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1.  Introduction

1.1.  Data acquisition
Dual energy computed tomography (CT) systems are now commercially available, and spectral photon counting 
CT systems already exist as research prototypes. These new types of scanners provide information on the energy 
distribution of the x-ray photons that reach the detector: dual energy systems acquire two sets of projections 
(for low and high energies), while spectral photon counting systems group the incoming photons into so-called 
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Abstract
Over the last decade, dual-energy CT scanners have gone from prototypes to clinically available 
machines, and spectral photon counting CT scanners are following. They require a specific 
reconstruction process, consisting of two steps: material decomposition and tomographic 
reconstruction. Image-based methods perform reconstruction, then decomposition, while 
projection-based methods perform decomposition first, and then reconstruction. As an alternative, 
‘one-step inversion’ methods have been proposed, which perform decomposition and reconstruction 
simultaneously. Unfortunately, one-step methods are typically slower than their two-step 
counterparts, and in most CT applications, reconstruction time is critical. This paper therefore 
proposes to compare the convergence speeds of five one-step algorithms. We adapted all these 
algorithms to solve the same problem: spectral photon-counting CT reconstruction from five energy 
bins, using a three materials decomposition basis and spatial regularization. The paper compares a 
Bayesian method which uses non-linear conjugate gradient for minimization (Cai et al 2013 Med. 
Phys. 40 111916–31), three methods based on quadratic surrogates (Long and Fessler 2014 IEEE 
Trans. Med. Imaging 33 1614–26, Weidinger et al 2016 Int. J. Biomed. Imaging 2016 1–15, Mechlem et al 
2018 IEEE Trans. Med. Imaging 37 68–80), and a primal-dual method based on MOCCA, a modified 
Chambolle–Pock algorithm (Barber et al 2016 Phys. Med. Biol. 61 3784). Some of these methods have 
been accelerated by using μ-preconditioning, i.e. by performing all internal computations not with the 
actual materials the object is made of, but with carefully chosen linear combinations of those. In this 
paper, we also evaluated the impact of three different μ-preconditioners on convergence speed. Our 
experiments on simulated data revealed vast differences in the number of iterations required to reach a 
common image quality objective: Mechlem et al (2018 IEEE Trans. Med. Imaging 37 68–80) needed ten 
iterations, Cai et al (2013 Med. Phys. 40 111916–31), Long and Fessler (2014 IEEE Trans. Med. Imaging 
33 1614–26) and Weidinger et al (2016 Int. J. Biomed. Imaging 2016 1–15) several hundreds, and 
Barber et al (2016 Phys. Med. Biol. 61 3784) several thousands. We also sum up other practical aspects, 
like memory footprint and the need to tune extra parameters.
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‘energy bins’, which form a partition of the incident spectrum’s bandwidth. For each projection’s pixel, the 
‘raw’ measurements acquired by a spectral photon counting CT scanner are therefore the number of photons in 
each energy bin, which are commonly referred to as ‘photon counts’.

1.2.  Attenuation model
Assuming that the object’s attenuation can be obtained by linear combination of the attenuations of only a few 
materials, this energy-resolved information allows to reconstruct multiple volumes, each one representing a 
different material’s concentration map. Alternatively, one can assume that the attenuation stems from only a few 
physical phenomena, e.g. Compton scattering, photo-electric effect and K-edge (Alvarez and Macovski 1976, Pan 
et al 2010), and reconstruct maps of the characteristic quantities of each of these physical phenomena. For the 
sake of readability, we present the case of spectral photon-counting CT, and decompose on a basis of materials, 
but all calculations are also valid for dual-energy CT, and with photo-electric effect and Compton scattering as 
decomposition basis. It is assumed that the linear attenuation coefficient µ̃je of the imaged object in voxel j and at 
energy e can be separated into a function of space and a function of energy, i.e.

µ̃je =

Nm∑
m=1

µme xjm� (1)

where Nm is the number of materials, µme  the mass-attenuation coefficient of material m at energy e and xjm the 
concentration of material m in voxel j. The attenuation profiles (µme)e=1..150 keV are known and the aim is to find 
the concentration maps xm.

1.3.  Reconstruction methods
The most widespread methods to reconstruct material-specific volumes from photon counts can be divided 
into two categories: image-based and projection-based. In two-step image-based methods, each energy bin of 
the photon counts is log-transformed and reconstructed, just like the projections dataset of a standard CT. This 
process yields one volume per energy bin and these intermediate volumes are then decomposed into material-
specific volumes (Maass et al 2009, Niu et al 2014). Unfortunately, the intermediate volumes are corrupted by 
beam hardening artefacts (Taguchi et al 2018), because the energy dependence of the attenuation coefficients 
is still averaged in each energy bin. Image-based methods often integrate some form of empirical beam-
hardening correction (Maass et al 2009), but perfect beam-hardening correction would require knowledge of the 
material volumes. In two-step projection-based methods, on the other hand, multi-channel projections are first 
decomposed into material-specific projections, and then reconstructed, independently (Alvarez and Macovski 
1976, Schlomka et al 2008) or jointly (Sawatzky et al 2014, Mory et al 2018). It turns out that for typical choices 
of materials (e.g. water, bone, and a high-Z contrast agent), the normalized attenuation profiles of the materials 
do not differ enough to yield a robust decomposition: the inevitable statistical noise on photon counts is often 
sufficient to cause aberrant material line integrals, which result in strong streak artefacts in the reconstructed 
volumes. Some methods were proposed to regularize the decomposition process (Brendel et al 2016, Ducros et al 
2017), but how to regularize in the projection domain is a difficult problem: there are conditions for projections 
to be consistent, i.e. to be those of an actual object, called data-consistency conditions (DCC) (Clackdoyle et al 
2016, Lesaint et al 2017), and regularization with priors used routinely for volumes (e.g. total variation) can 
generate inconsistent projections. In addition, projection-based methods require the spectral projections to 
have the same geometry (same source and detector positions), it cannot be applied to fast kV switching (So 
and Lee 2015) or dual source dual-energy systems (Flohr et al 2006) easily: corresponding projections must be 
interpolated, which is a potential source of errors.

Two-step methods also have a structural drawback: unless the first step provides a one-to-one mapping 
between inputs and outputs, it implies a loss of information, for which the second step cannot compensate. The 
aberrant pixels observed after projection-based decomposition illustrate that loss of information: the recon-
struction step cannot go back to the photon counts, and therefore must rely on aberrant decomposition results. 
Recently, several methods have been proposed which reconstruct material-specific volumes directly from the pho-
ton counts (Cai et al 2013, Long and Fessler 2014, Barber et al 2016, Weidinger et al 2016, Chen et al 2017, Mechlem 
et al 2018). They are commonly referred to as ‘one-step inversion’, or simply ‘one-step’ methods. All of these 
methods are iterative: there is currently no analytical inversion formula for the material decomposition problem, 
let alone for one-step inversion. They consist in combining the forward models of the tomographic reconstruction 
and the material separation inverse problems, yielding a single (but more complex) forward model, which takes 
as input a set of material volumes and yields photon counts as output. In discrete form, the forward model reads

ȳ ib =
∑

e

sbe exp


−

∑
j

aij

∑
m

µme xjm


� (2)
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where ȳib is the expected photon count in pixel i and bin b, sbe is the effective spectrum, i.e. the number of photons 
of actual energy e that are expected to be detected in bin b if there was no attenuating object and aij is the coefficient 
of the forward projection matrix A at row i and column j. One-step inversion then means finding the volumes xm 
for which the forward model yields photon counts y as similar as possible to those measured by the scanner. By 
construction, the drawbacks of two-step methods are circumvented, and there is no risk of losing information. 
One-step methods have been reported to yield improved image quality (Zhang et al 2014) and reduced noise-
induced bias (Mechlem et al 2018) with respect to their two-step counterparts, but they are also slower to converge. 
This is likely to prevent their use in many applications, as it happened for regularized iterative reconstruction 
techniques on standard CT (Pan et al 2009). Since in the multi-energy CT case the amount of data contained in a 
single acquisition is multiplied by the number of energy bins, and the one-step problem is more complex than the 
reconstruction problem alone, the need for fast methods is even more acute than for standard CT.

Among the methods studied in this paper (Cai et al 2013, Long and Fessler 2014, Barber et al 2016, Mechlem 
et al 2018), only Cai et al (2013) reported a comparison with another one-step method (Sukovic and Clinthorne 
2000) and an advanced image-based two-step method (Maass et al 2011). Barber et al (2016) showed many 
results, but only with the proposed method, and the other ones (Long and Fessler 2014, Weidinger et al 2016, 
Mechlem et al 2018) are compared to two-step methods, either projection-based or image-based (Mendonca 
et al 2014), with the exception that Mechlem et al (2018) contains a comparison with the method of Weidinger 
et al (2016) in terms of convergence speed. An independent comparison between many one-step methods is 
therefore still missing, although it would certainly benefit the spectral CT scanner manufacturers, saving them 
the hassle of investigating many methods to implement only one. We provide such a comparison in this paper, 
with experiments conducted on simulated data on a single slice. Since we provide the code we used, it will also 
help the research community: ranking a new one-step method against the ones studied in this paper will only 
require to implement the new method in the open source framework we provide.

All methods were first adapted to solve the same one-step problem: spectral photon-counting CT reconstruc-
tion from five energy bins using a three materials decomposition basis and spatial regularization. Since the five 
methods we studied use different data-attachment and regularization terms, as well as different optimization 
techniques, we defined an image quality objective, independant of the cost functions, and measured the number 
of iterations required to reach it with each method. These results constitute the main contribution of the present 
paper. For each method, we also study its memory footprint, state whether it requires to tune additional param
eters, and whether or not the derivation of the algorithm uses simplifying assumptions/approximations.

In Barber et al (2016) and Fessler (2003), it is proposed to perform internal computations not with the actual 
materials into which one wishes to decompose the object, but with carefully chosen linear combinations of these 
materials. Since the materials are characterized only by their attenuation coefficient μ as a function of the incident 
energy, Barber et al call this step μ-preconditioning. In this paper, we present three different ways to perform μ-
preconditioning and evaluate their impact on convergence speed. Since most methods were not explicitly designed 
for μ-preconditioning, a small adaptation is required (and described in the present paper) for the regularization step.

2.  Material and methods

2.1.  Compared methods
We have studied five one-step reconstruction methods, adapted them to solve the three-material, five-bin, 
unconstrained and regularized one-step spectral reconstruction problem, and compared their behavior. These 
methods are:

	 •	�Cai2013 (Cai et al 2013), which uses non-linear conjugate gradient with a heuristical step size,
	 •	�Long2014, Weidinger2016 and Mechlem2018 (Long and Fessler 2014, Weidinger et al 2016, Mechlem et al 

2018), which use Separable Quadratic Surrogates (SQS) to minimize cost functions,
	 •	�Barber2016 (Barber et al 2016), which relies on a generalization of the Chambolle–Pock algorithm 

(Chambolle and Pock 2011).

All methods use the polychromatic Beer–Lambert law as forward model (the way to estimate the expected 
photon counts y from material maps xm) which is reminded in its discrete form in equation (2). They slightly 
differ by the cost functions they attempt to minimize, which are summarized in table 1. The data-attachment 
terms differ because they model the noise differently: Cai2013 optimizes a Gaussian observation model in a 
Bayesian framework where all the others minimize the Poisson negative log-likelihood. All regularization terms 
are different but share some similarities, involving the �1-norm (or a twice-differentiable approximation of it) of 
the spatial gradient of each reconstructed volume.

Since three methods out of five use them, it is useful to remind the definition of Separable Quadratic Surro-
gates (SQS) and how they are used. Surrogates are defined as follows: let Ψ : RN → R and x0 ∈ RN . The func-
tion Φx0 : RN → R is a surrogate of Ψ at x0 if and only if

Phys. Med. Biol. 63 (2018) 235001 (19pp)
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{
∀x ∈ RN ,Φx0(x) � Ψ(x)

Φx0(x0) = Ψ(x0),Φ′
x0
(x0) = Ψ′(x0)

� (3)

i.e. if Φx0 is above Ψ on RN, and tangent to Ψ at x0. Note that we have used RN as domain for simplicity, but in 
Long2014 the domain actually used is R+N. The algorithms based on surrogates consist in finding a surrogate 
Φx0 to the cost function Ψ at the current iterate x0, minimizing the surrogate instead of the original cost function, 
adopting that minimizer as the new iterate x1, and starting over. Obviously, the surrogates must be chosen 
carefully in order to be easier to minimize than the original cost function. In Long and Fessler (2014), Weidinger 
et al (2016) and Mechlem et al (2018), surrogates are derived one after the other: first a convex one, then a 
quadratic one, and finally a separable quadratic one, each new one being a surrogate of all the previous ones, and 
therefore of the original cost function.

2.2.  Preliminary comments
We have tried to stick as much as possible to the original algorithms, but some modifications were required. In this 
section, we briefly introduce each method, and describe the modifications we had to perform. Though we have 
tried to make the present paper as self-contained as possible, it is impossible to explain all the methods in details 
without ending up duplicating large passages of the original papers. The detailed maths can be found in our notes 
(see section 2.7), in which we guide the reader through the equations and re-do most calculations, for all methods 
but Barber2016. For Barber2016, our notes only provide implementation suggestions, because the original paper 
is already written in a very didactic way. However, since we had to adapt the five studied methods to deal with a 
common problem, we provide the pseudo-code of all methods in appendix. In these pseudo-codes, as much as 
possible, we used common notations for all methods, in particular for the matrices that describe detector response, 
incident spectrum and material attenuations. A drawback of this approach is that the pseudo-code notations no 
longer correspond to those of the original papers. Throughout the paper, when referring to variable names, we 
use the ones from the pseudo-code. We use a contraction of the first author’s name and publication year (e.g. 
‘Cai2013’) to refer to each method. When the distinction is relevant, it should be clear from the context whether 
we mean the method implemented and modified by us, or the one described in the original papers.

2.2.1.  Cai2013
Cai2013 (Cai et al 2013) was originally published for dual energy CT. The cost function is built with a variable 
y that is the ratios between photon counts with object and photon counts without object (instead of just the 
photon counts with object, in the other methods). The variance of these ratios y is assumed to be proportional 
to y, with a factor kd that has to be estimated. We generalized Cai2013 (Cai et al 2013) to 3 materials, which is 
straightforward, and kd is determined by a simulation with the same spectrum, detector response and geometry 
as in the experiments, but without object. It yields kd = 1.59 × 10−4. The regularization term is the Huber 
function of the spatial gradient of the volumes, with the Huber function defined as

φHuber(x, δ) =

{
x2 if |x| < δ,

2δ|x| − δ2 else.
� (4)

Table 1.  Summary of the cost functions minimized by the studied methods. φHuber, φLong  and φGreen are twice-differentiable 
approximations of the absolute value function, defined in equations (4)–(6), respectively. ∇ is the 3-components spatial gradient, and the 
neighborhood N  is arbitrary, but always set to all 26 immediate neighbors of the voxel v. The regularization of Barber2016 uses the convex 
indicator function χ to enforce an upper bound on the total variation ‖(|∇x|)‖1 of x. The numerical values of the parameters of the cost 
function used for the simulated experiment are listed in table 2.

Method

Cost function 
D(x) +

∑
m
R(xm, wm)

Parameters of the  

cost function Data attachment D Regularization R

Cai2013 kd, wm, δm ‖W(y − ȳ)‖2
2 + log(ȳ) with 

W = diag[kdȳ]−1/2

wmφ
Huber(∇x, δm)

Long2014 wm, δm
wm

Nv∑
v=1

∑
ṽ∈N

φLong (zk−1,v − zk−1,̃v, δm)

Weidinger2016 wm ȳ − y log ȳ
wm

Nv∑
v=1

∑
ṽ∈N

φGreen (zk−1,v − zk−1,̃v)

Mechlem2018 wm, δm
wm

Nv∑
v=1

∑
ṽ∈N

φHuber (zk−1,v − zk−1,̃v, δm)

Barber2016 wm
χ(x, wm) =

{
0 if ‖(|∇x|)‖1 � wm,

+∞ else.

Phys. Med. Biol. 63 (2018) 235001 (19pp)
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The cost function is minimized by a non-linear conjugate gradient, with a heuristically determined step size. 
Given the descent direction, the step size is computed as the one that would minimize the cost function’s second-
order Taylor expansion. Then the cost function is computed at the candidate destination point, and the step size 
divided by 2 if it causes an increase of the cost instead of a decrease. According to the authors, the case where the 
step length had to be divided by 2 never occurred in the experiments they conducted (which were limited to 
dual-energy CT). In ours, it did occur, and we had to implement a reset mechanism: if, after ten attempts to divide 
the step length by 2, we still obtain an increase of the cost function, we assume that the descent direction yielded 
by non-linear CG is erroneous, and try using the opposite gradient instead, as in an ordinary gradient descent. 
Since it is an ad hoc adaptation, and only for a special case, we have not included it into the pseudo-code in the 
appendix.

2.2.2.  Long2014
Long2014 (Long and Fessler 2014) defines the following hyperbola for approximating the absolute value function 
in the regularization:

φLong(x, δ) =
δ2

3

(√
1 + 3

(x

δ

)2
− 1

)
.� (5)

The authors sequentially derive the surrogates of the cost function to minimize it: first a convex one, then a 
quadratic one, and finally a separable quadratic one. Deriving the quadratic surrogate requires to assume that 
the material maps are non-negative. It was originally published as a method for reconstructing three or more 
materials from dual energy CT scans. To that end, it adds a lot of a priori information, in the form of equality 
and inequality constraints on the reconstructed volumes. Performing minimization while complying with 
all constraints requires an inner loop of quadratic programming using the generalized sequential minimal 
optimization (GSMO) algorithm (Keerthi and Gilbert 2002). Since in our case, there are more bins than the 
number of materials, we have removed all constraints in our implementation of Long2014, which allowed to 
replace the quadratic programming inner loop by a single iteration of Newton’s method. Long2014 uses ordered 
subsets (OS) to speed up convergence. See section 2.4 for a quick reminder on OS.

2.2.3.  Weidinger2016
Weidinger2016 (Weidinger et al 2016) uses the Green potential (Green 1990) for approximating the absolute 
value function in the regularization:

φGreen(x) =
27

128
log cosh

(
16

3
√

3
x

)
.� (6)

In Weidinger2016, as in Long2014, surrogates are derived sequentially. However, contrary to Long2014, 
Weidinger2016 does not assume that the material maps are non-negative, and therefore cannot find a rigorous 
quadratic surrogate. The quadratic function is actually not a surrogate of the convex surrogate, but its second-
order Taylor approximation. This means that, if its derivative is negative, that quadratic function violates the 
conditions for being a surrogate. Such a choice simplifies the calculations, but the method is no longer guaranteed 
to converge. In our experiments, though, it did converge.

2.2.4.  Mechlem2018
Mechlem2018 (Mechlem et al 2018) builds upon Weidinger2016 using the Huber function for the regularization 
(equation (4)), meaning it also uses the second-order Taylor approximation of the convex surrogate as if it were 
an actual quadratic surrogate, which implies the same risk on convergence as in Weidinger2016. Still, it adds three 
features with respect to Weidinger2016: calibration, Ordered Subsets and Nesterov acceleration. The calibration 
part allows to estimate the product of the incident spectrum and detector response, in cases where it is either not 
known at all, or known with insufficient accuracy. In this study, we have assumed perfect knowledge of these 
system characteristics, and therefore dropped the calibration part. In addition to that, Mechlem2018 (Mechlem 
et al 2018) suggests to compute the Hessian (and its inverse) only once, thus updating only the gradient at each 
iteration. This approach is only valid if the Hessian is near-constant, i.e. if the estimated volumes undergo little 
changes over the course of the iterations. Therefore, the paper proposes to start the iterations from a previously 
known approximate result, like a set of two-step reconstructed volumes. Since we start from zero-filled estimates, 
we do not use this acceleration.

2.2.5.  Barber2016
Barber2016 (Barber et al 2016) provides the calculations to minimize either a transmission Poisson likelihood or a 
least-squares data-attachment term. We chose to focus on the transmission Poisson likelihood term. As suggested 
by Sidky et al (2018), we have replaced the exponential function in equation (2) with the soft exponential defined by

Phys. Med. Biol. 63 (2018) 235001 (19pp)
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softexp(x) =

{
exp(x) if x � 0,

x + 1 else.
� (7)

Regularization is handled with a total variation (TV) term, and the cost function is minimized using the mirrored 
convex/concave (MOCCA) algorithm (Barber and Sidky 2015). MOCCA is a primal-dual algorithm designed to 
minimize non-convex functions that can be expressed as the difference of two convex functions. As explained in 
section 3.1 of Barber et al (2016), the algorithm should have an outer and an inner loop, but the inner loop is set to 
perform only a single iteration to speed up convergence. Unfortunately, that modification can cause the algorithm to 
diverge, so an additional parameter λ has been introduced and tuned to avoid that. Roughly, λ is tuned to the largest 
value that does not cause divergence. We also adapted the parameter θ of the Chambolle–Pock algorithm (see the last 
line of equation 7 in Chambolle and Pock (2011)), which must lie in [0;1], and in Barber et al (2016) is implicitly set 
to 1. With θ = 1, examining the sequence of iterates, we observed fast and ample oscillations, and artifacts constantly 
appearing and disappearing. These oscillations and artifacts did not significantly decrease in intensity over the course 
of the iterations. Setting θ = 0.5 got rid of them, yielding a more stable sequence of iterates. Computing the primal 
and dual step sizes Σ and T involves the element-wise absolute value of products of matrices, which is not trivial 
if both matrices have positive and negative values and are too large to be actually stored. The computation of the 
step sizes proved particularly tedious to implement, so we restricted our study to a μ-preconditioning method (see 
section 2.3) that does not generate negative attenuation values (i.e. simply normalizing the attenuation coefficient 
vectors), which makes simplifications possible. This μ-preconditioning is different from the one presented in the 
original paper (Barber et al 2016) (i.e. orthonormalizing the attenuation coefficient vectors), but our study on 
Cai2013 in section 3.4 shows a better convergence speed for normalization than for orthonormalization, so it is 
unlikely that switching to orthonormalization for Barber2016 would greatly improve its convergence speed.

2.3.  Mu-preconditioning
We form the matrix M as follows:

M =




µI,1 keV µGd,1 keV µH2O,1 keV

...
...

...
µI,150 keV µGd,150 keV µH2O,150 keV


� (8)

where µme  is the mass-attenuation coefficient of material m for incident x-ray photons of energy e, I stands for 
iodine, Gd for gadolinium and H2O for water. For e � 150 keV, µH2O,e and µGd,e typically differ by 2 orders of 
magnitude, which causes conditioning issues in the resolution of the one-step inversion problem, and slows down 
convergence. Section 3.4 of Barber et al (2016) proposes to modify the material attenuation matrix M to speed up 
and stabilize the internal computations. They call this step ‘μ-preconditioning’. It can be interpreted as creating 
synthetic materials, which are linear combinations of the original ones, possibly with negative coefficients. We 
present three different μ-preconditioning methods. Each one yields a synthetic material attenuation matrix M̃  
and a matrix P such that MP = M̃:

	 •	�Normalization: M̃  is obtained by dividing each column of M by its norm. This has the advantage of not 
introducing negative attenuations. The added complexity associated with the use of negative attenuation 
coefficients, like the use of absolute values in the calculation of Σ and T in Barber et al (2016), can be avoided 
with this synthetic materials basis.

	 •	�Orthonormalization: M̃  is obtained either using the Gram–Schmidt algorithm on M, or diagonalizing MTM 
(as proposed in Barber et al (2016)). This will generate negative attenuation coefficients (for the dot products 
between columns to be zero).

	 •	�Fessler’s method:

K =
SM

S1
i.e. (K)b,m =

∑
e

sbe µme

∑
e

sbe� (9)

		  with sbe the effective spectrum at energy e in bin b, and µme  the attenuation of material m at energy e. Each 
value (K)b,m is a weighted mean of the attenuation coefficients of material m over the whole energy spectrum, 
the weights being the number of photons seen by the detector in bin b. Roughly, it evaluates how much the 
material m attenuates the photons that will end up being detected in bin b. Now, the problem of determining 
which linear combination of materials causes the observed attenuation would be much easier if each material 
attenuated the photons of only one bin, i.e. if K was diagonal. Therefore, we define M̃ = MK−1, i.e. P  =  K−1. 
When K is not square, e.g. when there are more bins that materials, K cannot be inverted, but P can be defined 
as the Moore–Penrose pseudo inverse of K, i.e. P = (KTK)−1KT. This approach was proposed in Fessler 
(2003) for dual energy CT, but its extension to more materials and more bins is straightforward.

Phys. Med. Biol. 63 (2018) 235001 (19pp)
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When the algorithm is fed a matrix M̃ = MP of the attenuations of synthetic materials, it reconstructs synthetic 
material volumes x̃. No change is required for the data-attachment term, but the regularization must be 
perfomed on the original materials volumes x = Px̃, since we want the original material volumes to be regular, 
not the synthetic ones. The changes in algorithms implied by μ-preconditioning appear in the pseudo code of 
Cai2013 and Barber2016 (not in the SQS methods, since they are insensitive to μ-preconditioning) in section 5.

2.4.  Ordered subsets
In some methods, iterations are divided into sub-iterations, and during each sub-iteration, only a subset of the 
projections through the current volume is computed, compared to the measured ones, and back-projected to 
obtain an update for the current volume (Hudson and Larkin 1994). The subsets form a partition of the full 
projections dataset. After one iteration, i.e. one cycle through all subsets, each projection has been forward and 
back projected once and only once. At each iteration, OS-methods therefore perform as many updates of the 
reconstructed volume as the number of subsets, which results in faster convergence per iteration (or equivalently, 
per forward/back projection), at the cost of longer iterations, and potential instabilities if the measured data 
contains inconsistencies, e.g. noise or motion.

2.5.  Simulation setup
We have designed a simple two-dimensional 3-materials phantom (see figure 1), consisting of a large square of 
water at 1 g ml−1, a small square of iodine at 10 mg ml−1, and a small square of gadolinium at 10 mg ml−1. The 
iodine and gadolinium squares are inside the water square, but do not overlap. Note that the K-edge of iodine is 
at 33.2 keV, which is too low to reliably use it as a K-edge contrast agent. On the other hand, the basis water/iodine 
can be used to represent biological samples (Si-Mohamed et al 2017), just like the Compton/photoelectric basis, 
with the bones appearing in the iodine material map. Therefore, we emphasize that water/iodine/gadolinium is 
a ‘two materials for biological tissues, one K-edge contrast agent’ situation, and not a dual contrast agent one. 
The phantom consists of a single slice, which has 2562 voxels, of size 1 mm  ×  1 mm. Through this phantom, 725 
parallel projections were simulated, with 362 pixels per projection, using the sparse forward projection matrix 
generated by the AIR toolbox (Hansen and Saxild-Hansen 2012). Detector pixels too have a size of 1 mm. The line 
integrals obtained were then converted to photon counts, following the classical polychromatic Beer–Lambert 
attenuation law. For the incident spectrum, we used the same one as in Ducros et al (2017) which, quoting the 
paper, ‘was simulated using the SpekCalc software (Poludniowski et al 2009), considering a tube voltage of 
120 kV, a 12° anode angle, and a filter of 1.2 mm of Al’. Figure 2 shows the number of incident photons per keV 
on each pixel.

The detector response was simulated according to the model presented in appendix A.2 of Schlomka et al 
(2008), and is shown in figure 3. Following the design of the Philips spectral CT scanner prototype installed in 
Lyon, France, 5 bins were simulated. The thresholds were set to 30, 51, 62, 72 and 83 keV.

In the end, the photon counts were corrupted with Poisson noise. This model therefore neglects pile-up, 
scatter, charge sharing and probably many other complex effects. Since the problem is non-convex, initializa-
tion matters. It is unclear what should be the starting point of the iterations: in the original papers, Cai2013 and 
Barber2016 use zero-filled material slices as a starting point, while the SQS-based methods are intialized with a 
pre-existing reconstruction (e.g. one obtained from a two-step method). In this study, we have adopted a zero 
initialization for all methods.

2.6.  Comparison method
In any iterative reconstruction method, the convergence speed, image quality at convergence and regularization 
parameters depend on each other. Therefore, in order to obtain meaningful comparison results on convergence 
speed, one must first set the regularization parameters to values that yield comparable image quality at 
convergence for all methods. Only then can one measure how fast a given convergence criterion is reached. To set 
the regularization parameters, we ran many simulations, exploring the space of parameters with multiplicative 
steps of 3 or 10. We then selected parameters yielding similar standard deviations in the iodine, gadolinium and 
water ROIs, as shown in table 3. The regularization parameters are summarized in table 2. Finally, the criterion we 
used for the convergence speeds comparison is the number of iterations each method required for all materials to 

reach their target concentration in their ROI, within either 20% or 10% tolerance. Besides that, we also provide:

	 •	�the concentrations of iodine and gadolinium in their respective ROIs over the course of the iterations,
	 •	�the time per iteration with our implementation. Measurements were performed on a machine equipped 

with an Intel Xeon E5-2620 v4 CPU running at 2.10 GHz and an Nvidia GeForce GTX Titan X, and running 
OpenSuse Leap 42.2 and Matlab R2017b,

	 •	�the mean and standard deviation (std) in each ROI at the last iteration, which were used to adjust 
regularization parameters,

Phys. Med. Biol. 63 (2018) 235001 (19pp)
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Figure 1.  Ground truth of the phantom.

	 •	�the theoretical memory footprint, since the actual memory footprint depends too much on the 
implementation.

Since storing all iterates is impractical, for all methods except Mechlem2018 we stored one iterate every ten, 

which is why table 4 contains mostly multiples of ten.

2.7.  Software
For this study, we re-implemented all of the five methods compared here in a lightweight Matlab framework. 
That code is open source, available at https://github.com/SimonRit/OneStepSpectralCT, and we appreciate any 
relevant contribution to it. In particular, we encourage the authors of the five methods we have studied to check 
that code against their own implementation. Together with the code, we provide detailed notes on how to re-do 
most of the calculations of the original papers.

Figure 2.  Incident spectrum on each pixel.

Figure 3.  Spectral response of each detector bin.

Phys. Med. Biol. 63 (2018) 235001 (19pp)

https://github.com/SimonRit/OneStepSpectralCT


9

Cyril Mory et al

3.  Results

Figure 4 shows the last iterate computed for each of the methods presented here. For Cai2013, we used Fessler’s 
method for μ-preconditioning. A video of the iterates, on which it is easy to evaluate the relative convergence 
rates of the various methods, is available as supplementary material (stacks.iop.org/PMB/63/235001/mmedia). 
It has the same grayscale and is arranged the same way as figure 4.

3.1.  Algorithm parameters
In addition to the quantitative criteria on convergence speed and memory footprint, a few other important 
aspects of the algorithms deserve to be mentioned here. All methods require parameters for regularization 
and Cai2013 needs a parameter kd characterizing the detector for its data attachment term (see table 1). The 
rest of the parameters are free parameters for optimizing the cost function. Our implementation of Cai2013 
requires a threshold on how many times one tries to halve the step size before resetting the descent direction (see 

Table 2.  Regularization parameters of the five methods used to obtain the reconstructions (see table 1). For Barber2016, the 
‘regularization’ parameters are actually the TV limits for iodine, gadolinium and water. The δ parameter is used in the Huber function or 
its equivalent, in the regularization terms of the methods.

Method δiodine δgadolinium δwater wiodine wgadolinium wwater

Cai2013 0.001 0.001 0.1 100 000 100 000 30

Long2014 0.001 0.001 0.1 100 000 100 000 10

Weidinger2016 N/A N/A N/A 30 000 30 000 3

Barber2016 N/A N/A N/A 100 100 5000

Mechlem2018 0.001 0.001 0.1 30 000 30 000 3

Figure 4.  Reconstructed slices with the five methods, with grayscale ranges equal to [0; 15] mg ml−1 for iodine and gadolinium, and 
[0; 1.5] g ml−1 for water.

Phys. Med. Biol. 63 (2018) 235001 (19pp)
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section 2.2.1). Barber2016 has a parameter λ = 10−4, and a parameter θ = 0.5 (see section 2.2.5). Long2014 
splits the projections into 20 subsets, and Mechlem2018 into four subsets, in order to speed up convergence. 
Mechlem2018 also uses Nesterov’s momentum technique, which speeds up convergence even more, but makes 
it a bit unstable: when splitting the projections into too many subsets (typically more than six), Mechlem2018 
sometimes diverges: the iterates accumulate strong streak artefacts, then they reach a point where the Hessian of 
the SQS is not invertible, which stops the algorithm.

3.2.  Quantitative criteria
We show in figure 5 the evolution of the concentrations of iodine and gadolinium over the course of iterations, 
for all five methods, with a logarithmic scale only on the x-axis. The concentrations are measured in the square 
where iodine or gadolinium is expected, eroded by 2 pixels in order to avoid partial volume effects. In all methods, 
the pixels at the border of the region of interest (ROI) have significantly lower concentrations. The full line is the 
ground truth concentration value in the ROI. Since tracking the mean concentration in a ROI can only capture 
information on how well the low frequencies are reconstructed, figure 6 shows, for each method, the normalized 
�2 difference with the last iterate, computed as follows:

Normalized �2(xk) =

Nm∑
m

∑Nv

v=1 (xk,v,m − xNiterations,v,m)
2

Nm
∑Nv

v=1 GroundTruth2
v,m

� (10)

where k, v and m are respectively the indices for iteration, voxel and material, Nv is the number of voxels of one 
reconstructed material map and Nm the number of materials.

Table 3 contains the mean and standard deviation of iodine, gadolinium and water concentrations in the ROI 
where they are expected eroded by 2 pixels, on the final iterate. Standard deviations of each material are roughly 
the same between all algorithms, yet there are some outliers: the stds of Cai2013 in gadolinium and of Barber2016 
in iodine. This is a consequence of the fact that those two methods are the slowest ones, and consequently we were 
not able to sample the parameter space for them with a fine enough grid. While it is unfortunate, it highlights the 
fact that slowly converging methods are hard to tune, and that additional parameters (λ in Barber2016) imply a 
longer tuning time.

Table 4 shows the total number of iterations performed, the time per iteration, and the number of iterations it 
took for all materials to reach target concentration in their respective ROIs, within 20% or 10% tolerance. On our 
test case, Mechlem2018 converges 1–3 orders of magnitude faster than its competitors.

3.3.  Memory footprint of each method
We provide here a simple analysis of the memory footprint of each method, by listing the variables that have to 
be stored and recalling their size. The results are summarized in table 5, and the detailed calculations for each 
method are presented in this section. The measured photon counts, which constitute the main input of these 
reconstruction algorithms, are assumed to be available on disk, so they never have to be fully loaded in memory 
and are not mentioned in this section. Obviously, re-reading them from disk at each iteration is highly inefficient, 
and one should load them in memory if possible. We used the notations of the pseudo codes in the appendix 
for the names of the variables, and the following notations for various quantities: Nv is the number of voxels 
of one reconstructed material map, Nm the number of materials, Np the number of pixels of all projections for 
one bin, Nb the number of energy bins in photon counts measurements and Ne the number of energies used in 
internal calculations. Despite the fact that we performed 2D simulations, we assume for these calculations that 
the reconstructed volumes are 3D (which matters for the computation of the spatial gradient). Note that the 
code we provide keeps many intermediate variables in memory, for convenience and speed considerations, and 
therefore uses much more memory than the minimum required.

Figure 5.  Concentration of iodine (left), gadolinium (middle) and water (right) over the course of the iterations for the five 
methods, in the ROI where it is expected eroded by 2 pixels.

Phys. Med. Biol. 63 (2018) 235001 (19pp)
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3.3.1.  Cai2013
The following variables must be stored and updated at each iteration: xk, dk, gk and gk−1, which each contain a set 
of material volumes. Since all computations can be performed pixel-wise, the expected photon counts ȳ do not 
have to be fully stored in memory, and neither does any of the intermediate variables in the calculation of the 
gradient and Hessian of the data-attachement term, so we do not count them. Lastly, the spatial gradient of xk, 
which is three times as large as xk, is used in the calculation of g and of dTHd. More precisely, it is the divergence 
of the first and second derivative of the Huber function of the gradient that is used. These calculations can be 
computed piecewise, with overlapping pieces since the gradient and divergence require neighboring voxels. In 
total, at least 4NvNm floating point values must be kept in memory, and storing 3NvNm additional values for the 
gradient of xk avoids redundant computations, and the problem of having to divide the volumes into overlapping 
pieces.

Figure 6.  Normalized �2 difference with the last iterate.

Table 3.  Mean and standard deviation of iodine, gadolinium and water concentrations in the ROI where they are expected eroded by 2 
pixels on the final iterate.

Iodine (mg ml−1) Gadolinium (mg ml−1) Water (g ml−1)

Mean std Mean std Mean std

Cai2013 10.4 2.14 10.1 3.75 0.999 0.0518

Long2014 9.98 1.79 9.93 2.50 1 0.0402

Weidinger2016 9.92 1.86 9.92 2.44 1 0.0425

Barber2016 9.85 3.34 9.65 2.19 1.002 0.064

Mechlem2018 9.97 1.94 9.94 2.70 1 0.0431

Table 4.  Number of iterations performed and required to reach target concentrations within 20% and 10% tolerance.

Method Iterations performed Time per iter (s) Within 20% tolerance Within 10% tolerance

Cai2013 5000 5.2 270 430

Long2014 5000 1.33 140 280

Weidinger2016 5000 0.48 190 390

Barber2016 20 000 1.02 3850 8300

Mechlem2018 200 0.62 5 10

Table 5.  Summary of the minimal memory footprints of the five studied methods.

Method Minimal memory footprint (in number of floating point values)

Cai2013 4NvNb  with Fessler’s preconditioning, 4NvNm otherwise

Long2014, Weidinger2016
(
4 + Nm+1

2

)
NvNm

Mechlem2018
(
6 + Nm+1

2

)
NvNm

Barber2016 17NvNm + 3NpNb

Phys. Med. Biol. 63 (2018) 235001 (19pp)
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3.3.2.  Long2014, Weidinger2016 and Mechlem2018
In all three SQS-based methods we have implemented, the following variables must be stored and updated at each 
iteration: the current iterate (xk as in Long and Fessler (2014)), of size NvNm, and the gradient and Hessian of the 
surrogate at xk, of size NvNm and NvN2

m, respectively. Since the Hessian is known to be symmetric, it can be stored in 
NvNm(Nm + 1)/2 floating point values. The gradient and the Hessian of the surrogate of the data-attachment term 
both result from one forward and one back projection. By performing these one angle at a time, they can be computed 
with negligible amounts of memory. The gradient and Hessian of the surrogate of the regularization term both require 
a memory size of NvNm (the Hessian has NvN2

m elements, but is known to be diagonal), and internal computations 
can be done in place. Since typically they are calculated separately, and then added to those of the regularization terms, 

their requirements in memory add up. In total, the memory footprint is at least 
(
4 + Nm+1

2

)
NvNm floating point 

values for Long2014 and Weidinger2016. For Mechlem2018, two additional Nesterov variables must be stored (zk and 

uk), taking the memory footprint to a minimum of 
(
6 + Nm+1

2

)
NvNm floating point values.

3.3.3.  Barber2016
This method makes use of more intermediate variables than the other four. Table 6 lists the variables used in the 
pseudo code given in appendix, whether they must be stored or not, why and how many floating point values are 

therefore required. In total, it uses at least 17NvNm + 3NpNb  floating point values.

3.4.  Impact of mu-preconditioning
None of the SQS-based methods is impacted by μ-preconditioning: once mapped back to the original materials, 
the iterates are almost identical to the ones obtained without μ-preconditioning, with difference maps two 
orders of magnitude less intense than the reconstructed slices. The only impact is with Fessler’s method (Fessler 
2003): since in our case (three materials, five energy bins) it artificially increases the number of materials to 

Table 6.  Memory footprint of Barber2016, for each variable used in appendix C.6 of Barber et al (2016). Nv, Nm, Np and Nb are defined 
in section 3.3 of the present paper. The words ‘pixelwise’ and ‘voxelwise’ mean that the variable can be computed one pixel (or voxel) at a 
time, thus its computation requires negligible amounts of memory.

Variable Stored?
Size in memory  

(in floating point values)

x0 Yes NvNm

x(k−1) Only x(k−1) NvNm

x(k)

x(k+1)

Σsino Yes NpNb

Σgrad Only one of both 3NvNm

w

T Yes: used only once, but computed as the sum of two very 

different calculations, unlikely to occur voxelwise in parallel

NvNm

z No: used only once, pixelwise 0

u(k−1)
sino Not u(k+1)

sino , because it replaces u(k)
sino

2NpNb

u(k)
sino

u(k+1)
sino

ȳ No: used only to compute u(k+1)
sino , pixelwise 0

b

E

y+grad
Yes 3NvNm

y(k)
grad

Only one of both 3NvNm

y(k+1)
grad

g+  Yes: to be projected onto L1 ball 3NvNm

ĝ+ No: used only once, voxelwise 0

x(k) Yes 2NvNm

x(k+1)
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that of the number of bins, the Hessians of the SQS are no longer invertible, so this μ-preconditioning cannot 
be used at all with SQS-based methods. On Cai2013, however, μ-preconditioning has a strong impact. Figure 7 
shows the evolution of the cost function over the course of the iterations minus its minimum, using Cai2013 
without μ-preconditioning, with normalization, orthonormalization and Fessler’s method. Since all four 
of these experiments aim to minimize the same cost function, the minimum we subtracted is the minimum 
over all iterations and all four experiments (reached, as can be seen on the graph, with μ-preconditioning by 
normalization). It clearly shows that Fessler’s method has the fastest initial convergence, which is confirmed by 
looking at the iterates (not shown here). After more than 1000 iterations, the experiment using normalization 
reached a lower value of the cost function than the one using Fessler’s method.

4.  Discussion

We have presented a comparison of five one-step inversion methods for spectral CT, focused on two aspects 
important for implementation into a real scanner: convergence speed and memory footprint. This choice 
of criteria is in part due to the initial aim of our study, which was to determine which algorithm should be 
implemented to process large real datasets in reasonable time. But more importantly, it was dictated by the 
behavior of the algorithms themselves: while it seemed impossible to make a convincing case on which method 
performed best in terms of image quality, the differences in convergence speed were striking. We provide the 
complete Matlab code we have used for this study (see section 2.7), so that readers interested in conducting 
comparisons on other aspects have the means to do so.

All algorithms were adapted to find the three material maps that minimized a cost function composed of a data 
attachment term for five energy bins and a spatial regularization minimizing the �1-norm (or a twice-differentia-
ble approximation of it) of the spatial gradient of each reconstructed volume. The original algorithms were gener-
ally designed for other problems and our conclusions hold only for our specific problem. For examples, the follow-
ing modifications of the problem would require another comparison: reconstructing two maps from dual-energy 
measurements as in Cai et al (2013) or constraining the solutions with positivity as in Long and Fessler (2014).

There are other one-step inversion methods in the literature than the ones we selected, e.g. Sukovic and 
Clinthorne (2000), Chen et al (2017), and it is likely that more will be proposed in the future. We hope that others 
will be interested in implementing their method in the Matlab framework we provide, to extend the comparison.

A limitation of the present study is the small size of the data used in the experiments, which was dictated by 
our implementation using a sparse system matrix stored in computer memory. It is therefore possible that on 
larger datasets, e.g. on a full real helical acquisition, the relative convergence speeds of the studied methods would 
be different. However, the other observations made in the paper would remain valid.

Another limitation is that since one-step inversion is a non-convex problem, the results may strongly depend 
on the initialization. Mechlem et al recommend to initialize the algorithms with reconstruction results from a 
two-step method. We have not tried that approach, and have instead initialized all reconstructions with zero-
filled slices. Different initialization strategies may lead to different conclusions on relative convergence speeds.

In several ways, the simulation we have studied is simplistic: in a real acquisition, the spectrum is usually 
filtered to remove most low-energy photons, made pixel-dependent by a bow tie filter, and the pixels and voxels 

Figure 7.  Cost function of Cai2013 over the course of the iterations minus its mininum, depending on the μ-preconditioning 
method used.

Phys. Med. Biol. 63 (2018) 235001 (19pp)
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are much finer than the ones we used (around 0.2 mm instead of 1 mm). Since the same sparse system matrix 
was used both for simulation and reconstruction, this work adopts an inverse-crime setup (Wirgin 2004), with 
statistical noise. It does not take into account any advanced physical effect like scatter, pile-up or charge sharing. 
However, these observations hold for all methods, so the comparison remains valid.

Sidky et al have recently proposed a more efficient μ-preconditioning method (Sidky et al 2018), better-
suited to three-materials reconstructions than the one described in Barber2016. In the experiment they present, 
this new μ-preconditioning method speeds up convergence by a factor 10. The slow convergence of Barber2016 
in our experiments must therefore be mitigated by the fact that we did not implement that method. However, 
a factor 10 would only make its convergence speed similar to Cai2013, Long2014 and Weidinger2016, and our 
other observations on Barber2016 (mostly its high memory footprint) remain valid.

Our implementation of Mechlem2018 differs from that of Weidinger2016 only by the use of Nesterov’s 
momentum technique and a small number of ordered subsets, and yet greatly outperforms Weidinger2016. 
Therefore, we confirm the observation made in the discussion of Mechlem2018 and in several other papers (Kim 
et al 2015, Hansen and Sørensen 2018): Nesterov’s momentum technique combined with ordered subsets highly 
accelerates the convergence speed per iteration. This acceleration might cause numerical instabilities which 
would make Mechlem2018 more difficult to use with real data.

5.  Conclusion

We have adapted five one-step methods for spectral CT (Cai2013 (Cai et al 2013), Long2014 (Long and Fessler 
2014), Weidinger2016 (Weidinger et al 2016), Barber2016 (Barber et al 2016), Mechlem2018 (Mechlem et al 2018)) 
to reconstruct three material maps from five energy bins with spatial regularization in each material map. We have 
compared them in terms of practical aspects: convergence speed to reach a fixed image quality threshold, and 
memory footprint. They are obviously not the only criteria for the choice of a method, and many other parameters 
should probably be considered such as image quality at convergence or numerical stability. Yet, Mechlem2018 solved 
this one-step problem in 1–3 orders of magnitude faster than its competitors, and such a vast difference should not be 
overlooked. Alternative optimizations or modifications of the problem would require reinvestigating this conclusion, 
and we provide the source code of the software used in this study to facilitate such investigations.
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Appendix

Since we performed some modifications on almost all methods, we provide in this section  the complete 
pseudo code of our implementations. This pseudo code makes extensive use of matrix notation, so we define 
some matrices and their size, in format [lines, columns] (see section 3.3 for the definitions of the N values): 
M is the (preconditioned) material mass-attenuation matrix, and P the μ-preconditioning matrix, defined in 
section 2.3. P and M are [Nm, Nb] and [Ne, Nb] in the case of Fessler’s μ-preconditioning, and [Nm, Nm] and 
[Ne, Nm] otherwise. A[Np, Nv] is the forward projection matrix for one material, and S[Nb, Ne] the effective 
spectrum, as used in equation (2). In some algorithms, those matrices are redefined using Kronecker products 
(noted ⊗). They still perform the same operation, only extended to several materials, bins, pixels or voxels. When 
the original matrix is needed, it is indexed by the pixel or voxel. Some calculations cannot be easily translated into 
Kronecker products, therefore we sometimes use the symbol ∗, which ∗ stands for element-wise product with 
implicit extension, e.g. (

1

2

)
∗
(

0 1 2

3 4 5

)
=

(
0 1 2

6 8 10

)
.� (A.1)

Of course, it would have been highly inefficient to actually implement the presented methods using Kronecker 
products, so the pseudo code does not reflect the way things are actually implemented in the Matlab code we provide. 
In vectors storing volumes, the order of the dimensions is ‘x, y, z, material’. In vectors storing photon counts, it is 
‘x, y , projection, energy bin’. If μ-preconditioning is used, the initial guess, which we denote X, must be multiplied 
by P−1 to obtain x0. In all methods except Barber2016, regularization involves the use of a twice-differentiable 
approximation of the �1 norm. Cai2013 and Mechlem2018 use the Huber function, Weidinger2016 uses the Green 
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prior, and Long2014 a custom hyperbola. We denote all of these functions with a unique symbol φ which, as for 
Cai2013 (see section A.1), already contains the regularization weights (one per material) and, if applicable, the 
thresholds (one per material). For SQS-based methods, the regularization is computed by examining, for each 
voxel, the surrounding voxels that belong to a neighborhood N . For Long2014 and Mechlem2018, which use 
subsets, we define As = sub(A, s) which selects rows in the projection matrix A corresponding to the projections 
in subset s. Which projection goes into which subset is determined by the following procedure: we compute a 
random permutation of [1, 2, . . . , Nprojections], and divide the result into Nsubsets equal parts.

A.1.  Pseudo-code of Cai2013
Contrary to the other four methods, Cai2013 defines S as the normalized spectrum instead of the absolute one, and y 
as transmission ratios instead of photon counts. Let us define �w = (w1, . . . , wNm) and �δ  the vectors of regularization 
weights, and of Huber function thresholds, each holding one value per material. In Cai2013, the regularization term 
is the sum over all voxels of the Huber function of the spatial gradient of the material volumes, i.e.

Φ :R3NvNm × RNm × RNm → R

(t, �w,�δ) →
Nm∑

m=1

wm

3Nv∑
i=1

φ(ti, δm)
� (A.2)

where in practice, t is always the spatial gradient of the material volumes. The gradient and Hessian of Φ are 
denoted Φ′ and Φ′′, respectively, and are of size [3NvNm, 1] and [3NvNm, 3NvNm].

Algorithm 1.  Cai2013 pseudo code.

  1 P = P ⊗ INv

  2 A = INm ⊗ A

  3 M = M ⊗ INp

  4 S = S ⊗ INp

  5 x0 ← P−1X

  6 g0 ← 0

  7 d0 ← 0

  8 Q ← exp (−MAx0)

  9 ȳ ← SQ

10 for k ← 1 to Niterations do

11    z ←
(

y2−ȳ2

kdȳ2 − 1
ȳ

)

12    xreal ← Pxk−1

13    gk ← ATMTQSTz + PT∇TΦ′
(
∇xreal, �W ,�δ

)

14    β ← 〈gk−gk−1,gk−1〉
‖gk−1‖2

2

15    if β < 0 or k  =  1 then β ← 0

16    dk ← −gk + βdk

17    v ← diag[ 2y2

kdȳ3 − 1
ȳ2 ]

18    dreal ← Pdk

19    dT
k Hdk ← dT

k ATMTQ(STvSQ − diag[STz])MAdk

20               +dT
realP

T∇TΦ′′
(
∇xreal, �W ,�δ

)
∇Pdreal

21    α ← − 〈gk ,dk〉
dT

k Hdk

22    xk ← xk−1 + αdk

23    while cost(xk) > cost(xk−1) do

24        α ← α/2

25        xk ← xk−1 + αdk ;

26    end

27    Q ← exp (−MAxk)

28    ȳ ← SQ

29 end

30 return Pxk
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A.2.  Pseudo-code of Long2014
It uses the optimal_curvature function, which is defined on R+ as follows:

optimal_curvature(x) = 2
1 − e−x − xe−x

x2
if x > 0, 1 if x = 0.� (A.3)

When the input to optimal_curvature is a vector, it is applied element-wise.

Algorithm 2.  Long2014 pseudo code.

1 π = A ∗ (A Nv ,1)

2 A = INm ⊗ A

3 L = (M ⊗ 1,Nm) ∗ ( 1,Nm ⊗ M)

4 M = M ⊗ INp

5 S = S ⊗ INp

6 x0 ← X

7 for k ← 1 to Niterations do

8    for s ← 1 to Nsubsets do

9        As = sub(A, s)

10        πs = sub(π, s)

11        Q ← exp (−MAsxk−1)

12        ȳ ← SQ

13        gdata ← AT
s

(
( y

ȳ − 1) ∗ SQM
)

14        c = optimal_curvature(MRxk−1)

15        for p ← 1 to Npixels in subset s do

16           Cp =
∑Nb

b=1

(
Sp(cp ∗ L)

)

17        end

18        Hdata ← reshape(πT
s C, [Nv, Nm, Nm])

19        for v ← 1 to Nv  do

20           gregul,v ← 2
Nsubsets

∑
ṽ∈N φ′ (xk−1,v − xk−1,̃v)

21           Hregul,v ← 4 diag
[∑

ṽ∈N φ′′ (xk−1,v − xk−1,̃v)
]

22           gv ← gdata,v + gregul

23           Hv ← Hdata,v + Hregul

24           xk,v ← xk−1,v − H−1
v gv

25        end

26    end

27 end

28 return xk

A.3.  Pseudo-code of Weidinger2016

Algorithm 3.  Weidinger2016 pseudo code.

1 A = INm ⊗ A

2 L = (M ⊗ 1,Nm) ∗ ( 1,Nm ⊗ M)

3 M = M ⊗ INp

4 S = S ⊗ INp

5 x0 ← X

6 for k ← 1 to Niterations do

7    Q ← exp (−MAxk−1)

8    ȳ ← SQ

9    gdata ← AT
(
( y

ȳ − 1) ∗ (SQM)
)

10    Hdata ← AT ((A Nv ,1) ∗ (SQL))

11    for v ← 1 to Nv  do

12        gregul,v ← 2
∑

ṽ∈N φ′ (xk−1,v − xk−1,̃v)

13        Hregul,v ← 4 diag
[∑

ṽ∈N φ′′ (xk−1,v − xk−1,̃v)
]

14        gv ← gdata,v + gregul

15        Hv ← Hdata,v + Hregul

16        xk,v ← xk−1,v − H−1
v gv

17    end

18 end
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19 return xk

A.4.  Pseudo-code of Mechlem2018
It differs of that of Weidinger2016 only by the use of subsets and Nesterov’s momentum technique.

Algorithm 4.  Mechlem2018 pseudo code.

  1 A = INm ⊗ A

  2 L = (M ⊗ 1,Nm) ∗ ( 1,Nm ⊗ M)

  3 M = M ⊗ INp

  4 S = S ⊗ INp

  5 z0 ← X

  6 for k ← 1 to Niterations do

  7    for s ← 1 to Nsubsets do

  8        As = sub(A, s)

  9        Q ← exp (−MAszk−1)

10        ȳ ← SQ

11        gdata ← AT
s

(
( y

ȳ − 1) ∗ (SQM)
)

12        Hdata ← AT
s ((As Nv ,1) ∗ (SQL))

13        for v ← 1 to Nv  do

14              gregul,v ← 2
Nsubsets

∑
ṽ∈N φ′ (zk−1,v − zk−1,̃v)

15              Hregul,v ← 4 diag
[∑

ṽ∈N φ′′ (zk−1,v − zk−1,̃v)
]

16              gv ← gdata,v + gregul

17              Hv ← Hdata,v + Hregul

18              dk,v ← zk−1,v − H−1
v gv

19        end

20        tk ← 1
2

(
1 +

√
1 + 4t2

k−1

)

21        αk ← zk − dk

22        uk ← uk − tk−1dk

23        zk ← αk +
tk∑k
l=0 tl

(uk − αk);

24    end

25 end

26 return zk

A.5.  Pseudo-code of Barber2016
All other four methods use a weighted regularization term, with weights controlling the strength of the 
regularization: the larger the weight, the stronger the regularization. Barber2016 works differently: it enforces a 
constraint, stating that the TV on each material must not exceed a threshold γm (one per material). Therefore, the 
larger the γms, the looser the TV constraint.

Algorithm 5.  Barber2016 pseudo code.

  1 Zpe,mv ← MmeApv

  2 A = INm ⊗ A

  3 M = M ⊗ INp

  4 S = S ⊗ INp

  5 P = P ⊗ INv

  6 x(0) ← P−1X

  7 for k ← 1 to Niterations do

  8    x0 ← x̄(k)

  9    Bbp,p′e(x) ←
sbpe exp(−(Zx)pe)∑

e′ sbpe′ exp(−(Zx)pe′)
Ipp′

10    with Ipp′ = 1 if p = p′  and 0 otherwise

11    K ← B(x0)Z

12    ȳ ← S exp (−MAx0)

13    E ← max(ȳ − y, 0)

14    b ← (ȳ − E)Kx0 + ȳ − y

15    Σsino ← 1
λdiag [K ]

−1
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18

Cyril Mory et al

16    Σgrad ← 1
λdiag [|∇|P ]

−1

17    T ← λ diag
[
KT (|∇|P )T

]−1

18    ∀m, wm ← Σ
1/2
grad,m

19    z ← Σ−1
sino

(
u(k−1)

sino − u(k)
sino +ΣsinoKx̄(k−1)

)

20    u(k+1)
sino ← (ȳ +Σsino)

−1
[

ȳ(u(k)
sino +ΣsinoKx̄(k))− Σsino(b + Ez)

]

21    ∀m, u+
grad,m ← u(n)

grad,m +Σgrad,m∇(Px̄(k))m

22    ∀m, g+m ← |u+
grad,m/wm|

23    ∀m, ĝ+m ← sign(u+
grad,m/wm)

24    ∀m, u(k+1)
grad,m ← u+

grad,m − wmĝ+m Proj(g+m ; g, ‖g/wm‖ � γm)

25    x(k+1) ← x̄(k) − T

(
K

∇P

)
T

(
u(k+1)

sino

u(k+1)
grad

)

26    x̄(k+1) ← x(k+1) + θ(x(k+1) − x(k))

27 end

28 return Px(k)
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