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Abstract
Four-dimensional cone-beam computed tomography (4D-CBCT) of the free-
breathing thorax is a valuable tool in image-guided radiation therapy of the 
thorax and the upper abdomen. It allows the determination of the position of 
a tumor throughout the breathing cycle, while only its mean position can be 
extracted from three-dimensional CBCT. The classical approaches are not fully 
satisfactory: respiration-correlated methods allow one to accurately locate 
high-contrast structures in any frame, but contain strong streak artifacts unless 
the acquisition is significantly slowed down. Motion-compensated methods can 
yield streak-free, but static, reconstructions. This work proposes a 4D-CBCT 
method that can be seen as a trade-off between respiration-correlated and 
motion-compensated reconstruction. It builds upon the existing reconstruction 
using spatial and temporal regularization (ROOSTER) and is called motion-
aware ROOSTER (MA-ROOSTER). It performs temporal regularization 
along curved trajectories, following the motion estimated on a prior 4D CT 
scan. MA-ROOSTER does not involve motion-compensated forward and back 
projections: the input motion is used only during temporal regularization. 
MA-ROOSTER is compared to ROOSTER, motion-compensated Feldkamp–
Davis–Kress (MC-FDK), and two respiration-correlated methods, on CBCT 
acquisitions of one physical phantom and two patients. It yields streak-free 
reconstructions, visually similar to MC-FDK, and robust information on 
tumor location throughout the breathing cycle. MA-ROOSTER also allows a 
variation of the lung tissue density during the breathing cycle, similar to that of 
planning CT, which is required for quantitative post-processing.
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1. Introduction

State-of-the-art radiotherapy strategies for the treatment of thoracic and upper-abdominal 
tumors take the patient’s breathing motion into account. The clinical workflow is currently 
the following: the patient first undergoes a four-dimensional (4D) computed tomography (CT) 
scan, from which doctors determine the treatment plan (Wolthaus et al 2008). This plan takes 
into account, among many parameters, the patient’s breathing motion pattern. Treatment is 
then delivered with a radiotherapy device that can combine a high-energy x-ray beam for 
tumor treatment and cone-beam CT (CBCT) for pre-treatment imaging, both mounted on the 
same gantry (Jaffray et al 2002). On the treatment day, the patient lies down on the table of the 
radiotherapy device and a CBCT acquisition can be performed. The CBCT image is used to 
re-position the table, so as to match the patient position as closely as possible with that of the 
planning CT. When the CBCT image is reconstructed in three dimensions (3D), it is implicitly 
assumed that the patient’s breathing motion does not change much throughout the treatment 
and remains close to what it was during the planning 4D CT. Unfortunately, this assumption 
can be wrong, e.g. if a large tumor shrinks under the effect of radiation, partly restoring the 
patient’s respiratory function. Replacing the 3D with a 4D reconstruction from the same data 
would allow the clinicians to check whether the patient’s breathing motion on the treatment 
day matches that of the planning CT. If the motions do not match, corrective actions, e.g. re-
planning, could be taken, hence improving the radiotherapy.

The methods currently available to reconstruct a CBCT acquisition of a moving object can 
roughly be divided into four classes:

 • Respiration-correlated reconstruction techniques, which reconstruct one 3D frame at a 
time and concatenate the results to obtain a 4D reconstruction. These techniques include 
the respiration-correlated versions of the Feldkamp–Davis–Kress (FDK) (Feldkamp et al 
1984, Sonke et al 2005) and simultaneous algebraic reconstruction (Andersen and Kak 
1984, Mory et al 2014) techniques, as well as 3D regularized reconstruction methods 
(Leng et al 2008, Sidky and Pan 2008, Bergner et al 2010). 4D reconstruction techniques 
that do not perform regularization along time also fall into this category. These methods 
allow one to accurately locate high-contrast structures throughout the breathing cycle, 
but each frame has low image quality, due to either streak artifacts, blurring or over-
regularization, unless the scanner is slowed down to improve the sampling of cone-beam 
projections in each 3D frame (Sonke et al 2005).

 • Classical motion-compensated reconstruction techniques, which use an a priori motion 
estimation (Li et al 2007, Rit et al 2009a, 2009b, 2011) to back-project along curved 
trajectories. These methods reconstruct one frame from all projections and yield a static 
reconstruction, which is only as good as the motion estimation used in the input.

 • Joint motion-estimation and motion-compensated reconstruction methods, which esti-
mate the motion directly from the CBCT data (Brehm et al 2012, Wang and Gu 2013a, 
2013b, Liu et al 2015) and perform a motion-compensated reconstruction. The 3D static 
reconstruction obtained can then be animated with the estimated CBCT motion. These 
approaches are valid alternatives to the one we propose, although they share a limitation 
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with the classical motion-compensated reconstruction techniques: the variation of the 
linear attenuation of lung tissue along the breathing cycle cannot be estimated from such 
reconstructions.

 • Regularized 4D reconstruction techniques, which reconstruct the whole cycle at once, 
making use of all the projection data, and enforce some similarity between consecutive 
frames by regularizing along time (Jia et al 2010, Ritschl et al 2012, Wu et al 2012, Mory 
et al 2014).

The proposed method, is halfway between the second and the fourth category. It builds 
upon the existing reconstruction using spatial and temporal regularization (ROOSTER) 
and is called motion-aware ROOSTER (MA-ROOSTER). The only change with respect to 
ROOSTER is that temporal regularization is performed along curved trajectories, following 
an a priori motion estimation computed from the planning 4D CT scan, instead of straight tra-
jectories. In this work, we compare MA-ROOSTER to ROOSTER, to illustrate the benefits of 
motion-aware over straight regularization, and MA-ROOSTER to motion-compensated FDK 
(MC-FDK), both with an accurate and an inaccurate a priori motion estimation, to prove that 
MA-ROOSTER indeed shows some robustness to erroneous input motion, while MC-FDK 
does not. On phantom data, we evaluate the effect of the temporal regularization parameter on 
the robustness to erroneous input motion, using respiration-correlated reconstructions as refer-
ences. Then we show reconstruction results with ROOSTER, MA-ROOSTER and MC-FDK 
on two clinical datasets. Finally, we compare the variations of lung tissue attenuation during 
the breathing cycle in a MA-ROOSTER reconstruction and in 4D planning CT, and show that 
they are consistent with each other.

2. Materials and methods

Throughout the paper, we shall use the word ‘frame’ to denote a 3D volume of a 4D sequence. 
In other contributions, such 3D volumes are often referred to as ‘phases’, but the ‘phase’ also 
denotes the real number in [0;1], defined as the relative position between two consecutive 
end-inhales. For simplicity, we shall also refer to ‘the frame representing the patient’s body at 
phase 50%’ as ‘frame 50%’.

2.1. Respiration-correlated FDK

A 4D reconstruction can be obtained by concatenating 3D respiration-correlated FDK recon-
structions (Sonke et  al 2005, Lu et  al 2007, Bergner et  al 2010). The 4D reconstruction 
contains severe streak artifacts but can serve as a reference to estimate the motion of a high-
contrast object like a tumor. Throughout this paper, it is either called respiration-correlated 
FDK or simply 4D FDK.

2.2. Motion-compensated FDK

The most straightforward approach when a 4D displacement vector field (DVF) is available is 
to compute a 3D motion-compensated FDK (MC-FDK), performed in this paper as described 
in (Rit et al 2009a, 2009b). It belongs to the ‘classical motion-compensated reconstruction 
techniques’ described in the introduction. The DVF extracted from the planning CT allows 
one to warp all frames of the respiratory cycle to the end-exhale frame. By performing an 
MC-FDK using this DVF, we obtain a motion-compensated 3D reconstruction of the end-
exhale frame. The more accurate the DVF, the sharper and better contrasted the reconstruction. 
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MC-FDK is a 3D reconstruction technique: it reconstructs a single frame, and does not pro-
vide any information on the way the tumor actually moves. Therefore, it cannot be used to 
check whether the patient’s breathing motion of the treatment day matches that of the plan-
ning CT. We use it in this paper only as a reference for visual comparison to evaluate image 
quality. Note that with a null DVF, MC-FDK boils down to the blurry static FDK.

2.3. 4D conjugate gradient

The 4D conjugate gradient (CG) method reconstructs a sequence of volumes from a single 
stack of projections through a convex optimization approach. It consists in minimizing the 

single-term cost function ∑ −α α α αR S f p
2

2
 by the linear CG algorithm, where

 • ∥ ∥. 2 is the �2 norm.
 • α is the projection index.
 • f is a 4D sequence of volumes.
 • αR  is the forward projection operator at index α. It maps a 3D frame onto a 2D projection 

image.
 • αS  is an interpolator along the time dimension. In this study, S is a linear interpolator. It 

maps a 3D  +  time sequence onto a 3D frame, using the respiratory phase of projection 
α. For example, if f contains ten frames ( f f f, , ...0 1 2 ) and projection α has been acquired at 
phase 0.87, then S f f f0.3 0.78 9= +α .

 • αp  is the measured projection with index α.

The 4D CG reconstructions are blurry and contain streak artifacts, but provide reliable 
information on the motion of objects that are not hidden by the streaks, e.g. large tumors or 
high-contrast structures. The ROOSTER method builds upon 4D CG, adding some regulariza-
tion steps.

2.4. The ROOSTER method

ROOSTER is a recent iterative reconstruction method alternating between several optim-
ization goals (Mory et al 2014). It assumes that a motion mask, i.e. a rough segmentation of 
the region where movement is expected to occur, is available. As motion can occur outside the 
lungs, since the rib cage and the abdomen move during breathing, we used the motion mask 
extracted from the 4D planning CT (Vandemeulebroucke et al 2012), dilated by morphologi-
cal operations in order to include the ribs. ROOSTER consists in solving the following five 
subproblems at each iteration of the main loop:

 • Minimizing the data-attachment term ∑ −α α α αR S f p
2

2
, by 4D CG.

 • Enforcing positivity, by setting all negative voxels of f to zero.
 • Removing motion where it is not expected to occur, by averaging along time outside the 

motion mask.
 • Enforcing the spatial gradient’s sparsity in each frame using 3D total variation (TV) 

denoising.
 • Enforcing the temporal gradient’s sparsity for each spatial position, by one-dimensional 

(1D) TV denoising along time.

Each supbroblem’s output is used as the input for the next subproblem. This constitutes one 
iteration of the main loop, the output of which is fed back to the CG minimizer for the next 
iteration.
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TV denoising is here intended in its convex optimization sense, i.e. applying TV denoising on 

fnoisy yields γ= − + ( )f u f TV uarg min
u

denoised noisy 2

2 , where parameter γ controls the strength 

of the TV regularization (the higher, the stronger the regularization). In convex  optimization 
 literature, TV denoising is also referred to as the ‘proximal operator’ of TV (Boyd and Ye 
2011). ROOSTER makes use of 3D TV for spatial denoising of each frame (with strength 
parameter γspace and of 1D temporal TV for temporal denoising between frames (with strength 
parameter γtime). They are defined as follows:

= ∇ + ∇ + ∇( ) ∥ ( ) ( ) ( ) ∥TV u u u ux y zspace
2 2 2

1 (1)

and similarly

= ∇( ) ∥ ∥TV u uttime 1 (2)

where ∇ ∇ ∇, ,x y z and ∇t are the gradient operators along the spatial axes x, y, z and along 
the time axis t, respectively, and ∥ ∥. 1 is the �1 norm. In both spatial 3D and temporal 1D 
TV denoising, the minimization is performed by the basis pursuit dequantization algorithm 
(Jacques et al 2010).

2.5. Motion-active ROOSTER

Through a breathing cycle, a given spatial location can contain tissues within a large range of 
linear attenuation coefficients, e.g. lung tissues and blood vessels. In this case, regularization 
along time as performed in ROOSTER enforces similarity between unrelated objects. As a 
result, it can smooth away the small moving structures and the high-intensity structures of one 
frame can partially spread out to the previous and next frames. The diaphragm, small struc-
tures in the lungs and lung tumors seem to gradually fade from one position to another, while 
they should have sharp edges and a distinct position on every frame. This effect can partly 
be explained by noting that, while TV is often said to favor piecewise-constant  functions, 
the 1D TV of a monotonic function is exactly the same as the 1D TV of a step function with 
the same lower and upper bounds. 1D TV therefore favors piecewise-monotonic functions, 
not only piecewise-constant functions. When used to regularize along time, it can cause the 
above-described blurring effect between consecutive frames. To tackle this issue, one could 
try to find a better regularizer along time than 1D TV, e.g. based on the �0 norm of the tem-
poral gradient. In the MA-ROOSTER algorithm, we have chosen to circumvent the problem 
by bending the regularization trajectories, so as to follow the moving structures.

As explained in the introduction, lung cancer patients undergo a 4D CT at the beginning 
of the radiotherapy, on which their treatment is planned. From the 4D planning CT, a 4D 
DVF can be estimated, which maps the end-exhale frame to each other frame. The method 
by which the DVF estimation is performed has little importance for MA-ROOSTER, only 
the DVF itself matters. Since this a priori motion estimation is available, we propose 
improving ROOSTER by performing temporal regularization along curved trajectories 
following the motion. This is illustrated in figure 1. Note that it is mathematically equiva-
lent, but much easier to implement, to first warp all frames onto the end-exhale frame by 
‘backward mapping’ (see chapter 10.2 of Moeslund (2012)), and then to apply straight 
regularization along time on the warped sequence. The regularized frames must then be 
inverse-warped to their original phase (see section 2.6). Note that trilinear interpolation-
based image warping is a linear process, and can therefore be described by a matrix. To 
describe the MA-ROOSTER temporal regularization in a formal way, assuming that we 
reconstruct a sequence f of ten frames, let
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 • N be the number of voxels in a 3D frame.

 • 

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

= �f
f

f
noisy

0

9

 be the sequence to regularize, with { }R∈ ∈f j, 0..9j
N  the individual frames

 • 
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟= �W

W

W

0

0

0

9

 be the 4D warping operator, with → { }R R ∈W j: , 0..9j
N N  the 3D 

warping operators for each frame.

 • 

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Wf
W f

W f
noisy

0 0

9 9

= �  be the warped sequence (each 3D frame in f is warped independently).

 • Dtime be the TV denoising along time operator (note that Dtime is not linear).
 • ( )D Wftime noisy  be the denoised warped sequence.

Then ( )= −f W D Wfdenoised
1

time noisy  is the denoised and inverse-warped sequence, which will 
be used as input for the next main loop iteration of MA-ROOSTER.

An inverse DVF can only be obtained when the DVF is diffeomorphic (Arsigny et al 2006). 
And even when a diffeomorphic DVF and its inverse are available, the associated warping 
operators are not the exact inverse of one another, because of interpolation errors. Since invert-
ing W in reasonable time is impossible, we will always use the warping operator associated 
with the inverse DVF, which from a strict linear algebra standpoint is an approximation of 
W−1. Nevertheless, by an abuse of notation, we will write W−1 to denote it. Details on how to 
mitigate the effects of using an imperfect W−1 are given in section 2.6. Note that a null DVF 

Figure 1. Illustration of the voxel selection for temporal regularization. Top: the 
behavior of ROOSTER, select in each frame the voxel that is located at a fixed spatial 
position. Bottom: behavior of MA-ROOSTER, follow the trajectory of the voxel, given 
by the input DVF. The red arrows are the vectors of the input DVF.
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results in W  =  W−1  =  I, i.e. in temporal regularization along straight lines as in ROOSTER. 
ROOSTER can therefore be seen as a specific case of MA-ROOSTER with a null DVF. 
Intuitively, this means that MA-ROOSTER should yield better results than ROOSTER as soon 
as the DVF is better than null, even when it does not perfectly describe the real displacement.

The temporal regularization enforces a trade-off between the motion present in the pro-
jection data and the one described by the input DVF. It discourages deviating too far from 
the input motion, but does not prevent it. MA-ROOSTER is thus expected to show some 
robustness to motion estimation inaccuracies. The temporal regularization also discourages 
variations in lung tissue attenuation during the breathing cycle, but does not prevent them. 
The attenuation of lung tissue in MA-ROOSTER reconstructions is therefore expected to vary 
slowly throughout the breathing cycle, as a result of the air and blood flows in the lungs.

2.6. Inverse warping

Some motion estimation methods, including the one we used, provide two so-called ‘inverse-
consistent’ DVFs (Christensen and Johnson 2001, Janssens et al 2011, Wang and Gu 2013b). 
Let W and W−1 be their associated warping operators. They are approximately the inverse of 
each other. In practice, ˆ = −f W Wf1  is a blurry approximation of f, since it has undergone two 
trilinear interpolations, one contained in W, the other one in W−1. With a small trick, however, 
the blurring can be limited. We compute fdenoised as follows:

( )

( ( ) )

( ( ) )

≈

≈ − +

= − +

−

−

−

f W D Wf

W D Wf Wf Wf

W D Wf Wf f

denoised
1

time noisy

1
time noisy noisy noisy

1
time noisy noisy noisy

 (3)

In equation (3), ( )−D Wf Wftime noisy noisy is the correction brought by regularization along time 
to Wfnoisy. Restricting the approximate inverse warping by W−1 to that correction allows one 
to avoid blurring fnoisy.

MA-ROOSTER can also handle the case where only a single DVF is available, i.e. the 
motion estimation method used does not provide the inverse DVF. The inverse warping in that 
case relies on convex optimization, and has been described in Mory and Rit (2015).

2.7. Metrics

Since the main purpose of MA-ROOSTER is to provide a 4D reconstruction on which tumor 
motion can be measured, we have designed a quantitative metric to measure tumor motion. 
A secondary objective is to yield a reconstruction that is close, in terms of ‘image quality’, to 
what doctors are used to in 3D (i.e. FDK), and which contains as few streak artifacts as possi-
ble, so as not to hamper visual interpretation. This secondary objective being both quite vague 
and extremely difficult to quantify with metrics, in particular on patient data (McCollough 
et al 2012), we have chosen to leave it to visual evaluation.

The motion of tumors throughout the breathing cycle was measured as follows:

 • A small region of interest (ROI) containing the full trajectory of the tumor was delineated 
manually. The ROI is static, and in any frame the whole tumor is inside the ROI.

 • Each frame was cropped to keep only the ROI. A translation-only motion was estimated 
between each cropped frame and the end-exhale cropped frame, using the open-source 
software Elastix, with the mean squared difference as a similarity measure, and a pyramid 
of four resolutions.
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 • The Euclidian norm of the obtained 3D translation vector was computed and is reported 
in graphs (see figures 4, 6, 8, 10 and 12).

2.8. Table subtraction

FDK can be used to reconstruct any voxel contained in the field of view, independent of the 
others. The reconstructed volume can therefore be a small part of the attenuating object. 
Optimization-based tomography methods, on the other hand, require the reconstructed volume 
to fully contain the object (Ziegler et al 2008). In other words, the reconstructed volume should 
be large enough so that any object appearing in the measured projections lies inside it. If this 
requirement is not met, overshoot appears on the borders of the reconstructed volume, which 
then causes streak artifacts once back-projected, and the reconstruction quickly diverges. In 
some radiation therapy centers, patients lie in a stereotactic body frame (SBF), which is typi-
cally much larger than them. Setting the reconstructed volume to be large enough to contain the 
SBF could increase the computation time and memory footprint by a factor of 4 or more, which 
is unacceptable for MA-ROOSTER. The SBF therefore has to be removed from the projections 
before reconstruction. To this end, we performed a static 3D reconstruction of the full volume 
(patient  +  SBF  +  table), masked out the patient, forward projected through the residual 3D 
volume (SBF  +  table) and subtracted the result from the original projections. The corrected 
projections were then used for reconstruction. This simple pre-processing, very close to the one 
proposed in Ziegler et al (2008), proved sufficient to reconstruct a volume as small as possible, 
containing only the patient, without generating overshoot and streak artifacts.

2.9. Physical phantom data

Since the patient’s breathing motion of the day can differ from the one estimated on the 4D 
planning CT, it is important to evaluate whether MA-ROOSTER can handle inexact input 
motion information, and how errors in its input DVF, extracted from the 4D planning CT, 
propagate to the 4D CBCT reconstruction. MA-ROOSTER should theoretically show some 
robustness to such errors. To evaluate this robustness, we performed reconstructions with both 
underestimated and overestimated DVFs.

Acquisitions were performed on a 4D thorax phantom built at the Université Catholique de 
Louvain (UCL), and shown on figure 2. The phantom’s diaphragm has a controllable motion 
period and amplitude, and can be stopped at specific positions. An insert was added close to 
the diaphragm, simulating a small tumor. The figures focus on slices extracted from the end-
exhale phase, but each MA-ROOSTER reconstruction is a 4D sequence of eight volumes of size 
× ×244 284 308, with isotropic 1 mm voxel size, representing the whole breathing cycle. We 

performed two dynamic acquisitions with either an 18 mm or a 9 mm amplitude in diaphragm 
motion on the cranio–caudal axis, and ten fixed acquisitions, with the ‘diaphragm’ at the follow-
ing positions : 0, 2, 4, 6, 8, 10, 12, 14, 16 and 18 mm. The fixed acquisitions were reconstructed 
with the FDK algorithm (Feldkamp et al 1984), then arranged in two sequences to simulate 4D 
planning CTs. The first sequence was {0, 2, 4, 6, 8, 10, 8, 6, 4, 2} and the second {0, 2, 4, 6, 8, 
10, 12, 14, 16, 18, 16, 14, 12, 10, 8, 6, 4, 2}. From each of these fake 4D CT sequences, a pair 
of inverse-consistent DVFs was estimated using the method described in Janssens et al (2011). 
MA-ROOSTER’s implementation can handle DVFs of an arbitrary number of frames (not nec-
essarily the same as the number of reconstructed frames in f), by interpolating along time if 
required. The DVF-pair extracted from the first sequence describes a 10 mm amplitude motion, 
whereas the one extracted from the second sequence describes an 18 mm amplitude motion. 
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Note that these are the amplitudes for the motion of the diaphragm. The motion of the insert we 
placed on top of the diaphragm is of slightly lower amplitude, and the motion of the structures 
near the neck is of much lower amplitude, since the lungs are made of compressible foam.

Three experiments were conducted:

 • Reconstructing the acquisition with 18 mm amplitude motion using the 18 mm amplitude 
DVF (correct motion).

 • Reconstructing the acquisition with 18 mm amplitude motion using the 10 mm amplitude 
DVF (underestimated motion).

 • Reconstructing the acquisition with 9 mm amplitude motion using the 18 mm amplitude 
DVF (overestimated motion).

In both ROOSTER and MA-ROOSTER, the γtime parameter controls the trade-off between 
the attachment to the projection data and the attachment to the input DVF: γ = 0time  means no 
regularization along time, i.e. the motion in the reconstruction is only the result of the motion 
in the projection data (desirable), but it also means a lot of streak artifacts (not desirable). On 
the other hand, γ = +∞time  means no streaks (desirable), but a strict attachment to the input 
DVF (not desirable). In the case of ROOSTER, the input DVF is null, so γ = +∞time  means 
no motion. Setting γtime to obtain robustness to errors in the input DVF and high image quality, 
i.e. good contrast, sharp structures and few streaks, therefore requires a few trials. In radio-
therapy, the primary goal of a 4D CBCT is to determine the real motion of the tumor, so for 
this application γtime should be set to a small value, even if it means leaving some streaks in the 
image. In addition to evaluating the robustness of MA-ROOSTER to erroneous input motion 
information, the results presented in this section suggest a way to determine a suitable γtime 
experimentally: acquire or generate projections of a moving phantom with known motion, 
perform several reconstructions with incorrect input motion and different values of γtime, and 

Figure 2. Photograph of the 4D thorax phantom. From left to right: support grid, actual 
thorax phantom with its hydraulic cylinder and electronic control board.
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choose a value sufficiently low to yield robustness to erroneous input motion. In each experi-
ment, four different values of γtime were tested.

2.10. Clinical data

2.10.1. 4D planning CT. For both patients, the planning CT, from which the 4D DVF was 
extracted, has been acquired on a brilliance big bore 16-slice 4D CT scanner (Philips Medical 
Systems, Cleveland, OH). Each frame of this 4D CT is a × ×512 512 170 voxel volume, with 
a voxel size of × ×0.88 0.88 2 mm (the last dimension is the cranio–caudal axis). As with the 
phantom, for each patient a pair of inverse-consistent DVFs was estimated on the 4D planning 
CT using the method described in Janssens et al (2011).

2.10.2. CBCT data. Two CBCT acquisitions performed on different patients were recon-
structed. Each one contains approximately 635 projections, each made of ×512 512 pixels of 
size ×0.8 0.8 mm. They have been acquired on an Elekta Synergy CBCT, along a 360 degrees 
trajectory, at 5.48 frames per second, using an off-center detector (Cho et al 1996) to enlarge 
the field of view. All 4D methods were set to reconstruct the respiratory cycle as a sequence 
of ten volumes. The size of the reconstructed volumes depends on the patient’s size. It was 
× ×220 280 370 voxels for patient 1, and × ×285 270 307 voxels for patient 2, both with 

isotropic voxels of 1 mm3.

2.10.3. Parameters. In both ROOSTER and MA-ROOSTER, γspace was set to the same value 
as for the phantom study, i.e. γ = 0.000 05space . An animated GIF sequence available in the 
supplementary material shows that γ = 0.0001space  leads to over-regularization (stacks.iop.
org/PMB/61/6856/mmedia). As a rule of thumb, a regularization parameter should be set to 
the highest value that does not cause adverse effects, so we have set γ = 0.000 05space , which is 
close to the limit. γtime was set to the value taken from the phantom study, to obtain robustness 
to erroneous input motion and limited streak artifacts removal, i.e. γ = 0.0002time . The supple-
mentary material also contains an animated GIF sequence showing the results obtained with 
a large number of different γtime parameters (patient2_gamma_time.gif). Two other animated 
GIF sequences, with the same layout as figures 9 and 11, show the reconstructions of patients 
1 and 2 through a full breathing cycle (patient1.gif and patient2.gif, respectively).

2.10.4. Reference. On clinical data, no ground truth of the DVF is available. The DVF esti-
mated on the 4D planning CT may not be an accurate estimate of the patient’s breathing motion 
on treatment days, especially if morphological changes, e.g. tumor shrinkage or atelectasis 
evolution, have occurred in the meantime. As a workaround, we propose using two respiration-
correlated reconstructions, 4D FDK and 4D CG, as references for the motion of high-contrast 
structures (the low-contrast ones are either blurred or hidden by under-sampling artifacts). 
Since we extracted similar motion information from both of these unregularized reconstruc-
tions, we have assumed that this motion information was cross-validated and trustworthy.

3. Results

3.1. On a physical phantom

3.1.1. Correct motion. Figure 3 shows ROOSTER, MA-ROOSTER and MC-FDK recon-
structions of the phantom with four different values of γtime. The acquisition was performed 
with 18 mm amplitude motion, and the DVF used for the MA-ROOSTER and MC-FDK 
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reconstructions represents that motion. Note that ROOSTER does not make use of the DVF. 
When γtime is high, MA-ROOSTER yields sharper results that ROOSTER, which is not sur-
prising given the additional information it has made use of. Also, the MA-ROOOSTER and 
MC-FDK reconstructions have comparable image quality: when the input DVF is accurate, 
both MA-ROOSTER and MC-FDK perform well.

Figure 4 contains two graphs which show the amplitude of the insert’s motion measured in the 
MA-ROOSTER reconstructions (on the left) and in the ROOSTER reconstructions (on the right), 
as well as on the 4D-FDK reconstruction (on both). The ideal profile, i.e. the one that shows per-
fect robustness to erroneous input motion information, is the dotted black line of the 4D-FDK. 
In this case, with various values of γtime, the insert’s position in the MA-ROOSTER reconstruc-
tions does not differ from the reference position by more than 1 mm. On the other hand, as γtime 
increases, the motion amplitude in the ROOSTER reconstruction decreases: a higher γtime means 
a stricter attachment to the input DVF, which for ROOSTER consists in null motion.

3.1.2. Underestimated motion. Figure 5 shows ROOSTER, MA-ROOSTER and MC-
FDK reconstructions of the phantom with four different values of γtime. The acquisition was 
performed with 18 mm amplitude motion, and the DVF used for the MA-ROOSTER and 
MC-FDK reconstructions only represents 10 mm amplitude motion. Since ROOSTER does 
not make use of the DVF, the ROOSTER results are the same as in figure 3. When γtime is 
high, MA-ROOSTER still yields sharper results than ROOSTER, which confirms that MA-
ROOSTER should yield better results than ROOSTER as soon as the DVF is closer to the real 
motion than a null DVF (see section 2.5). With a small value of γtime, MA-ROOOSTER yields 
a much sharper reconstruction than MC-FDK: correctly tuned, MA-ROOSTER shows some 
robustness to errors in the DVF, while MC-FDK does not.

Figure 6 shows the amplitude of the insert’s motion measured in the MA-ROOSTER 
reconstructions and in a 4D-FDK reconstruction. With a small value of γtime, both ROOSTER 
and MA-ROOSTER yield an accurate reconstruction of the motion pattern. With higher val-
ues of γtime, both methods tend to a stricter attachment to their input DVF. Since the one 

Figure 3. MC-FDK (full volume and zoom in), ROOSTER and MA-ROOSTER 
(zoom in) reconstructions of the UCL 4D phantom, with several values of the temporal 
regularization parameter. The real motion amplitude is 18 mm, and so is the motion 
amplitude in the input DVF.
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used in MA-ROOSTER is closer to reality than the null motion assumed by ROOSTER, 
MA-ROOSTER performs better in that case.

3.1.3. Overestimated motion. Figure 7 shows ROOSTER, MA-ROOSTER and MC-FDK 
reconstructions of the phantom with four different values of γtime. The acquisition was 
performed with 9 mm amplitude motion, and the DVF used for the MA-ROOSTER and 
MC-FDK reconstructions represents 18 mm amplitude motion. Again, ROOSTER does 
not make use of the DVF, but the ROOSTER results are different from those in figures 3 
and 5 since the projection data have changed. This time, even with γtime high, there is 
no clear ranking between MA-ROOSTER, which assumes a motion of amplitude 18 mm, 
and ROOSTER, which assumes a motion of amplitude 0 mm (the real motion amplitude 
is 9 mm). This observation is consistent with the statement in section  2.5: if the MA-
ROOSTER’s input DVF is not a better estimate of the real motion than a null DVF, there is 

Figure 4. Detected position of the moving insert in the MA-ROOSTER reconstructions 
(on the left) and in the ROOSTER reconstructions (on the right) with correct input 
motion. The 4D FDK is used as a reference.

Figure 5. ROOSTER, MA-ROOSTER and MC-FDK reconstructions of the UCL 4D 
phantom, with several values of the temporal regularization parameter. The real motion 
amplitude is 18 mm, but the input DVF only models 10 mm amplitude motion.
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no reason why MA-ROOSTER should yield better results than ROOSTER. Similarly, as in 
figure 5, with a small value of γtime MA-ROOOSTER yields a much sharper reconstruction 
than MC-FDK.

Figure 8 shows the amplitude of the insert’s motion measured in the MA-ROOSTER 
reconstructions and in a 4D-FDK reconstruction. The ROOSTER results allow one to locate 
the tumor more precisely than MA-ROOSTER ones. In this case, assuming an overestimated 
motion (MA-ROOSTER) is worse than assuming null motion (ROOSTER). Such a situation, 
however, is very unlikely to occur in a clinical context.

3.2. On patients

As explained in section  2.5, the temporal regularization enforces a trade-off between the 
motion present in the projection data and the one described by the input DVF. Since in 

Figure 6. The detected position of the moving insert in the MA-ROOSTER 
reconstructions (on the left) and in the ROOSTER reconstructions (on the right) with 
underestimated input motion. The 4D FDK is used as a reference.

Figure 7. ROOSTER, MA-ROOSTER and MC-FDK reconstructions of the UCL 4D 
phantom, with several values of the temporal regularization parameter. The real motion 
amplitude is 9 mm, but the input DVF models 18 mm amplitude motion.
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radiotherapy one of the the primary goals of 4D CBCT is to compare the breathing motion 
of the treatment day with that of the planning CT, we recommend seting γtime to stick to 
the motion of the projection data. From the phantom study, γ = 0.0002time  seems the safest 
choice, and γ = 0.0005time  would be ‘strong but acceptable’ regularization. We have chosen 
γ = 0.0002time . In other applications where motion evaluation is less critical, e.g. cardiac road-
mapping (Knecht et al 2008), γtime could be set to a higher value.

3.2.1. Patient 1. Figure 9 shows sagittal and coronal slices of the reconstructions obtained 
using 4D FDK, 4D CG, ROOSTER and MA-ROOSTER on patient 2, at the end-inhale (rows 
1 and 3) and end-exhale (rows 2 and 4) phases. MC-FDK should show the end-exhale since 
the reference image of the DVF is the end-exhale. The small moving structures in the lungs 
are better contrasted in the MA-ROOSTER reconstruction than in the ROOSTER one, in part-
icular on the end-inhale frame.

In terms of the contrast and sharpness of small structures, MA-ROOSTER does much bet-
ter than 4D CG and 4D FDK, but still has some streaks that are absent from the MC-FDK (e.g. 
around the ribs). We recall that the MC-FDK is used only as a reference for image quality, 
since it cannot provide information on the motion on the treatment day.

Figure 10 shows the tumor motion throughout the breathing cycle, measured as described 
in section 2.7. Mostly, it is cranio–caudal motion, but in some patients (not here) the tumor 
may also undergo high-amplitude antero–posterior motion. The reference motion amplitude, 
i.e. the difference between tumor position at end-inhale and end-exhale, measured on both 
unregularized 4D reconstructions, differs from the one estimated on the planning CT by 2 to 
3 mm. In both the ROOSTER and MA-ROOSTER reconstructions the tumor position is at 
maximum 1 mm away from the references.

Artifacts can be observed on the diaphragm and liver of patient 1 at end-exhale, in 
MA-ROOSTER reconstructions. In the corresponding area on the MC-FDK, the region is 
darker than clinically expected. These artifacts have the same profound cause, namely that in 
some phases the motion compensation leads outside the field of view. The difference between 
the nature of the artifacts arise from the different ways motion compensation is performed in 
the two methods. In MA-ROOSTER, all frames are warped to a single one and regularization 
along time is performed on the warped frames. For some frames, this warping implies forward 
or backward mapping outside the field of view, right in the cone-beam artifacts, which ‘brings 
in’ cone-beam artifacts. These are then spread out to the other frames through regularization 

Figure 8. Detected position of the moving insert in the MA-ROOSTER reconstructions 
(on the left) and in the ROOSTER reconstructions (on the right) with overestimated 
input motion. The 4D FDK is used as a reference.
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along time. In MC-FDK, when the DVF points outside the field of view, the projection data 
is assumed to be null. Fewer back-projected rays reach the inside of the FOV, which results in 
an attenuation that is lower than expected. Patient 1 also has metal artifacts, visible mostly in 
the coronal view, caused by a tracheotomy device. Note that cone-beam artifacts can also be 
observed at the top of the reconstruction of both patients, although these do not interfere with 
motion compensation.

3.2.2. Patient 2. Figure 11 shows sagittal and coronal slices of the reconstructions obtained 
using 4D FDK, 4D CG, ROOSTER and MA-ROOSTER on patient 2, in end-inhale (rows 1 
and 3) and end-exhale (rows 2 and 4) phases. MC-FDK shows the end-exhale.

The comparison with ROOSTER yields the same results as for patient 1. On this patient, 
however, MA-ROOSTER achieves a slightly higher contrast than MC-FDK on small struc-
tures, especially below the tumor in the sagittal view, but has a slightly lower contrast 
on the tumor itself. Even with the red cross as a reference spot, it is difficult to notice a 
change in motion amplitude between the various methods. However, this time, the motion 
estimation results are clearly in favor of MA-ROOSTER, as shown in figure 12, which is 
similar to figure 10 but for patient 2. The reference motion amplitude, measured on both 

Figure 9. Slices through reconstructions of patient 1. Left panels (from left to right): 
4D-FDK, 4D CG, ROOSTER and MA-ROOSTER. Right panels: MC-FDK of the end-
exhale phase. The red cross marks a fixed spot, approximately at the center of the tumor 
in the end-inhale position, to ease visual evaluation of the motion’s amplitude.
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unregularized 4D reconstructions, is 4 mm larger than the one estimated on the planning 
CT. The discrepancy between tumor position in the ROOSTER reconstruction and in the 
references reaches 3 mm at end-exhale, while it remains within 1 mm throughout the cycle 
in the MA-ROOSTER result. Again, this tends to prove that MA-ROOSTER is robust to 
inaccuracies of the input DVF.

3.2.3. Linear attenuation coefficients of lung tissue. An interesting feature of MA-ROOSTER 
is that it allows a variation of the linear attenuation coefficients of lung tissue throughout 
the respiratory cycle. To measure this variation, we warped all frames onto frame 50% and 
summed the attenuation of all voxels contained in the mask shown on figure 13. This was per-
formed on the planning CT images and the MA-ROOSTER reconstructions. Since the plan-
ning CT images are in Hounsfield units (HU), a small calculation is necessary to make sure 
that the HUs and linear attenuation coefficients are supposed to follow the same variations. 
For a position x and a phase p,
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The ratio between attenuation in frame p and in frame 50% is
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The ratios between the sum of voxel values in frame p and in frame 50% should therefore 
be the same in the planning CT expressed in ‘ +HU 1000’ and in the MA-ROOSTER recon-
struction. Figure 14 shows these ratios throughout the breathing cycle on patient 1. The mean 
attenuation in lung tissue in MA-ROOSTER reconstructions follows the same trend as in the 
4D CT reconstruction.

Figure 10. Distance to end-exhale position (in mm) estimated around the tumor on 
several 4D reconstructions of patient 1, and computed from the DVF.
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4. Discussion

4.1. Comparison to ROOSTER and MC-FDK

MA-ROOSTER outperforms ROOSTER when the DVF used is closer to the real motion 
than a null DVF. MA-ROOSTER also outperforms MC-FDK when the DVF does not exactly 
represent the motion of the day, since it corrects for some of the DVF’s inaccuracies. For real 
image-guided radiation therapy (IGRT) cases, any sensible motion estimation on the planning 
CT, even a rough one, will usually be a better estimate of the motion of the day than nothing. 
On the other hand, even if the motion estimation on the planning CT is perfect, it is impossible 
to know a priori whether or not it represents accurately the motion of the day. Therefore, for 
real IGRT cases, MA-ROOSTER is likely to provide more reliable reconstructions than both 
ROOSTER and MC-FDK.

With respect to the classical approach used in ‘motion-compensated’ tomography, which 
consists in bending the forward and back-projection trajectories, motion-aware regularization 
is a new way to make use of an existing motion estimation. The additional parameter to tune, 
γtime, is to be seen more as an additional degree of freedom than as an additional burden, since 

Figure 11. Slices through reconstructions of patient 2. Left panels (from left to right): 
4D-FDK, 4D CG, ROOSTER and MA-ROOSTER. Right panels: MC-FDK of the end-
exhale phase. The red cross marks a fixed spot, approximately at the center of the tumor 
in end-inhale position, to ease visual evaluation of the motion’s amplitude.
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setting γ = +∞time  yields results very similar (although not theoretically identical) to motion-
compensated ones.

Other denoising methods exist which could be described as ‘motion-aware’, e.g. temporal 
non-local means (TNLM) (Tian et al 2011), since in regularizing between consecutive frames 
they assume that the underlying structures may have moved. TNLM does not require an input 
DVF, but is computationally more demanding than MA-ROOSTER. In addition, the implicit 
motion it uses is likely to be very irregular, and therefore not a proper description of the real 
motion.

4.2. Phantom studies

It is very unusual, in a clinical context, to have such a large discrepancy in the motion ampl-
itude between the planning CT and the CBCT as the ones we used in the phantom study: when 
anatomical changes occur that are likely to alter the patient’s breathing amplitude, doctors 
usually order a re-planning of the treatment on a new 4D planning CT. Our phantom experi-
ments are therefore quite extreme cases (Seppenwoolde et al 2002, Rit et al 2012). On real 
data, we expect the planning CT’s motion to be closer to the motion of the day.

Figure 12. Distance to end-exhale position (in mm) estimated around the tumor on 
several 4D reconstructions of patient 2, and computed from the DVF.

Figure 13. Mask used to measure attenuation variation in lung tissue, shown on frame 
50% of the planning CT.
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4.3. Variation of lung tissue attenuation during the respiratory cycle

While it is clear that lung tissue should not have a constant attenuation over time (Guerrero 
et al 2006), it is hard to say how this attenuation should vary. We restricted ourselves to point-
ing out that the variation of attenuation observed in the MA-ROOSTER reconstructions is 
consistent with that of the planning CT, as shown on figure 14. This feature of MA-ROOSTER 
could prove important in applications that require quantitative CBCT, e.g. (Bernchou et al 
2015).

4.4. Other applications

In interventional cardiology, an accurate 4D reconstruction of the patient’s beating heart 
would allow functional analysis such as left ventricle ejection fraction measurement, detec-
tion of hypo- or a-kynesia of some myocardium segments, and road-mapping for numerous 
interventions like electrophysiology or aortic valve replacement. But many interventional car-
diology procedures do not require a 4D CT scan, therefore no DVF is available. For patients 
who did undergo a 4D CT before their 4D CBCT, MA-ROOSTER could be tested on 4D 
cardiac CBCT data.

Since MA-ROOSTER has been proved to correct for some of the input DVF’s inaccura-
cies, further work could involve estimating a new DVF from the MA-ROOSTER reconstruc-
tion, and performing a second MA-ROOSTER with this new DVF as the input.

4.5. Convergence

Neither ROOSTER nor MA-ROOSTER come with a convergence proof. Furthermore, as 
each iteration of the main loop is rather long, the stopping criterion is not based on some 
conv ergence measurement, but on the number of iterations. Although ROOSTER and 
MA-ROOSTER behave well in practice for the cases we have studied, there is no theor-
etical guarantee that they converge, nor that the solution they yield at convergence is more 
desirable than their output after ten iterations. An animated GIF sequence has been added 

Figure 14. Ratio between the mean attenuation in lungs in a given frame and in frame 
50%, in the planning CT and MA-ROOSTER reconstructions of the CBCT data. MC-
FDK is shown to recall that it cannot describe such variations.
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to the supplementary material which follows the reconstructed image through 100 iterations 
(patient2_iterations.gif). Ten iterations seems to be a good choice, since when the number of 
iterations rises no major image quality improvement is observable, and some dark and bright 
dots appear. These dots are presumably caused by imperfect inverse warping, which causes 
some voxels to be modified by temporal regularization when they should not.

Observations on the convergence of ROOSTER, involving the theory of non-expansive 
mappings, can be found in Mory et al (2014). As each step of ROOSTER can be expressed 
as a proximal mapping, an algorithm similar to ROOSTER can be obtained by minimizing 
a carefully chosen cost function with the Chambolle–Pock method (Chambolle and Pock 
2011). Such an attempt can be found in Mory and Jacques (2014), but the resulting algorithm 
proved impractical because of its slow initial convergence. Future work includes transforming 
ROOSTER and MA-ROOSTER into efficient proximal algorithms.

4.6. Regularization

Spatial TV regularization has been shown to be better suited to phantom images than to real 
clinical data (Mory et al 2012), as it favors piecewise-constant images. The spatial TV denois-
ing step could be replaced with some wavelet-based denoising. Finding better-suited regular-
izers and implementing them efficiently is also part of the future work on MA-ROOSTER.

4.7. Computational cost

The reconstructions were performed on an Intel Xeon E5-2620 CPU with 12 cores, equipped 
with an nVidia GTX780 GPU, running OpenSuse 13.1. All three methods were implemented 
using the Reconstruction ToolKit (RTK) (Rit et  al 2013), an open source C++ software 
based on the Insight ToolKit’ (ITK). With this set-up, the total reconstruction time with 
MA-ROOSTER for patient 1 is 21 min, divided as follows: 4D CG optimization took 17 min, 
spatial TV denoising 45 s, warping 80 s, inverse warping 100 s and the other operations can 
be neglected. When the motion estimation method used on the planning CT only yields a 
single 4D DVF (instead of two inverse-consistent 4D DVFs), MA-ROOSTER uses an iterative 
procedure to perform the inverse warping, which increases the duration of that step to 19 min, 
while all the other execution times remain the same.

4.8. Implementation

All the reconstruction methods used in this paper (4D-FDK, MC-FDK, 4D CG, ROOSTER 
and MA-ROOSTER) have been implemented in the RTK library (http://openrtk.org/), an open-
source software based on ITK. RTK is available to anyone, documented, and we provide help 
on how to compile, use and modify the code through a mailing list open to everyone, as well 
as via a wiki (http://wiki.openrtk.org/). A page on the RTK wiki specifically describes how 
to use ROOSTER and MA-ROOSTER (http://wiki.openrtk.org/index.php/RTK/Examples/ 
4DROOSTERReconstruction) and contains links to the data of both patients (4D planning CT, 
projections, geometry, respiratory signal and DVFs), as well as the command lines to repro-
duce the results on patients. The phantom data (projections, geometry, simulated respiratory 
signal and DVFs) can be made available on request. The implementation of the method we 
used to compute the 4D DVFs from the 4D planning CT (Janssens et al 2011), on the other 
hand, is not open source. Note that MA-ROOSTER can use DVFs generated by any motion 
estimation method, and that how the motion estimation is performed is beyond the scope of 
the present paper.
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5. Conclusion

The proposed method, MA-ROOSTER, yields a reconstruction that is visually close to 
MC-FDK, while being robust to motion estimation inaccuracies. MA-ROOSTER appears 
as an excellent trade-off between the MC-FDK technique (which provides high-quality 3D 
images, but from which one cannot retrieve the motion of the day nor the attenuation variation 
due to the flows of air and blood in the lungs) and unregularized 4D reconstruction techniques 
(from which one can estimate the motion of the day of large structures, but which have poor 
image quality).

Acknowledgments

The authors would like to thank Sébastien Brousmiche and Guillaume Janssens for their 
help in performing the acquisitions on the phantom. This research work has been partially 
funded by the iMagX project. iMagX is a public partnership between UCL and IBA funded 
by the Walloon region under convention number 1017266 and 1217662, and by grant ANR-
12-BS01-0018 (DROITE project).

References

Andersen A H and Kak A C 1984 Simultaneous algebraic reconstruction technique (SART): a superior 
implementation of the art algorithm Ultrason. Imaging 6 81–94

Arsigny  V et  al 2006 A log-Euclidean framework for statistics on diffeomorphisms Medical Image 
Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science vol 4190)  
ed R Larsen et al (Berlin: Springer) pp 924–31

Bergner F et al 2010 An investigation of 4D cone-beam CT algorithms for slowly rotating scanners  
Med. Phys. 37 5044

Bernchou U et al 2015 Prediction of lung density changes after radiotherapy by cone beam computed 
tomography response markers and pre-treatment factors for non-small cell lung cancer patients 
Radiother. Oncol. 117 17–22

Boyd S and Ye Y 2011 Foundations and Trends in Optimization (New York: Dover)
Brehm M et al 2012 Self-adapting cyclic registration for motion-compensated cone-beam CT in image-

guided radiation therapy Med. Phys. 39 7603–18
Chambolle A and Pock T 2011 A first-order primal-dual algorithm for convex problems with applications 

to imaging J. Math. Imaging Vis. 40 120–45
Cho P S, Rudd A D and Johnson R H 1996 Cone-beam CT from width-truncated projections Comput. 

Med. Imaging Graph. 20 49–57
Christensen  G  E and Johnson  H  J 2001 Consistent image registration IEEE Trans. Med. Imaging 

20 568–82
Feldkamp L A, Davis L C and Kress J W 1984 Practical cone-beam algorithm J. Opt. Soc. Am. A 1 612–9
Guerrero T et al 2006 Dynamic ventilation imaging from four-dimensional computed tomography Phys. 

Med. Biol. 51 777–91
Jacques L, Hammond D K and Fadili J 2010 Dequantizing compressed sensing: when oversampling and 

non-Gaussian constraints combine (arXiv:0902.2367v4)
Jaffray D A et al 2002 Flat-panel cone-beam computed tomography for image-guided radiation therapy 

Int. J. Radiat. Oncol. Biol. Phys. 53 1337–49
Janssens G et al 2011 Diffeomorphic registration of images with variable contrast enhancement Int.  

J. Biomed. Imaging 2011 891585
Jia X et al 2010 4D computed tomography reconstruction from few-projection data via temporal non-

local regularization Medical Image Computing and Computer-Assisted Intervention (Lecture Notes 
in Computer Science vol 6361) ed T Jiang et al (Berlin: Springer) pp 143–50

Knecht S et al 2008 Computed tomography-fluoroscopy overlay evaluation during catheter ablation of 
left atrial arrhythmia Europace 10 931–8

C Mory and S Rit Phys. Med. Biol. 61 (2016) 6856

http://dx.doi.org/10.1177/016173468400600107
http://dx.doi.org/10.1177/016173468400600107
http://dx.doi.org/10.1177/016173468400600107
http://dx.doi.org/10.1118/1.3480986
http://dx.doi.org/10.1118/1.3480986
http://dx.doi.org/10.1016/j.radonc.2015.07.021
http://dx.doi.org/10.1016/j.radonc.2015.07.021
http://dx.doi.org/10.1016/j.radonc.2015.07.021
http://dx.doi.org/10.1118/1.4766435
http://dx.doi.org/10.1118/1.4766435
http://dx.doi.org/10.1118/1.4766435
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1007/s10851-010-0251-1
http://dx.doi.org/10.1016/0895-6111(96)00031-6
http://dx.doi.org/10.1016/0895-6111(96)00031-6
http://dx.doi.org/10.1016/0895-6111(96)00031-6
http://dx.doi.org/10.1109/42.932742
http://dx.doi.org/10.1109/42.932742
http://dx.doi.org/10.1109/42.932742
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1088/0031-9155/51/4/002
http://dx.doi.org/10.1088/0031-9155/51/4/002
http://dx.doi.org/10.1088/0031-9155/51/4/002
http://arxiv.org/abs/0902.2367v4
http://dx.doi.org/10.1016/S0360-3016(02)02884-5
http://dx.doi.org/10.1016/S0360-3016(02)02884-5
http://dx.doi.org/10.1016/S0360-3016(02)02884-5
http://dx.doi.org/10.1155/2011/891585
http://dx.doi.org/10.1155/2011/891585
http://dx.doi.org/10.1093/europace/eun145
http://dx.doi.org/10.1093/europace/eun145
http://dx.doi.org/10.1093/europace/eun145


6877

Leng  S et  al 2008 High temporal resolution and streak-free four-dimensional cone-beam computed 
tomography Phys. Med. Biol. 53 5653–73

Li T, Koong A and Xing L 2007 Enhanced 4D cone-beam CT with inter-phase motion model Med. Phys. 
34 3688

Liu J et al 2015 5D respiratory motion model based image reconstruction algorithm for 4D cone-beam 
computed tomography Inverse Problems 31 115007

Lu J et al 2007 Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling 
Med. Phys. 34 3520

McCollough C H et al 2012 Achieving routine submillisievert CT scanning: report from the summit on 
management of radiation dose in CT Radiology 264 567–80

Moeslund T B 2012 Introduction to Video and Image Processing: Building Real Systems and Applications 
(Berlin: Springer)

Mory C and Jacques L 2014 A modified 4D ROOSTER method using the Chambolle–Pock algorithm 
Proc. 3rd Int. Conf. on Image Formation in X-ray Computed Tomography (Salt Lake City, USA)  
pp 191–3 (http://ucair.med.utah.edu/CTmeeting/ProceedingsCTMeeting2014.pdf)

Mory C and Rit S 2015 Improving iterative 4D CBCT through the use of motion information Proc. of 
Fully 3D 2015 (Newport, Rhode Island, USA)

Mory C et al 2012 ECG-gated C-arm computed tomography using L1 regularization Proc. 20th European 
Signal Processing Conf. pp 2728–32

Mory C et al 2014 Cardiac C-arm computed tomography using a 3D+  time ROI reconstruction method 
with spatial and temporal regularization Med. Phys. 41 021903

Rit  S et  al 2009a On-the-fly motion-compensated cone-beam CT using an a priori model of the 
respiratory motion Med. Phys. 36 2283–96

Rit  S, Sarrut  D and Desbat  L 2009b Comparison of analytic and algebraic methods for motion-
compensated cone-beam CT reconstruction of the thorax IEEE Trans. Med. Imaging 28 1513–25

Rit S et al 2011 Comparative study of respiratory motion correction techniques in cone-beam computed 
tomography Radiother. Oncol. 100 356–9

Rit S, van Herk M, Zijp L and Sonke J J 2012 Quantification of the variability of diaphragm motion 
and implications for treatment margin construction Int. J. Radiat. Oncol. Biol. Phys. 82 e399–407

Rit  S, Vila Oliva  M, Brousmiche  S, Labarbe  R, Sarrut  D and Sharp  G  C 2013 The Reconstruction 
RoolKit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight ToolKit 
(ITK). Proc. Int. Conf. on the Use of Computers in Radiation Therapy

Ritschl  L et  al 2012 Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-
temporal sparsity prior Phys. Med. Biol. 57 1517–25

Seppenwoolde Y et al 2002 Precise and real-time measurement of 3D tumor motion in lung due to 
breathing and heartbeat, measured during radiotherapy Int. J. Radiat. Oncol. Biol. Phys. 53 822–34

Sidky  E  Y and Pan  X 2008 Image reconstruction in circular cone-beam computed tomography by 
constrained, total-variation minimization Phys. Med. Biol. 53 4777–807

Sonke J J et al 2005 Respiratory correlated cone beam CT Med. Phys. 32 1176
Tian Z et al 2011 Low-dose 4DCT reconstruction via temporal nonlocal means Med. Phys. 38 1359–65
Vandemeulebroucke J et al 2012 Automated segmentation of a motion mask to preserve sliding motion 

in deformable registration of thoracic CT Med. Phys. 39 1006–15
Wang  J and Gu  X 2013a High-quality four-dimensional cone-beam CT by deforming prior images  

Phys. Med. Biol. 58 231
Wang J and Gu X 2013b Simultaneous motion estimation and image reconstruction for 4D cone-beam 

CT Med. Phys. 40 101912
Wolthaus J W et al 2008 Comparison of different strategies to use four-dimensional computed tomography 

in treatment planning for lung cancer patients Int. J. Radiat. Oncol. Biol. Phys. 70 1229–38
Wu H et al 2012 Spatial-temporal total variation regularization for 4D-CT reconstruction Proc. SPIE 

8313 83133J
Ziegler A, Nielsen T and Grass M 2008 Iterative reconstruction of a region of interest for transmission 

tomography Med. Phys. 35 1317

C Mory and S Rit Phys. Med. Biol. 61 (2016) 6856

http://dx.doi.org/10.1088/0031-9155/53/20/006
http://dx.doi.org/10.1088/0031-9155/53/20/006
http://dx.doi.org/10.1088/0031-9155/53/20/006
http://dx.doi.org/10.1118/1.2767144
http://dx.doi.org/10.1118/1.2767144
http://dx.doi.org/10.1088/0266-5611/31/11/115007
http://dx.doi.org/10.1088/0266-5611/31/11/115007
http://dx.doi.org/10.1118/1.2767145
http://dx.doi.org/10.1118/1.2767145
http://dx.doi.org/10.1148/radiol.12112265
http://dx.doi.org/10.1148/radiol.12112265
http://dx.doi.org/10.1148/radiol.12112265
http://ucair.med.utah.edu/CTmeeting/ProceedingsCTMeeting2014.pdf
http://dx.doi.org/10.1118/1.4860215
http://dx.doi.org/10.1118/1.4860215
http://dx.doi.org/10.1118/1.3115691
http://dx.doi.org/10.1118/1.3115691
http://dx.doi.org/10.1118/1.3115691
http://dx.doi.org/10.1109/TMI.2008.2008962
http://dx.doi.org/10.1109/TMI.2008.2008962
http://dx.doi.org/10.1109/TMI.2008.2008962
http://dx.doi.org/10.1016/j.radonc.2011.08.018
http://dx.doi.org/10.1016/j.radonc.2011.08.018
http://dx.doi.org/10.1016/j.radonc.2011.08.018
http://dx.doi.org/10.1016/j.ijrobp.2011.06.1986
http://dx.doi.org/10.1016/j.ijrobp.2011.06.1986
http://dx.doi.org/10.1016/j.ijrobp.2011.06.1986
http://dx.doi.org/10.1088/0031-9155/57/6/1517
http://dx.doi.org/10.1088/0031-9155/57/6/1517
http://dx.doi.org/10.1088/0031-9155/57/6/1517
http://dx.doi.org/10.1016/S0360-3016(02)02803-1
http://dx.doi.org/10.1016/S0360-3016(02)02803-1
http://dx.doi.org/10.1016/S0360-3016(02)02803-1
http://dx.doi.org/10.1088/0031-9155/53/17/021
http://dx.doi.org/10.1088/0031-9155/53/17/021
http://dx.doi.org/10.1088/0031-9155/53/17/021
http://dx.doi.org/10.1118/1.1869074
http://dx.doi.org/10.1118/1.1869074
http://dx.doi.org/10.1118/1.3547724
http://dx.doi.org/10.1118/1.3547724
http://dx.doi.org/10.1118/1.3547724
http://dx.doi.org/10.1118/1.3679009
http://dx.doi.org/10.1118/1.3679009
http://dx.doi.org/10.1118/1.3679009
http://dx.doi.org/10.1088/0031-9155/58/2/231
http://dx.doi.org/10.1088/0031-9155/58/2/231
http://dx.doi.org/10.1118/1.4821099
http://dx.doi.org/10.1118/1.4821099
http://dx.doi.org/10.1016/j.ijrobp.2007.11.042
http://dx.doi.org/10.1016/j.ijrobp.2007.11.042
http://dx.doi.org/10.1016/j.ijrobp.2007.11.042
http://dx.doi.org/10.1118/1.2870219
http://dx.doi.org/10.1118/1.2870219

