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Improving iterative 4D CBCT through the use of
motion information

Cyril Mory, Simon Rit

Abstract—In Image-Guided RadioTherapy (IGRT) of lung
tumors, patients undergo a 4D CT, on the basis of which
their treatment is planned. It is implicitely assumed that their
breathing motion will not change much throughout the treatment,
and remain close to what it was during the 4D CT acquisition.
During the treatment, several cone beam CT acquisitions are
performed, and used to re-position the patient. Obtaining a
4D reconstruction from this cone beam data would allow the
therapists to check whether the breathing motion of the day still
matches that of the planning CT, and if not, take appropriate
corrective actions. Unfortunately, most tomography methods
currently available are inadequate for such a task: static 3D
reconstructions are pointless for motion assessment, respiration-
correlated reconstructions are affected by streak artifacts, and
regularization techniques only bring limited improvement. Re-
cently, regularized 4D methods have been proposed, in which the
whole respiratory cycle is reconstructed at once. As these methods
allow to explicitely enforce similarity between consecutive frames,
they considerably improve image quality. In the case of IGRT,
the motion information extracted from the 4D planning CT
can be used to further improve the 4D reconstruction results.
We describe a recent 4D reconstruction method (ROOSTER),
propose its motion-compensated counterpart (MC-ROOSTER),
and compare their results.

I. INTRODUCTION

In image-guided radiotherapy (IGRT) of lung tumors,
breathing motion affects the image guidance. On a treatment
day, physicians currently have no reliable method to verify that
the patient’s breathing motion is the same as in the planning
CT. This task requires a 4D reconstruction of the cone beam
CT data, but most reconstruction methods currently available
suffer major drawbacks: static reconstruction techniques, like
FDK [1] or SART [2], generate images almost free of streaks,
but in 3D, not 4D, and in which the moving structures
are strongly blurred. Their respiration-correlated counterparts
generate severely degraded 4D images with strong streak
artifacts, unless the acquisition time is substantially increased
[3]. Advanced methods have been developed to achieve streak-
free and blur-free 4D reconstructions, most of which are either
based on motion compensation [4], [5], [6], [7], [8], some of
which are currently in use in hospitals, or on regularization
using some a priori information [9], [10], [11], [12], [13], [14],
[15], [16], [17]. Recently, mixed methods have been proposed,
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which combine both approaches [18]. We describe a recent 4D
reconstruction method (ROOSTER) [17], propose its motion-
compensated counterpart (MC-ROOSTER), and compare their
results.

II. ORIGINAL ROOSTER METHOD

The ROOSTER algorithm assumes that a rough segmenta-
tion of the patient is available, and that movement is expected
to occur only inside this segmented region. The method
consists in iteratively enforcing five different constraints in an
alternating manner. It starts by minimizing a quadratic data-
attachment term
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is minimized by conjugate gradient. Then the following reg-
ularization steps are applied sequentially: positivity enforce-
ment, averaging along time outside the segmentation, spatial
total-variation denoising, and temporal total-variation denois-
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respectively. It boils down to finding the proximal operator
of TV , which fortunately is a well-studied problem [19]. This
constitutes one iteration of the main loop, the output of which
is fed back to the conjugate gradient minimizer for the next
iteration.

ROOSTER requires only two parameters, the aforemen-
tionned �

Space

and �

Time

, which control the amount of
regularization by balancing the TV and data-attachment terms
in the denoising cost functions. The optimal values of these
parameters depend on the size and spacing of f , on its mean
intensity and the way it varies in space and time, and on the
aspect one whishes to obtain on the denoised image. They are
found empirically, but do not have to be patient-specific: once
satisfactory values of �

Space

and �

Time

have been obtained
for one patient, they can be used for the others.

The temporal total variation denoising step enforces simi-
larity between consecutive frames, efficiently removing streak
artifacts. However, when structures undergo high amplitude
movements, this step ends up enforcing similarity between
unrelated structures, removing the faintest ones and blurring
the borders of the larger ones.

The 13th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

170



2

Fig. 1. Possible trajectories for denoising along time. On top, constant
(x, y, z), as used by ROOSTER. At the bottom, curved trajectory taking
estimated motion into account, as used by MC-ROOSTER.

III. MOTION-COMPENSATED ROOSTER

In IGRT, some motion information can be estimated from
the planning CT (and is already, in some cancer treatment
centers). This information is, for example, used to perform a
motion-compensated FDK reconstruction [4]. Here, we pro-
pose to use it in a different fashion: we modify the temporal
total variation denoising step of ROOSTER to operate along
a curved trajectory, following the estimated motion of each
voxel along time, instead of along a fixed (x, y, z) trajectory.
This is illustrated in figure 1.

The step-by-step description of this regularization along a
curved trajectory is as follows:

• Each frame is warped to a reference position using the
estimated motion. This warping is performed by trilinear
interpolation (called inverse mapping, in [20]). Let W be
the trilinear interpolation warping operator.

• 1D-TV denoising is applied along time on the warped
volumes. Let D

time

be the total variation denoising along
time operator. Note that unlike W , D

time

is not a linear
operator.

• Each denoised frame is then warped back to its original
position, by applying W

�1

Unfortunately, we have found no simple way to compute
W

�1 with a sufficiently high precision. Using a low-precision
approximation of W

�1 causes some regularization artifacts
to accumulate over the iterations, and MC-ROOSTER as a
whole to diverge. The solution we propose is to seek a least-
squares approximation of f
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It amounts to solving
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The minimum is reached when the gradient of the L2 norm
is null, i.e. when
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where W

T is the adjoint of the trilinear interpolation
operator, i.e. the normalized trilinear splat operator (called
Forward mapping in [20]). We solve this problem by conjugate
gradient. Although it is image-dependent, this method provides
a sufficiently precise inversion of W , and regularization arti-
facts do not appear.

Note that MC-ROOSTER with a zero-amplitude estimated
motion is equivalent to ROOSTER. Therefore, as soon as the
estimated motion is better than a zero-amplitude motion (i.e.
closer to the real motion), MC-ROOSTER can be expected
to yield better reconstruction results than ROOSTER. MC-
ROOSTER requires the same two parameters as ROOSTER.

IV. RESULTS

A CBCT acquisition performed on a patient was recon-
structed with static 3D FDK, respiration-correlated 4D FDK,
ROOSTER and MC-ROOSTER. The 4D DVF was estimated
on a prior 4D planning CT using a method that allows sliding
motion at the border between the lungs and the chest wall
[21], [22]. The size of the reconstructed sequence of volumes
was set to 145 ⇥ 185 ⇥ 245 voxels, with isotropic voxels of
size 1.5 mm in each dimension. Both ROOSTER and MC
ROOSTER reconstruct the respiratory cycle as a sequence of
10 such volumes.

Figure 2 shows a sagittal slice of the reconstructions ob-
tained using four different methods, and Figure 3 the coronal
slice.

The static FDK reconstruction is blurry, and small structures
in the lungs are blurred out. The contours of the tumor
cannot be delineated. The respiration-correlated FDK recon-
structions exhibit high intensity streak artifacts, which here
appear as dark and bright areas as the cut planes intersect the
streaks (they would appear line-shaped in transverse view).
In ROOSTER reconstructions, especially at end-inhale, many
small structures are wiped away by the temporal regulariza-
tion. In the MC-ROOSTER reconstructions, on the other hand,
they are visible and can be delineated. Furthermore, viewing
the 4D reconstructions as movies shows structures gradually
fading in the ROOSTER reconstructions, while they have
sharp motion and distinct borders throughout the breathing
cycle with MC-ROOSTER.

V. DISCUSSION

In the case presented here, the motion estimation obtained
on the 4D planning CT is very precise, which explains the
large gain in image quality. Note that when a precise motion
estimation is indeed available, a simple motion-compensated
FDK (MC-FDK) also provides a high image quality. However,
as one of the goals is to verify that the motion of the treatment
day is similar to that of the planning CT, an MC-FDK is
pointless. The main point we wish to make in this paper is
that a major increase in image quality can be obtained by
modifying only the regularization along time and making it
work along (relevant) curved trajectories. This behavior can be
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Fig. 2. Sagittal slice of a patient with lung tumor (a) Static FDK (b) Respiration-correlated FDK, end-inhale (c) ROOSTER, end-inhale (d) MC-ROOSTER,
end-inhale (e) Respiration-correlated FDK, end-exhale (f) ROOSTER, end-exhale (g) MC-ROOSTER, end-exhale

obtained by inputing motion information, as we have proved it,
but other methods (e.g. block matching techniques or Temporal
Non-Local Means (TNLM) [14]) should also be considered.
When no information on motion is available a-priori, these
alternative methods would probably yield results superior to
those of ROOSTER. When some motion estimation can be
obtained, it can be used to run MC-ROOSTER, but it could
also serve as initialization for the search of similar blocks in
TNLM.

In order to become usable in clinical practice, MC-
ROOSTER would need to achieve computation times below
one minute. On an Intel Xeon E5-2620 CPU with 12 cores,
equipped with an nVidia GTX780 GPU, running OpenSuse
13.1 and The Reconstruction ToolKit (RTK) [23], it currently
takes about one minute to perform a single iteration of the
main loop, and the results presented in this paper have been
obtained with 10 iterations. The most time-consuming part in
MC-ROOSTER is the conjugate gradient optimization on the
data fidelity term, which requires multiple forward and back
projections of the whole dataset. Replacing this part with a
4D version of OS-SART [24], [25] could bring a noticeable
speed up. Whether satisfactory computation times can then be
achieved by code optimization remains a question.
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