3 shows the subimage used for the max flow mea-
surement, and the ROIs used for the CNR measurement, on
both patients.

FIG. 3. Region of the image in which the Kriminski blur criterion was mea-
sured (left column) and ROIs for the CNR computation (right column) on
both patient 1 (top row) and patient 2 (bottom row). Measurements were per-
formed on the long axis cut in systole.

3. RESULTS

3.A. Simulations on a modified Shepp and Logan
phantom: From ECG-gated SART to 4D ROOSTER

The 4D ROOSTER method is introduced here by going
back to ECG-gated SART, and modifying it step by step
to obtain 4D ROOSTER. Reconstructions of the modified
Shepp and Logan phantom are shown in Figs. 4 and 5, and
the reconstruction parameters for ECG-gated SART and 4D
ROOSTER are listed in Table I.

In Fig. 4, all reconstructions are initialized with a zero vol-
ume. In Fig. 5, the algorithms are initialized with the ungated
FDK reconstruction. In both figures, the top line contains the
reconstructions of the systolic phase, the bottom lines the re-
constructions of the diastolic phase. From left to right, the
algorithms used are the following:

� ECG-gated SART;
� 4D reconstruction by conjugate gradient without any

regularization (P1);
� 4D reconstruction by conjugate gradient alternated with

positivity enforcement (P1 + P2);
� 4D reconstruction by conjugate gradient, alternated with

positivity enforcement and averaging along time outside
the heart (P1 + P2 + P3);

� 4D reconstruction by conjugate gradient, alternated with
positivity enforcement, averaging along time outside the
heart and minimization of spatial TV (P1 + P2 + P3

+ P4);
� 4D ROOSTER as described in Sec. 2.A (P1 + P2 + P3

+ P4 + P5).

Figures 4 and 5 both show that each regularization step
brings some improvement, either by reducing the impact of
artifacts, sharpening the borders of the beating ellipse or en-
forcing smoothness in homogeneous regions. The comparison

Medical Physics, Vol. 41, No. 2, February 2014



021903-6 Mory et al.: Cardiac C-arm computed tomography using the 4DROOSTER method 021903-6

FIG. 4. From ECG-gated SART (first column) to 4D ROOSTER (last column) when initializing with zero. The second column shows the results of unregularized
4D reconstruction by conjugate gradient. The positivity constraint is added in the third column, the motion mask in the fourth column. In the fifth column, spatial
regularization by TV minimization is enforced. In the last column, temporal regularization by TV minimization is added to obtain the 4D ROOSTER method.
The display window is [0.15; 0.35].

between Figures 4 and 5 also reveals that ECG-gated SART is
much more dependent on initialization than 4D ROOSTER is.

A numerical evaluation of the results presented in Figs. 4
and 5 was performed. The parameters retained are the RMSE
with respect to the 4D phantom in the whole 4D sequence,
and the RMSE in the region where movement can occur (lo-
cal RMSE) for the 4D phantom. These values are shown in
Table II and confirm the gradual improvement brought by

adding each regularization step, which can be appreciated by
visual evaluation of Figs. 4 and 5.

Table II shows a reduction of the RMSE and the RMSE
in the motion mask when the various regularization steps are
added.

Figure 6 shows the evolution of RMSE during the 4D
ROOSTER reconstructions of the moving Shepp and Lo-
gan phantom. It constitutes a numerical validation of the

FIG. 5. From ECG-gated SART (first column) to 4D ROOSTER (last column) when initializing with the ungated FDK reconstruction. The second column
shows the results of unregularized 4D reconstruction by conjugate gradient. The positivity constraint is added in the third column, the motion mask in the fourth
column. In the fifth column, spatial regularization by TV minimization is enforced. In the last column, temporal regularization by TV minimization is added to
obtain the 4D ROOSTER method. The display window is [0.15; 0.35].
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TABLE I. Parameters used for the reconstructions of the beating Shepp and
Logan with ECG-gated SART and 4D ROOSTER.

Parameter SART 4D ROOSTER

Size (in voxels) 256 × 256 × 256 256 × 256 × 256
Voxel spacing (in mm) 1 × 1 × 1 1 × 1 × 1
Main loop iterations 100 30

SART-specific parameters
SART relaxation parameter 0.5
Gating window width (% of
cardiac cycle)

20

4D ROOSTER-specific parameters
lambda_space 100
lambda_time 100
Nested iterations for spatial TV 5
Nested iterations for temporal TV 5
Gradient descent step for spatial
TV

0.001

Gradient descent step for
temporal TV

0.001

convergence of 4D ROOSTER, for which we give no formal
proof in this paper. More details on convergence can be found
in Sec. 4.B. It also highlights the benefit of initializing 4D
ROOSTER with the ungated FDK image. In the rest of the
paper, 4D ROOSTER has been configured to perform 30 it-
erations, which in practice seems sufficient, and to start from
the ungated FDK reconstruction.

We present in Fig. 7 the absolute value of the difference be-
tween the first and second instants of the cardiac cycle (10%
and 20% of the cardiac cycle, respectively) for the ECG-gated
SART (on the left) and 4D ROOSTER (on the right) recon-
structions initialized with ungated FDK. We have zoomed on
the region where movement occurs (the ROI is delineated by
a circle in Fig. 7). The slice considered is the same as in
Figs. 4 and 5. Both the background and the inside of the ROI
appear corrupted by temporally moving artifacts in the case
of ECG-gated SART, while no such artifacts are present in
the background and very little in the ROI on 4D ROOSTER
results. It can also be observed that the ring corresponding to
the beating ellipse is sharper and more contrasted on the 4D
ROOSTER result.

FIG. 6. Evolution of the RMSE plotted against the number of iterations dur-
ing the reconstruction of the moving Shepp and Logan phantom. The solid
line is the reconstruction initialized with the ungated FDK and the dotted line
is the reconstruction initialized with zero.

FIG. 7. Absolute value of the difference between the first and second in-
stants of the cardiac cycle, extracted from the ECG-gated SART (left) and
4D ROOSTER (right) reconstructions initialized with ungated FDK. The fig-
ure is a zoom on the region where movement occurs, delineated by a circle.
These images were computed on the same spatial slice as the one displayed in
Fig. 4. The display window is [0; 0.1].

3.B. Clinical results: Comparison with ECG-gated
SART and PICCS

In this section, reconstruction results obtained with ECG-
gated SART, PICCS, and 4D ROOSTER on two clinical cases
are presented. The results were not converted to Hounsfield

TABLE II. Root mean square error ECG-gated SART, 4D ROOSTER, and all intermediate reconstruction methods with partial regularization.

Initialization: zero Initialization: ungated FDK

RMSE RMSE in ROI RMSE RMSE in ROI

ECG-gated SART 0.0954 0.0319 0.0472 0.0278
4D CG 0.1134 0.0345 0.0474 0.0245
4D CG + positivity 0.0698 0.0247 0.0425 0.0211
4D CG + positivity + motion mask 0.0387 0.0168 0.0379 0.0182
4D CG + positivity + motion mask + spatial TV 0.0365 0.0122 0.0345 0.0122
4D ROOSTER 0.0363 0.0113 0.0345 0.0113
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TABLE III. Parameters used for the reconstructions of the clinical case with ECG-gated SART, PICCS, and 4D
ROOSTER.

Parameter SART PICCS 4D ROOSTER

Size (in voxels) 284 × 216 × 284 284 × 216 × 284 284 × 216 × 284
Voxel spacing (in mm) 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1
Main loop iterations 100 30 30

SART-specific parameters
SART relaxation parameter 0.5
Gating window width (% of cardiac cycle) 20

PICCS-specific parameters
Alpha 0.5
Lambda 500
SART relaxation parameter 0.5
Nested gradient descent iterations 20
Gradient descent step 0.002
Gating window width (% of cardiac cycle) 20

4D ROOSTER-specific parameters
lambda_space 10000
lambda_time 1000
Nested iterations for spatial TV 10
Nested iterations for temporal TV 10
Gradient descent step for spatial TV 0.0002
Gradient descent step for temporal TV 0.0002

units: attenuations are expressed in mm−1. The parameters
used for the reconstructions of this section are listed in
Table III.

Figure 8 shows reconstructions of the end systolic and end
diastolic phases of the first patient’s heart, on a long axis cut
of the left ventricle.

Figure 9 shows the reconstructions of the end systolic and
end diastolic phases of the first patient’s heart, on a short
axis cut. In both Figs. 8 and 9, the 4D ROOSTER results are
sharper than the PICCS ones, and far less noisy than the ECG-
gated SART results. The border between the endocardium and
the interior of the left ventricle, pointed out by an arrow, is
easy to identify on the 4D ROOSTER results while it is hard
to determine with precision on the PICCS or SART results.

In the PICCS reconstructions, some streak artifacts remain
and cause variations of the attenuation in regions that should
be static. They can be observed in Fig. 8, in the top left cor-
ner of the PICCS reconstructions, which differ a lot while
they should not. However, our main objective is to obtain a
good reconstruction inside the heart region. From this stand-
point, Figure 10 is more relevant. It shows the difference be-
tween two consecutive cardiac phases for both PICCS and 4D
ROOSTER, and highlights the temporal consistency of 4D
ROOSTER reconstructions both outside and inside the heart.

Figures 11 and 12 show the reconstructions of the second
patient, in long axis cut for Fig. 11 and in short axis cut for
Fig. 12. Because patient 2 has a lower heart rhythm than pa-
tient 1, the undersampling problem is more acute, and the re-
constructed images are less sharp. The arrow in Fig. 11 points
a portion of the border between blood and myocardium where
sharpness differs a lot between SART, PICCS, and ROOSTER
results.

A quantitative evaluation of sharpness using the methods
described in Sec. 2.F is presented in Table IV. SART re-
constructions are noisier and blurrier than PICCS images,
which in turn are noisier and blurrier than 4D ROOSTER
reconstructions.

FIG. 8. Long axis cuts of the left ventricle in ECG-gated SART, PICCS, and
4D ROOSTER reconstructions of patient 1. The display window is [0.018;
0.042].
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FIG. 9. Short axis cuts of the left ventricle in ECG-gated SART, PICCS, and
4D ROOSTER reconstructions of patient 1. The display window is [0.018;
0.042].

3.C. Impact of each regularization step

Understanding the practical impact of each regularization
step on the final result is crucial to be able to fine-tune
the parameters of the 4D ROOSTER algorithm. This sec-
tion presents the results obtained with 4D ROOSTER on the
clinical dataset when all regularization steps but one are ac-
tive, so as to give some insight on the role of each step.
Figure 13 shows that positivity enforcement has little impact
in this case. However, it does not deteriorate the image, comes
at a very small computational cost (see Table V), and as it can
be seen in Fig. 4, it plays an important role when initializing
with zero. Therefore, we recommend keeping this regulariza-
tion step.

FIG. 10. Absolute value of the difference between two consecutive cardiac
phases in both PICCS and 4D ROOSTER, in the same long axis cut as in
Fig. 8. The contour is the border of the ROI used in 4D ROOSTER. The
display window is [0; 0.005].

FIG. 11. Long axis cuts of the left ventricle in ECG-gated SART, PICCS,
and 4D ROOSTER reconstructions of patient 2. The display window is [0.01;
0.042].

FIG. 12. Short axis cuts of the left ventricle in ECG-gated SART, PICCS
and 4D ROOSTER reconstructions of patient 2. The display window is [0.01;
0.042].
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TABLE IV. Quantitative evaluation of sharpness in reconstructions of clinical
cases.

SART PICCS ROOSTER

Patient 1
Blur criterion 13.7 10.8 7.8
CNR 1.33 3.3 4.47

Patient 2
Blur criterion 11.3 10.2 9.7
CNR 6.09 6.39 11.98

The effect of spatial regularization is shown in Fig. 14.
Minimizing the 3D total variation effectively removes high
frequency noise and favors solutions with homogeneous re-
gions separated by sharp edges.

Figure 15 highlights the role averaging along time out-
side the motion mask and of minimizing temporal TV by
displaying the difference image between two consecutive
heart phases. Minimizing temporal TV seems to have a higher
impact on image quality than averaging outside the motion
mask, but both regularization steps appear complementary.

4. DISCUSSION AND CONCLUSION

4.A. Comparison with PICCS

The 4D ROOSTER method has been introduced and com-
pared to PICCS on real human cardiac C-arm CT data.
As PICCS is designed to reconstruct textured data, we
have chosen not to present comparisons between PICCS
and 4D ROOSTER on the moving Shepp and Logan phan-
tom, which would have been unfair to PICCS and irrele-
vant. The results obtained on real data confirm the superi-
ority of 4D ROOSTER over PICCS. The main reasons why
4D ROOSTER achieves better results than PICCS are the
following:

� It uses a motion mask to allow movement only where it
is supposed to occur. This is a strong hypothesis, which
considerably reduces the number of unknowns of the re-
construction problem.

� It uses regularization along time, which rules out many
inconsistent solutions, and is also highly efficient in re-
moving streak artifacts.

FIG. 13. Comparison between 4D ROOSTER and 4D ROOSTER without
positivity enforcement [i.e., removing property (P2)]. The display window is
[0.017; 0.04].

TABLE V. Computation time required for each step of the 4D ROOSTER
method.

Algorithm step Computation time (s)

Conjugate gradient minimization of data attachment 110
Positivity enforcement 0.1
Temporal averaging outside heart ROI 14
Spatial TV minimization 14
Temporal TV minimization 30

A clinical study with more patients, and in particular pa-
tients with lower heart rates, is necessary to confirm the re-
sults of this comparison.

It could be argued that, with different parameters, it would
have been possible to obtain better images using PICCS (po-
tentially better than using 4D ROOSTER). There are indeed
many parameters in both methods, and we cannot guarantee
that the ones we chose are the best. For each method, the re-
sults presented in the paper are the best ones we were able to
obtain, and the parameters used to obtain them are listed in
Tables I and III.

4.B. Convergence of the 4D ROOSTER method

Unlike a large class of reconstruction methods based on
compressed sensing,7, 14, 20, 34 4D ROOSTER does not consist
in minimizing a cost function defined as the sum of a data-
attachment term and one or more regularization terms. In-
stead, it alternates between several optimization goals. Sim-
ilar methods include the adaptive steepest descent-projection
onto convex sets (ASD-POCS) (Ref. 13) and some PICCS
implementations, like the one we used. The proof of con-
vergence for such an alternating algorithm is typically harder
than for a method minimizing a single cost function.

This section provides the theoretical background to prove
that if the algorithm has at least one fixed point, it converges
to one of its fixed points. We do not prove here that such a
fixed point does exist. Using the same notations as in Sec. 2.A,
a few definitions from the theory of nonexpansive mappings
are reminded:

� A mapping T: RMN → RMN is nonexpansive if ∀x,
y ∈ RMN, ‖T x − Ty‖2 ≤ ‖x − y‖2.

FIG. 14. Comparison between 4D ROOSTER and 4D ROOSTER without
spatial regularization [i.e., removing property (P4)]. The display window is
[0.017; 0.04].
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FIG. 15. Comparison between 4D ROOSTER in the left column, 4D ROOSTER without motion mask [i.e., removing property (P3)] in the middle column and
4D ROOSTER without temporal regularization [i.e., removing property (P5)] in the right column. The top row shows the end-diastolic phase and the bottom
row shows the absolute value of the difference between two consecutive cardiac phases. Even in large homogeneous areas where the attenuation should not
change much over time, like inside the left ventricle near the base, important differences are noticeable between successive phases if temporal regularization is
not applied. Averaging outside the motion mask also removes some of the high frequency noise. The display window is [0.017; 0.04] for the top row and [0;
0.005] for the bottom row.

� T is strongly nonexpansive if T is nonexpansive and
whenever (xn)n ∈ N and (yn)n ∈ N are sequences in RMN

such that (xn − yn)n ∈ N is bounded and ‖xn − yn‖2 −
‖Txn − Tyn‖2 → 0, it follows that (xn − yn) − (Txn −
Tyn) → 0.

� T is firmly nonexpansive if ∀x, y ∈ RMN, ‖T x − Ty‖2
2

≤ 〈T x − Ty, x − y〉.
All operators involved in 4D ROOSTER are strongly non-

expansive:

� In our problem, with enough iterations, conjugate gradi-
ent descent is strongly nonexpansive.

� Positivity enforcement is a projector onto a nonempty
closed convex set, therefore it is firmly nonexpansive,
and therefore strongly nonexpansive (see fact 4.2 of
Bauschke et al.35).

� It is easy to prove that averaging along time outside the
motion mask is a firmly nonexpansive mapping.

� The spatial and temporal TV regularization opera-
tors are proximal mappings, therefore they are firmly
nonexpansive,36 and therefore strongly nonexpansive.

As stated in fact 4.2 of Bauschke et al.,35 the composition
of a finite number of strongly nonexpansive mappings is a
strongly nonexpansive mapping. Thus, each iteration of the
main loop of 4D ROOSTER amounts to applying a strongly
nonexpansive mapping T on the current 3D + time sequence
fk, such that fk + 1 = T(fk). Applying the theorem reminded in
fact 4.3 of Bauschke et al.,35 if T has at least one fixed point,
4D ROOSTER converges to one of its fixed points.

4.C. Segmentation of the heart and vessels

The constraint that the sequence be static outside the heart
and vessels reduces the number of unknowns by an order
of magnitude, but assumes that a segmentation of the heart

and vessels is available. For this paper the segmentation has
been performed on the ungated FDK reconstruction using the
semiautomatic segmentation tool LiveMorph.37 It could be re-
placed by a fully automatic method,2 especially because the
segmentation used by 4D ROOSTER can be very rough, and
can handle small segmentation errors.

4.D. Perspectives

Future work on the method includes the study of regu-
larization methods other than total variation minimization,
potentially better suited to textured data (e.g., wavelets,
curvelets, nonlocal means, etc.). For the clinical part, 4D
ROOSTER could be tested on—and maybe adapted to—
specific applications like late enhancement cardiac C-arm CT
for myocardial infarction imaging or cardiac imaging in chil-
dren with congenital heart defect.

4.E. Conclusion

4D ROOSTER can be applied for single sweep human car-
diac C-arm CT, and potentially other dynamic tomography
areas. It can easily be adapted by modifying the regulariza-
tion constraints, as regularization is decoupled from projec-
tion and back projection.
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