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Abstract—In the presence of noise, decomposing spectral CT
projections into materials generates anti-correlated noise. Estimat-
ing the covariance of this noise and taking it into account in the re-
construction process, by minimizing a GLS data-attachment term,
is expected to lower the impact of the noise on the reconstruction.
GLS has already been used in dual energy or spectral computed
tomography, but always coupled with a regularization term, which
raises the question of the relative impact of regularization and
GLS. To our knowledge, a fair comparison between plain OLS
and plain GLS is still missing. We provide one in this paper, with
OLS and GLS reconstruction results from simulated projections,
and discuss the relevance of using GLS. Pixels of the projection
data are assumed to be independant, neglecting spatially correlated
noise, and focusing on the inter-material noise correlation only.
With these hypotheses, GLS brings little reduction of the noise
level, while significantly increasing algorithmic complexity, slowing
down convergence and requiring increased numerical precision
with respect to OLS. Furthermore, in real situations, the covariance
matrix has to be estimated, which adds another level of complexity
and a potential source of inaccuracies.

I. INTRODUCTION

In the presence of noise, decomposing spectral CT photon
counts projections into material projections generates anti-
correlated noise, since an over-estimation of the length tra-
versed through one material must be compensated by an under-
estimation of the length traversed through another to match
the total attenuation. Estimating the covariance of this noise
and taking it into account in the reconstruction process, by
minimizing a Generalized Least Squares data-attachment term,
theoretically guarantees that the estimate (the reconstructed vol-
ume) has the smallest possible variance, i.e. the least noise. GLS
data-attachment terms taking into account the inter-materials
correlation have already been used in dual energy [1] or
spectral computed tomography [2] from material-decomposed
projections, but since these studies use regularization, the impact
of GLS alone cannot be evaluated from them. Throughout the
paper, in order to avoid confusions, we use the term ‘pixel’ to
describe an element of the projection data, and the term ‘voxel’
to describe an element of the reconstructed volume, even though
the numerical experiments are actually 2-dimensional.

A. Principles of Ordinary and Generalized Least Squares

Ordinary least squares (OLS) and Generalized Least Squares
(GLS) are two ways to design the cost function in an inverse
problem. They do not dictate which algorithm should be used
to perform minimization. When trying to retrieve a vector
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of parameters f from measurements p through a system of
matrix R, OLS consists in minimizing ‖Rf − p‖22. If the
errors on the measurements p are uncorrelated and of identical
variance, minimizing the OLS cost function yields the Best
Linear Unbiased Estimator (BLUE). If the errors on p are of
different variances and/or correlated, the BLUE is obtained by
minimizing the GLS cost function, i.e. (Rf−p)TC−1(Rf−p),
where C is the covariance matrix of p. Choosing C = I yields
the OLS cost function. OLS is therefore a specific case of GLS.
In our case, the matrix R is the forward projection matrix, and
f and p are column vectors representing 4D datasets: f is the
set of 3D volumes to reconstruct, one per material, and p is
the set of decomposed 2D material projections, one per X-ray
source position and material. Throughout this document, we use
the following dimension orders, from fastest to slowest:
• for f : material, then x, y, z axes of the volume
• for p: material, then u,v axes of the detector, then source

position

B. Application to spectral CT

Since the decomposition method we used [3] processes each
pixel of the projection data separately, it cannot provide spatial
covariance information. The covariance matrix C is therefore
restricted to inter-material covariance. With the dimension or-
der specified in section I-A, it is block-diagonal, each block
representing the m ×m inter-material covariance matrix for a
given pixel, where m is the number of materials. The forward
projection matrix R is designed accordingly, and since all
materials are projected the same way, it is made of blocks of
m identical rows.

II. MATERIAL AND METHODS

A. Minimization algorithm

Both OLS and GLS cost functions can be minimized by the
linear conjugate gradient (CG) algorithm. CG solves problems
of the type Af = b, where A is a symmetric positive definite
matrix, f is the unknown vector and b is a known vector. Let us
derive the expressions of A and b in the OLS and GLS cases:
• OLS: the minimum of the cost function is reached when

its gradient is null, i.e. when

RT (Rf − p) = 0

RTRf = RT p

Identifying the terms, A = RTR and b = RT p. Note that
if RTR can be inverted in a reasonable time, the Moore-
Penrose pseudo inverse reconstruction f̃ = (RTR)−1RT b
yields the same solution as a converged conjugate gradient
initialized from zero.
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• GLS: let UTU = C−1 be the Cholesky decomposition of
the inverse covariance matrix, with U an upper-triangular
matrix. Then the GLS cost function can be rewritten as
‖U(Rf − p)‖22, and its gradient is null when

RTUTU(Rf − p) = 0

RTUTURf = RTUTUp

RTC−1Rf = RTC−1p

Identifying the terms, A = RTC−1R and b = RTC−1p.
The Moore-Penrose pseudo inverse reconstruction is f̃ =
(RTC−1R)−1RTC−1b.

The conjugate gradient algorithm is guaranteed to have con-
verged after n iterations, where n is the number of elements in
f . In practice, however, iterations are usually stopped far before
that.

B. Simulation study

Simulations were performed with RTK [4]. We used a 2-
dimensional, 3-materials (iodine, gadolinium and water) phan-
tom, in which each material volume is made of 350 × 350
voxels. The phantom is composed of a small cylinder of iodine
at concentration 1mg.ml−1, a small gadolinium cylinder at
concentration 1mg.ml−1, both inside a large water cylinder at
concentration 1 g.ml−1, as shown in Fig. 1. 2400 projections of
643 × 1 pixels were computed analytically, using the geome-
try of the spectral CT scanner prototype (Philips Healthcare,
Israël) installed at the CERMEP, Lyon, France. They were
then converted to photon counts with 5 energy bins using the
scanner’s spectrum, detector response, and X-ray attenuation
functions of each material. Poisson noise was added to the
photon counts, then the noisy photon counts were decomposed
into material projections using the RTK implementation of the
method described in [3]. Since with noisy input photon count
data, this method generates aberrant results for some pixels, we
applied a Hampel filter [5] to remove the outliers. For each
pixel, in each material, a 3 × 3 × 3 neighborhood centered on
the pixel is considered, and the median and standard deviation
in this neighborhood are computed. If the pixel’s value is off the
median by more than 2σ, it is replaced by the median, otherwise
it is left unchanged. In order to obtain a reliable estimate of
the covariance of the noise on the decomposed projections,
we repeated the last three steps (Poisson noise, decomposition
and denoising) a hundred times, each time with a different
realization of Poisson noise, and for each pixel, we computed the
3× 3 covariance matrix on these hundred (3-materials) values.
For the reconstructions, only one set of material projections was
required, so we kept only the one from the first simulation.

Fig. 1: The three channels of the phantom used for simulations on RTK, shown
side-by-side. From left to right: iodine, gadolinium, water

C. Evaluation of inter-material correlation coefficients

On the RTK simulated data, during the computation of the
covariance matrix, we also computed the standard deviation
of the noise in each material and each pixel, on the hundred
realizations. Combining the covariance matrix and the standard
deviation values, we were able to calculate correlations coef-
ficients. Obviously, like the covariances, these vary from one
pixel to the other, but the mean and standard deviation over all
pixels is nevertheless interesting. The correlation coefficients we
measured were the following:
• Iodine-gadolinium correlation’s mean = -0.3963, std =

0.1185,
• Iodine-water correlation’s mean = -0.1571, std = 0.1135,
• Gadolinium-water correlation’s mean = -0.5489, std =

0.07953.
As expected, the noise is anti-correlated between materials.

D. Convergence issues and workarounds

While the mathematics of GLS are appealingly simple, we
encountered a number of practical difficulties during our inves-
tigation of this topic. These difficulties are listed in the present
section.

1) First CG iterates: It is well known that the first CG
iterates of an OLS reconstruction are (roughly) low-pass ap-
proximations of the result CG yields at convergence, and high
frequencies build up over the course of the iterations. In a GLS
reconstruction, the first CG iterates are also low frequency, but
they display a lot of cross-talk between materials (see Fig. 3).
This cross-talk disappears over the course of the iterations. Stop-
ping the iterations early is therefore much more problematic in
GLS than in OLS. This problem can be alleviated by initializing
the GLS conjugate gradient reconstruction with an early iterate
of the corresponding OLS conjugate gradient reconstruction:
with this approach, early stopping the GLS part no longer yields
a result with a lot of cross-talk. However, it does not seem to
reduce the number of iterations required to attain convergence.
Therefore all results presented in this paper were obtained from
a zero initialization.

2) Relative convergence speed: On the experiments we have
carried out, GLS required many more iterations than OLS to
reach convergence. Having to perform a lot of iterations for
the GLS case brought in additional problems: after a certain
point, each additional iteration of CG increased the noise in
the reconstructions. This was due to the forward and a back
projector not being the adjoint of one another with enough
precision.

3) Adjoint operators: Having unmatched forward and back
projectors is usually not a problem if the number of iterations
remains low (typically below 100), but we had to do more
iterations than that. We adopted the method described in [6], i.e.
we computed the ratio between < Rf, p > and < f,RT p >,
where f and p are a random volume and a random set of
projections, respectively, and < ., . > denotes the dot product.
The precision with which this ratio matches 1 is a measure of the
‘adjointness’ of R and RT . In our case, using RTK’s matched
implementations of the Joseph forward and back projector [7],
we obtained 1− ratio ≈ 10−5, which was insufficient. Switch-
ing from single precision (32-bits floats) to double precision
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(64-bits) yielded 1 − ratio ≈ 10−13, and got rid of the noise
divergence problem. With our implementations, having to use
matched forward and back projectors implies that at least one is
sub-optimally implemented (either the ray-based back projector,
like in our case, or a voxel-based forward projector, which is not
available in RTK), which slows down calculations. In addition,
having to use double precision both increases the reconstruction
time again and doubles the memory requirements.

4) Scaling as preconditioning: Preconditioning consists in
inserting a matrix D, and solving by CG the following problems
instead of the ones described in section II-A:
• OLS:

DRTRDT f̂ = DRT p

Identifying the terms, this means one must run the con-
jugate gradient algorithm with A = DRTRDT and b =
DRT p, and obtain f̂ . Then f = DT f̂ .

• GLS:
DRTC−1RDT f = DRTC−1p

Identifying the terms, this means one must run the con-
jugate gradient algorithm with A = DRTC−1RDT and
b = DRTC−1p, and obtain f̂ . Then, again, f = DT f̂ .

Any matrix D can be used, but the goal of preconditioning is to
obtain a new matrix A with a condition number closer to 1 than
the original matrix A, because this condition number has a large
impact on convergence speed (the closer it is to 1, the faster CG
converges). In case of a diagonal preconditioner, D = DT , and
multiplying by D consists in a voxel-wise multiplication. We
used

D = IN ⊗

λ1 0 0
0 λ2 0
0 0 λ3


i.e. each material was simply scaled by a fixed factor λi. In our
specific case, scaling can be performed either before or after
forward projection, therefore RD = D′R with D′ a matrix
similar to D but scaling projections instead of volumes. Defining
C ′ = D′C−1D′, the matrix A becomes A = RTC ′R and the
vector b becomes b = RTC ′D′−1p. Preconditioning can there-
fore be obtained without increasing the amount of calculations
at each iteration, simply by dividing the material projections
by the λi, i ∈ {1..m}, performing a GLS reconstruction with a
scaled covariance matrix C ′, and then multiplying the obtained
material volumes by λi. We tried several choices for the λi:
setting them all to 1, i.e. no preconditioning; setting them to
the mean of the ground truth projection of each material; and
λi = mean

E

(
µiodine(E)
µi(E)

)
, where µi(E) is the mass-attenuation

of material i at energy E. The third method, although it does not
depend of the object, and is therefore probably suboptimal in
some cases, lead to the fastest convergence in our experiments.

5) Fair comparison: Because OLS and GLS converge at
different speeds, choosing one iterate of each to perform a fair
comparison between them is a delicate problem. The only possi-
bility seems to be to wait until both have converged. After 1000
iterations, the GLS cost function reduction between successive
iterates had dropped to 10−6, which was deemed sufficient,
while OLS had reached convergence after 150 iterations. Fig. 3
shows the convergence curves in logarithmic scale.

OLS GLS Gain
MSE iodine 8.79e-07 7.85e-07 -10.7%

MSE gadolinium 4.62e-07 4.19e-07 -9.2%
MSE water 0.0352 0.0327 -7.0%
SNR iodine 0.478 0.486 +1.6%

SNR gadolinium 0.606 0.631 +4.1%
SNR water 2.497 2.572 +3.0%

TABLE I: Results on RTK simulations: compared MSEs and SNRs between
OLS and GLS

III. RESULTS

A. Photon counting experiments

Fig. 2 shows the results obtained with RTK, with one realiza-
tion of the Poisson noise on photon counts. The GLS results are
slightly less noisy than the OLS ones, but the improvement is
only noticeable in the numerical analysis, and not visually. The
MSE with respect to the ground truth and the SNR, computed
as mean(C)/std(C), where C is the set of voxels inside the
cylinder of the material considered, are displayed in Table I.
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Fig. 2: RTK reconstructions with converged OLS and GLS. The GLS recon-
structions are slightly less noisy, as shown in Table I, but it is not obvious on
any of the reconstructions

B. Dual energy experiments

The small impact of GLS in the spectral CT experiments
raises a question: could GLS be more effective in reducing
the noise in a dual energy case, given that the anti-correlation
between materials is much stronger in dual energy ? We ran
the same RTK simulations as for spectral CT, only with a 2-
materials phantom (water and iodine). The products of the detec-
tor responses by the incident spectrum were obtained by digitiz-
ing the green and pink curves in Fig. 1 of [8]. With this setup, we
measured a mean correlation coefficient of -0.899. A Hampel
filtering was applied on the material-decomposed projections,
just like in spectral CT, and all subsequent results (covariance
matrix, OLS and GLS reconstructions) were computed from the
denoised projections. Despite the preconditioning, it took about
50 iterations for the OLS reconstruction to converge, and about
3000 iterations for the GLS reconstruction. Since, just like in
the spectral case, the reconstructions OLS and GLS results are
visually identical, they are not shown here, but image quality
metrics are provided in Table II.

IV. DISCUSSION

In an attempt to isolate how GLS improves over OLS from
other contributions to noise reduction, we have chosen to
perform unregularized reconstructions only, and have noticed
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Fig. 3: Cost function after each iteration minus cost function after iteration
1000, in logarithmic scale. Iodine volumes at iterates 10 and 100 are shown
below the graph for GLS and OLS.

OLS GLS Gain
MSE iodine 9.18e-7 8.12e-7 -11.6%
MSE water 0.407 0.405 -0.57%
SNR iodine 0.442 0.470 +6.27%
SNR water 3.067 3.197 +4.25%

TABLE II: Results on RTK dual energy simulations: compared MSEs and SNRs
between OLS and GLS

that GLS brought a very limited benefit. Whether this con-
clusion also holds for regularized reconstructions, and with
which regularization method and parameters, remains an open
question. Taking into account spatial correlations by accurately
modeling advanced effects like scattering or charge sharing
should increase the benefit of using GLS. However, it would
also make implementation more complex, since C−1 would no
longer be block-diagonal, therefore no longer “pixel-separable”.
In this work, the covariance matrix is estimated from a large
number of repetitions of the same simulation (here 100), where
only the Poisson noise realization changes. This empirical
estimation is undoubtedly a source of inaccuracies, which could
undermine the efficiency of GLS. To evaluate the importance
of this error in our simulations, we ran a side experiment,
adding noise with exactly the right covariance matrix (the one
estimated by the simulations) to the noiseless projections, and
reconstructing from those. This had no noticeable effect on the
image quality of the GLS results, leading us to think that the
limited impact of GLS is not caused by inaccuracies in the
covariance matrix estimation. In addition, in a real situation, the
covariance matrix estimation would most likely be less accurate
than in the presented simulations.

V. CONCLUSION

Even with a quite precise knowledge of the covariance matrix,
GLS only brings a moderate improvement of SNR in the RTK
simulated case we have studied. The inevitable inaccuracies in
estimating the covariance matrix in real situations are likely to
reduce this improvement even more. Overall, the gain in SNR
GLS can provide over OLS does not seem to be worth the
efforts it requires in implementation, the risk that an incorrect
covariance matrix might degrade the reconstruction, and the
drop in performance and increase in memory footprint implied
by matched projectors with double precision. Note that these
conclusions hold for unregularized OLS and GLS: adding a
regularizer may lead to different results.
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