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1. Introduction

Relative proton stopping power (RSP), the ratio of the proton stopping power of a given material to that of water 
at a given energy, is necessary for most clinical dose calculation methods used in proton therapy. RSP is currently 
estimated by x-ray computed tomography (CT) scans in clinical practice (Taasti et al 2018). The conversion 
from photon attenuation coefficients to RSP contributes considerably to range uncertainties (Paganetti 2012, 
Yang et al 2012). The potential of reducing these uncertainties by direct RSP measurements at the treatment 
position has motivated the recent revival of proton computed tomography (pCT), which was first proposed 
by Cormack in the early 1960s (Cormack 1963). Modern pre-clinical pCT scanners measure the positions and 
residual energies of the protons behind (and in some designs also in front of) the patient in a series of projections, 
from which an RSP image can be reconstructed (Penfold et al 2009, 2010, Rit et al 2013, Poludniowski et al 2014, 
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Abstract
We present a formalism for two-dimensional (2D) noise reconstruction in proton computed 
tomography (pCT). This is necessary for the application of fluence modulated pCT (FMpCT) since 
it permits image noise prescription and the corresponding proton fuence optimization. We aimed 
at extending previously published formalisms to account for the impact of multiple Coulomb 
scattering (MCS) on projection noise, and the use of filtered back projection (FBP) reconstruction 
along curved paths with distance driven binning (DDB).

2D noise reconstruction for a beam of protons with parallel initial momentum vectors, and for 
projections binned both at the rear tracker and with DDB, was established. Monte Carlo (MC) 
simulations of pCT scans of a water cylinder were employed to generate pCT projections and to 
calculate their noise for use in 2D noise reconstruction. These were compared to results from an 
analytical model accounting for MCS for rear tracker binning as well as against the previously 
published central pixel model which ignores MCS. Image noise reconstructed with the formalism for 
rear tracker binning and DDB were compared to MC results using annular regions of interest (ROIs).

Agreement better than 8% was obtained between the noise of projections calculated with MC 
simulation and our model. Noise from annular ROIs agreed with our noise reconstructions for rear 
tracker binning and DDB. The central pixel model ignoring MCS underestimated projection and 
thus image noise by up to 40% towards the object’s edge.

The use of DDB decreased the image noise towards the object’s edge when compared to rear 
tracker binning and yielded more uniform noise throughout the image. MCS should not be 
neglected when predicting image noise for pixels away from the center of an object in a pCT scan due 
to the increasing influence of the gradient of the object’s hull closer to the edges.
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Hansen et al 2016). Many groups are known to be designing, building or operating pCT (or heavier ion CT) 
prototypes (Rinaldi et al 2013, Sadrozinski et al 2016, Taylor et al 2016, Meyer et al 2017, Tanaka et al 2018) and 
initial reports of RSP accuracy support these endeavours (Giacometti et al 2017).

The concept of fluence field modulation computed tomography (FFMCT), initially suggested for x-ray 
CT by Graham et al (2007) and pioneered by the Toronto (Bartolac et al 2011, Bartolac and Jaffray 2013) and 
Madiso n groups (Szczykutowicz and Mistretta 2013a, 2013b), allows the tailoring of the spatial distribution of 
image noise and dose by modulating the x-ray fluence within a given CT projection. Fluence modulation has 
been realized by employing a digital beam attenuator (Szczykutowicz and Mistretta 2014), the binary collima-
tor of a Tomotherapy machine (Szczykutowicz et al 2015), multiple aperture devices (Stayman et al 2016) or 
piecewise-linear dynamic attenuators (Shunhavanich et al 2018). While fluence modulation capability is cru-
cial in achieving FFMCT, a mathematical model relating x-ray fluence and image noise and/or radiation dose is 
required to optimize the FFMCT fluence pattern (Bartolac et al 2011). Several publications cover the theory of 
noise reconstruction for x-ray CT for parallel (Huesman et al 1977, Gore and Tofts 1978, Huesman 1984, Kak and 
Slaney 1988, Buzug 2008a), fan (Wunderlich and Noo 2008) and cone beam (Zhang and Ning 2008, Shäfer et al 
2015) acquisitions.

Clinical implementation of FFMCT would thus rely on prior imaging data to generate a patient model, which 
would be used as input to algorithms predicting noise projections required for noise reconstruction (Bartolac 
et al 2011). The patient model could thus be established on the basis of prior diagnostic imaging studies or even 
using an atlas.

Dedes et al (2017) proposed adapting FFMCT to proton computed tomography (pCT) scans acquired with 
pencil beam scanning (PBS) beamlines found in modern proton therapy facilities. While they could show the fea-
sibility of fluence modulated pCT (FMpCT) in a simulation study, they relied on a ‘forward planning’ approach 
where simple geometric considerations guided a binary fluence modulation on a pencil beam by pencil beam 
basis. The same approach was employed for the recent experimental realization of FMpCT using the proton 
tracking phase II pCT prototype of the Loma Linda University and University of California Santa Cruz (Dedes 
et al 2018). Further developments in FMpCT thus require the modeling of the relation between proton fluence 
and pCT image noise to allow using an optimization strategy where pencil beam fluence could be continuously 
adjusted to achieve image noise prescriptions.

Preliminary work by Schulte et al (2005) for the noise of the central pixel in a pCT image of a water cylin-
der, using proton projections binned at the rear tracker, laid the groundwork for noise reconstruction in pCT. 
However, Schulte et al (2005) did not account for the impact of multiple Coulomb scattering (MCS) near object 
edges, and was published prior to the development of state of the art filtered back projection (FBP) along most 
likely paths (MLP) (Rit et al 2013), which makes use of distance driven binning (DDB) to create depth dependent 
projections for which rear tracker binning is a special case. As we will present in this paper, these effects have a 
non-negligible, non-trivial impact on two-dimensional (2D) image noise in pCT.

The goal of this paper was thus to realize 2D noise reconstruction for simulated pCT scans of a water cylinder, 
assuming an ideal version of proton tracking pCT scanners, and accounting for the impact of MCS and the dis-
tance driven binning (DDB) which underpins FBP along MLPs. To do so, we extended the FBP along most likely 
paths to allow noise reconstruction, and made use of projection noise calculated on the basis of Monte Carlo 
(MC) simulations of ideal pCT scans, as well as from a dedicated analytical model.

2. Material and methods

2.1. MC simulation and geometry
In order to validate the noise reconstruction methods presented in the following sections, a MC simulation of 
a pCT scan of a water cylinder with a diameter of 25 cm was carried out, assuming ideal detectors (see figure 1). 
We chose a 260 mm × 50 mm rectangular proton field covering the whole diameter of the cylinder and 
50 mm along the cylinder’s axis. The fluence of the beam was chosen to be 200 protons mm−2, all protons were 
launched perfectly parallel with random starting positions from the source plane, and the initial proton energy 
(Ein = 250 MeV) was monoenergetic. The proton path was tracked on two parallel planes on the front and 
rear side of the water cylinder (see figure 1 for the details of the geometry), perpendicular to the incident beam, 
returning the initial and final position and momentum direction of each proton along with their exit energies.

The simulation platform was based on Geant4 version 10.01.p02 (Agostinelli et al 2003). The reference 
physics list QGSP_BIC_HP was used for the simulation of the interaction of particles with matter, which relies 
on G4EmStandardPhysics for electromagnetic interactions. MCS is modeled via the G4WentzelIVIModel 
(Ivanchenko et al 2010). The tabulation of energy loss, range and inverse range, which are calculated during 
initialization, are done with 84 bins. More details on the energy loss are described in GEANT-Collaboration et al 
(2016).
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2.2. Noise reconstruction formalism for pCT
Literature refers alternatively to noise images (one standard deviation, σ) or variance images (σ2), with similar 
naming at the projection level. In this paper, we have opted to systematically employ the term noise reconstruction, 
which implies the trivial step of taking the square root of variance reconstructions. The noise reconstruction 
formalism presented below applies for pCT images reconstructed through distance driven binning (DDB), 
which was introduced by Rit et al (2013). By doing so, one is able to include the influence of MCS, as protons 
traversing curved paths will be binned into different detector pixels at different binning depths. The fluence 
modulation approach, as proposed by Dedes et al (2017), is based on parallel pencil beam irradiation. Therefore, 
we will solely discuss the parallel beam case in 2D slices.

After a brief summary of the image reconstruction (section 2.2.1), we will review the quantification of noise 
in the pCT projections (section 2.2.2) followed by the noise reconstruction of pCT binned at the rear tracker 
(section 2.2.3). The noise reconstruction including DDB is shown thereafter, given the noise projections binned 
at variable depth (section 2.2.4). We discuss the calculation of noise projections binned at the rear tracker in sec-
tion 2.3.1 and with DDB in section 2.3.2.

2.2.1. Image reconstruction
The coordinate system used in this paper is illustrated in figure 2. The FBP of an image slice f (x, y), given the 
discrete projection values pγn(m∆ξ) acquired at discrete angles γn with a ∆ξ spacing on the 1D projection grid 
using a discrete number of projections Np, is given by

f (x, y) =
π

Np

Np∑
n=1

hγn(x cos(γn) + y sin(γn)), (1)

where hγ( j∆ξ) are the convolved projections

hγn( j∆ξ) = ∆ξ

D/2−1∑
m=−D/2

pγn(m∆ξ)g(( j − m)∆ξ). (2)

We chose the simplest convolution kernel from Ramachandran and Lakshminarayanan (1971) (Ram-Lak), 
which results from band limiting the ramp kernel

Figure 1. Geometry of the MC simulation.
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g( j∆ξ) =




1/(2∆ξ)2 for j = 0,

0 for j even ( j �= 0),

−1/( jπ∆ξ)2 for j odd.
 (3)

For a reconstruction using a given image pixel grid, with the pixel centers located at (xp, yp), the convolved 
projections of equation (1) require interpolation, as the sampled projection values do not necessarily coincide 
with the sample points ξn(xp, yp) = xp cos(γn) + yp sin(γn). Interpolation reduces the noise and should be taken 
into account, when estimating noise in reconstructed images from noisy projection images (Huesman et al 1977, 
Kak and Slaney 1988). For a linear interpolation between the two adjacent pixels j and j  +  1, the complete recon-
struction from the FBP becomes

f (xp, yp) =
π

Np
∆ξ·

Np∑
n=1

D/2−1∑
m=−D/2

pγn(m∆ξ) {g(( j − m)∆ξ) · [1 − u] + g(( j + 1 − m)∆ξ) · u} ,
 

(4)

where both j = j(ξn) and the weights u = u(ξn) are determined by the location of the query point relative to the 
two adjacent projection sample values

u(ξn) =
ξn − j∆ξ

∆ξ
. (5)

2.2.2. Statistical limitations of the acquisition
Proton tracking pCT reconstruction with FBP relies on binning individual protons into projection pixels. For 
regular FBP (i.e. non-DDB), this can be done by using the data from the rear or front trackers. For FBP along 
most likely paths based on DDB, the paths of individual protons are reconstructed and protons are binned into 
projections with variable η (see figure 2) (Rit et al 2013).

After binning the protons into their respective pixels, one calculates their water equivalent path length 
(WEPL) through

Figure 2. Setup of the acquisition and the coordinate systems. The source (yellow circle) moves along the dotted green line in order 
to generate one projection. Please note that this is an oversimplification in the context of pCT. Adapted by permission from Buzug 
(2008b).
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WEPLi =

∫ Ei
out

Ein

dE

SW(E)
,

 
(6)

where SW(E) is the stopping power of water and i refers to individual measured protons with energy Ein before the 
object and measured energy Ei

out beyond. Then one estimates the mean to obtain the projection value

pγn( j∆ξ) =
1

Nγn( j∆ξ)

Nγn ( j∆ξ)∑
i=1

WEPLi, (7)

where Nγn( j∆ξ) is the number of protons in pixel j∆ξ  at the projection angle γn. At each pixel, the mean carries 
an intrinsic uncertainty in itself, typically expressed as the standard deviation of the mean. The variance of 
equation (7) is then

σ2
γn
( j∆ξ) =

σ2
WEPL,γn

( j∆ξ)

Nγn( j∆ξ)
. (8)

The variance of the WEPL (without index i since we refer to average WEPL in a projection pixel), σ2
WEPL, in 

turn depends on the uncertainty of the proton energies, which is generally attributed to energy straggling (Schulte 
et al 2005) (additional detector uncertainties will not be taken into account in this study). Therefore, the error of 
the exit energy propagates into the WEPL values, which is described by the error propagation formula. The first 
order approximation is sufficient as the second order contribution is already four orders of magnitude below the 
first order term. With the mean energy of the detected protons Eout , one obtains

σ2
WEPL =

(
∂WEPL

(
Eout

)
∂E

)2

σ2
Eout

=
σ2

Eout

S2
W(Eout)

. (9)

Together with equation (8), the variance of the projection value is given by Schulte et al (2005)

σ2
γn
( j∆ξ) =

σ2
Eout,γn

( j∆ξ)

Nγn( j∆ξ) · S2
W(Eout,γn( j∆ξ))

. (10)

2.2.3. 2D noise reconstruction without DDB
The basics of the noise reconstruction from the FBP for pCT were outlined by Schulte et al (2005) for the central 
pixel of pCT images, and are analogous to the x-ray CT noise reconstruction techniques shown by Huesman 
et al (1977) or Gore and Tofts (1978). Since the projection values pγn(m∆ξ) carry an error, we will treat them 
as random variables, with their mean and variance given by equations (7) and (10) respectively. In general, the 
variance of a weighted sum of random variables Xi with the weights ai is

Var

[
M∑

i=1

aiXi

]
=

M∑
i,j=1

aiaj Cov
[
Xi, Xj

]
=

M∑
i=1

a2
i Var [Xi] + 2

M∑
i,j|i<j

aiaj Cov
[
Xi, Xj

]
. (11)

The summation over pγn(m∆ξ) in equation (4) is threefold: the sum over the angles, the projection values 
(convolution) and the interpolation. We use the approximation that there is no covariance among the projection 
values pγn(m∆ξ) since individual protons are tracked and pileup is assumed negligible.

But, due to the convolution, the filtered projections carry a mutual dependency. Each filtered projection 
hγn( j∆ξ) value is the linear combination of the surrounding projection values pγn(m∆ξ). As the projection val-
ues pγn(m∆ξ) are independent, we have

Cov
[

pγn(m∆ξ), pγn′ (m
′∆ξ)

]
= δn,n′δm,m′ Var [ pγn(m∆ξ)] = δn,n′δm,m′σ2

γn
(m∆ξ), (12)

since Cov [X, X] = Var [X]. δij  is the Kronecker delta, which is defined as

δij =

{
0 if i �= j,

1 if i = j.
 (13)

The weights from equation (11) become

ai →
π

Np
∆ξ · g(( j(ξn)− m)∆ξ) [1 − u(ξn)]

aj →
π

Np
∆ξ · g(( j(ξn) + 1 − m)∆ξ)u(ξn).

 (14)

Finally, the noise of the image can be reconstructed through

Phys. Med. Biol. 63 (2018) 215009 (22pp)
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Var
[

f (xp, yp)
]
=

(
π

Np
∆ξ

)2

·

Np∑
n=1

{
[1 − u]2 Vγn( j∆ξ) + 2 [1 − u] uCγn( j∆ξ, ( j + 1)∆ξ) + u2Vγn(( j + 1)∆ξ)

} 

(15)

where j = j(ξn) and u = u(ξn), just as in equation (4). Following (Wunderlich and Noo 2008), we introduced the 
variance and covariance terms

Vγn( j∆ξ) =

D/2−1∑
m=−D/2

g2(( j − m)∆ξ)σ2
γn
(m∆ξ), (16)

Cγn( j∆ξ, j′∆ξ) =

D/2−1∑
m=−D/2

g(( j − m)∆ξ)g(( j′ − m)∆ξ)σ2
γn
(m∆ξ). (17)

When summing pγn(m∆ξ)g(( j(ξn)− m)∆ξ) [1 − u(ξn)] and pγn(m∆ξ)g(( j(ξn) + 1 − m)∆ξ)u(ξn) 
for interpolation, we produce two variance and two covariance terms through 
Var [a1X + a2X] = a2

1 Var [X] + a2
2 Var [X] + 2a1a2 Cov [X, X]. The Cγn  term is the covariance of the filtered 

projections and only the inner two sums of equation (4) bear this covariance, as we do not convolve in the angular 
dimension.

Wunderlich and Noo (2008) noticed that by defining

gC( j∆ξ) = g( j∆ξ)g(( j + 1)∆ξ). (18)

Equation (17) can be written as a convolution

Cγn( j∆ξ, ( j + 1)∆ξ) =

D/2−1∑
m=−D/2

gC(( j − m)∆ξ)σ2
γn
(m∆ξ). (19)

In general, the noise reconstruction algorithm is similar to a FBP. We merely use a different prefactor, interpo-
lation and different convolution kernels.

Furthermore, one is able to approximate the effect of the interpolation and reduce it to a single factor. A sim-
plified variance reconstruction is then given by

Var
[

f (xp, yp)
]
= finterp,µ

(
π

Np
∆ξ

)2 Np∑
n=1

Vγn( j∆ξ), (20)

where finterp,µ = 2/3 − 2/π2. In quantitative terms, the linear interpolation in combination with the Ram-

Lak filter reduces the standard deviation by about 32% (more precisely: 
√

2/3 − 2/π2 ≈ 0.681 193). See the 
appendix A.1 for the detailed derivation of this approximation. For our 2D noise reconstruction, including the 
2D noise reconstruction using DDB, we utilize this simplification.

2.2.4. 2D noise reconstruction including DDB
Given the projections from a single binning depth (e.g. the rear tracker), we had to use 1D interpolation between 
the sampled (and convolved) data points (see equation (4)). In order to take the projections from different 
depths into account, a 2D interpolation is necessary. However, as the projections from two neighboring depths 
are hardly any different, the interpolation along η has a negligible contribution to the variance reconstruction, 
if the spacing ∆η  is sufficiently small. For the reconstruction of a 2D slice, the Radon space becomes now 3D 
(γ, ξ, η) through the additional dimension in the η-direction: pγn( j∆ξ) → pγn( j∆ξ, k∆η). The DDB noise 
reconstruction becomes then

Var
[

f
(
xp, yp

)]
=

(
π

Np
∆ξ

)2

·

Np∑
n=1

{
[1 − u]2 Vγn( j∆ξ, k∆η) + 2 · [1 − u] uCγn( j∆ξ, ( j + 1)∆ξ, k∆η)

+ u2Vγn(( j + 1)∆ξ, k∆η)
}

,

 

(21)

where k∆η is closest to the corresponding binning depth (nearest neighbor interpolation). A more detailed 
discussion can be found in the appendix A.2. The additional simplification involving the interpolation factor 
finterp,µ described at the end of section 2.2.3 (see equation (20)) can also be applied here.

Phys. Med. Biol. 63 (2018) 215009 (22pp)
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2.3. Noise of the projections
Recall that for 2D noise reconstruction, we need to know the variance of all the projections binned at different 
depths, which consists of the variance of the energy, the number of protons within the pixels and the stopping 
power, evaluated at Eout

σ2
pγn

( j∆ξ, k∆η) =
σ2

Eout,γn
( j∆ξ, k∆η)

Nγn( j∆ξ, k∆η) · S2
W(Eout,γn( j∆ξ, k∆η))

. (22)

The latter is certainly the easiest to calculate, as we can use the Eout-values straight from the scan and evalu-
ate the stopping power of water at Eout . The remaining two components of the variance require more detailed 
discussions.

In this section, we first show an analytical approach to calculate and explain the energy straggling and proton 
counts for rear tracker projections using theoretical proton energy straggling and scattering models, commonly 
used in the pCT reconstruction. Results from this model will be compared to the results of the MC simulation.

Since the extension of the analytical model to arbitrary distances for DDB is non-trivial, we subsequently 
report how the noise of DDB projections was calculated from the MC simulation data.

These calculations of the noise in pCT projections are an extension of Schulte et al (2005) work detailing the 
noise at the center of a cylindrical object, which will be referred to as central pixel model.

2.3.1. Noise of rear tracker projections

Proton counts
For the 2D noise reconstruction, the proton counts N could be taken directly from the MC simulation or scan 
data. However, for the proton fluence used in this work (200 protons mm−2), the statistical fluctuation of the 
proton counts at the rear detector is large. This fluence corresponds to an imaging dose of about 3 mGy (Schulte 
et al 2005), which is already relatively high in the context of daily image guidance with pCT.

Accurate and smooth proton count data can be calculated through the transport theory, i.e. Fermi–Eyges the-
ory (Fermi 1940, Eyges 1948, Gottschalk 2012). It is a bivariate Gaussian theory, which is able to predict proto n 
MCS with sufficient accuracy. More complete models, e.g. Molière’s theory (Molière 1947, Molière 1948) are not 
necessary, as the additional tails of the distributions, as predicted by Molière’s theory, will be subject to the three 
standard deviations data cuts, i.e. the rejection of protons which have undergone large angle scattering or nuclear 
interactions (Schulte et al 2005). F(ξ, θ, η)dξdθ is the probability to find a proton within the lateral displacement 
[ξ, ξ + dξ] and traveling along the angle [θ, θ + dθ] at depth η, which was initially at ξ0 = 0 and θ0 = 0 at depth 
η0 = 0

F(ξ, θ, η)dξdθ =
1

2π
√

B(η)
exp

[
−1

2

A0(η)ξ
2 − 2A1(η)ξθ + A2(η)θ

2

B(η)

]
dξdθ, (23)

where

B(η) = A0(η)A2(η)− A2
1(η). (24)

For the scattering integrals

An(η) =

∫ η

0
(η − x)2 T(x)dx (25)

we chose (as it is chosen in other pCT related work, e.g. Quiñones (2016) or Bopp (2014)) the scattering power 
proposed by Gottschalk (2010), which reads

TdM = fdM( p, v, p1, v1) ·
1

Xs

(
Es

pv

)2

, (26)

where Es = 15.0 MeV , Xs is the material dependent scattering length and

fdM ≡ 0.5244 + 0.1975 log10

[
1 −

(
pv

p1v1

)2
]
+ 0.2320 log10

[ pv

MeV

]

− 0.0098 log10

[ pv

MeV

]
log10

[
1 −

(
pv

p1v1

)2
]

.

 

(27)

In order to carry out these integrals, we used the analytical expression of the cylindrical hull, but a prior 
reconstruction could also be used in the case of patient imaging. Our primary interest is the spatial distribution 
of the protons, thus we calculate A2(η), since

Phys. Med. Biol. 63 (2018) 215009 (22pp)
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〈ξ2(η)〉 =
∫ ∞

−∞

∫ ∞

−∞
ξ2F(ξ, θ, η)dξdθ = A2(η). (28)

The additional proton drift from the object edge (hull) to the tracker can be calculated using a quadratic law 
under the assumption that the scattering power of air is negligible (Gottschalk 2012)

A2(D(ξ) + d(ξ)) = A0(D(ξ))d2(ξ) + 2A1(D(ξ))d(ξ) + A2(D(ξ)). (29)

See figure 3 for the definition of d(ξ) and D(ξ).
We can apply this theory to determine the rear tracker fluence by calculating the width of the proton beam for 

any ξ. Then we superimpose the distributions, weighted by their corresponding attenuation caused by nuclear 
reactions, as already described by Schulte et al (2005). The exponential attenuation of the initial fluence Φ0 is 
given by

Φ(WEPL) = Φ0 · e−Nσnuc·WEPL = Φ0 · e−κ·WEPL, (30)

where N is the target (nuclei) density, σnuc  is the nuclear cross section, and κ = Nσnuc  is the linear attenuation 
coefficient.

The attenuation coefficient can be determined by taking elastic (≈80 mb) and inelastic (≈270 mb) cross 
sections into account (values taken from Quiñones (2016)  →  figure 3.9 and  →  figure 3.12 for ‘G4_O’ above 
approximately 150 MeV; Schulte et al (2005) determined the attenuation coefficient, neglecting the elastic 
contrib ution, in a similar fashion) which results in an attenuation coefficient κ = 0.0131 cm−1. The normalized 
fluence at each detector pixel is the sum of all beams that scatter into a given pixel.

Standard deviation of the exit energy
The determination of the standard deviation of the exit energy σEout at each detector pixel is a somewhat more 
challenging task. Schulte et al (2005) suggested to calculate it from the exit energy Eout , or the WEPL value, 
in combination with an evaluation of Payne (1969) or Tschalär (1968a, 1968b) theories, which establish a 
connection between the exit energy or the WEPL to the energy straggling. However, if we want to perform 2D 
noise reconstruction, then Schulte’s approach is not valid away from the central pixel due to the interplay of 
MCS and the high gradient of the object’s hull along ξ. In the following, we will present an analytical approach, 
much like (Schulte et al 2005), which includes Tschalär’s/Payne’s theoretical energy straggling and also accounts 
for the effect of MCS. Given the proton transport and thus A2(ξ) for every exit detector pixel, that we used to 
determine the proton counts in section 2.3.1, we can answer the inverse question as well: Given some exit detector 
pixel j∆ξ, what is the distribution of initial proton positions (or initial position distribution, short IPD) on 
the front tracker, that scatter into j∆ξ. This process is demonstrated in figure 4. We take the distributions of 
the surrounding entrance pixels of j∆ξ  and calculate how much they contribute to the exit pixel sited at j∆ξ. 
Additionally, we weight the result with the attenuation.

We include the effect of the MCS through the IPD. Since protons from different initial positions (IP) scatter 
into the same pixel, they must traverse different path lengths, i.e. different parts of the objects. Therefore they lose 
different amounts of energy, which eventually broadens the energy spectrum. We used a straight line approx-
imation between the entry point and the detector pixel coordinate, which may seem a poor approximation for a 
25 cm diameter object. However, notice that the broadest IPD of the detector pixel at the center covers approxi-
mately only two centimeters.

Our goal is to calculate the distribution of mean exit energies that are collected within each detector pixel. 
This can be done by mapping the IPD with some function F( j∆ξ, IP) to the corresponding distribution of 
energy losses. This function in turn can be calculated through sinogram interpolation, taken from a prior scan in 
combination with the straight line approximation. See the appendix A.3 for details.

Now we transform the IPDs into distributions of Eout . The transformation is given by

pµ( j∆ξ,µn) =
∑

x∈F−1( j∆ξ,µn)

fIP(x). (31)

In general, the IPDs are closely distributed around their corresponding exit detector pixel. Despite the fact 
that the IPDs are the broadest at the center, the transformed distributions of mean energy losses will more closely 
resemble a delta distribution. Put simply, no matter where the protons that scatter into the central pixel enter the 
object, on average they have lost approximately the same amount of energy. On the other hand, at the object edges 
the energy transformation varies more rapidly. Even though the IPDs become increasingly narrow at the edges, 
the corresponding Eout  distribution might be broader, if the traversed thickness decreases rapidly, which is the 
case with the 25 cm cylinder we used. In other words, only small changes of the IP cause large changes in the aver-
age energy loss. This is due to the more rapidly changing hull and therefore more rapidly changing path lengths.

Finally, at this stage we will apply the theoretical energy straggling (see figure 5), which is governed by the 
differ ential equation of Tschalär (1968a, 1968b), here expanded up to the first order
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Figure 3. Transport theory applied to pCT. For the red colored proton beam, we have to evaluate the scattering integrals of 
equation (25), while for the subsequent blue colored drift through air, the quadratic law of equation (29) is sufficient. Prior to 
entering the object, the width of proton beam is considered infinitely small, i.e. we consider a parallel beam. Note that the scattering 
is exaggerated.

Figure 4. Visualization of the calculation of the initial distribution from the given proton distributions at the rear tracker. The 
proton distributions at the detector were spread horizontally for visual clarity. This has no geometrical meaning. We calculate 
the initial distribution of the pixel j∆ξ  delimited by the solid lines. The probabilities for the surrounding positions to scatter into 
j∆ξ  is given by the areal overlap of their distributions within j∆ξ . The corresponding probabilities are then arranged in the initial 
distribution along the dotted lines.
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dσ2
E(x)

dx
= χ2(E(x))− 2

∂χ1(E(x))

∂E
σ2

E(x), (32)

where χ1 is given by the stopping power and χ2 is the straggling parameter

χ1(E) = K1
1

β2(E)

[
ln

(
2mc2β2(E)

I(1 − β2(E))

)
− β2(E)

]

χ2(E) = K2
1 − β2(E)/2

1 − β2(E)
.

 
(33)

For protons stopping in water, we have K1 ≈ 170 keV cm−1 and K2 ≈ 0.087 MeV2 cm−1. Equation (32) can 
be solved analytically, as outlined by Payne (1969)

σ2
E(E) = χ2

1(E)

∫ Ein

E

χ2(E′)

χ3
1(E

′)
dE′. (34)

The last step involves the calculation of the standard deviation of the energy σE from the distribution of mean 
energy losses Eout . Each detector pixel collects protons that traversed different material thicknesses with differ-
ent intensities (or normalized probabilities pµ). Thus the energy distributions at the detector pixels consist of a 
superposition of the individual energy spectra with their respective means µn and standard deviations σn. We can 
retrieve the detector distribution from the distribution of means by convolving the means distributions with the 
normal distribution from the energy straggling theory. Note that this is not shift-invariant convolution, as the 
Gaussian convolution kernel is energy dependent.

If µDet( j∆ξ) is the mean energy loss at each exit detector pixel ( j∆ξ), i.e. the projection value prior to the 
transformation into WEPL, then the variance of the energy is given by

σ2
E( j∆ξ) =

∑
n

pµ( j∆ξ,µn)
(
σ2

n + (µn − µDet( j∆ξ))2
)

. (35)

As the distribution is particularly narrow at the center of the water cylinder (all protons traversed a similar 
length, the diameter), the only contribution to the standard deviation comes from a single mean energy loss, 
which is equivalent to calculating the standard deviation solely from the straight line from the front to the rear 
tracker. In general, there are three opposing effects at each detector pixel, which influence each other. Firstly, the 
IPD, which is broad at the center and narrow at the edges. Secondly, the mean energy loss distribution, which is 
broad at the edges and narrow at the center. Finally, the convolution of pµ with Gaussians according to Tschalär’s 
theory, which has a big influence at the center (since it predicts broader Gaussian distributions at large energy 
losses) and a small effect at the edges, as the additional effect of energy straggling is small at small energy losses.

Figure 5. Energy straggling determined via solving the integral given in equation (34) for protons with an initial energy of 
Ein = 250 MeV .
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2.3.2. Noise of DDB projections
For the calculation of the noise of DDB projections at depth η we made use of the path of every proton for which 
entrance and exit coordinates were recorded by the MC simulation.

The paths were reconstructed by cubic splines with adjusted velocity boundary conditions, similar to Fekete 
et al (2015), using the position and momentum direction information from the tracker planes. Li et al (2006) 
showed that the use of regular cubic splines has little effect on the spatial resolution in the pCT reconstruction, 
and the improved formulation by Fekete et al (2015) provides paths which are nearly congruent with the path 
determined by the original MLP formulation (Schulte et al 2008).

In section 2.3.1, we refer to issues with low count statistics when generating projections from the proton 
fluence used in our MC simulations. To circumvent this issue, a high-statistics MC dataset was generated by 
combining all simulated projections. This smoother dataset was used for the DDB 2D noise reconstruction by 
exploiting the rotational symmetry of our water cylinder, after scaling back the counts N to the original fluence.

Prior to binning the data into projections, protons were selected with a three standard deviations cut on the 
energy and angular distributions around their mean energy and angle per projection pixel. This was done based 
on front tracker binning, as in the implementation of Rit et al (2013).

Thus for a given η, the proton tracks crossing 1 mm bins were used to calculate σ2
pγn

 using equation (22) where 
σ2

Eout,γn
 was obtained from Gaussian fitting of the Eout distribution of the binned protons. Nγn was simply the 

number of proton paths crossing the bin and S2
W was evaluated at Eout .

2.4. RSP image reconstruction and noise quantification
RSP images were reconstructed for this study with an implementation of DDB FBP, using the formalism of 
section 2.2.1. The main principles of the algorithm are presented in Rit et al (2013). The path of every proton was 
obtained from the splines described in the previous section 2.3.2. The data cuts of section 2.3.2 were used.

The validation of the 2D noise reconstructions was performed against the noise calculated from RSP images 
reconstructed from the MC simulation data. Utilizing the radial symmetry of the water cylindrical phantom, 
annular regions of interest (ROIs) with varying radii were defined. The number of pixels in each ROI was fixed 
to 1000 to ensure statistical accuracy, with the radial thickness varying accordingly. The noise from the MC RSP 
image at a given radius was defined as the standard deviation of the distribution of RSP values within a ROI. 
The standard deviation was calculated from a Gaussian fit in each RSP distribution. For the central pixel and 
improved models, the noise determination as a function of the distance from the center of the object was calcu-
lated by means of a line profile across a diameter on the 2D noise reconstruction. The pixel grid used for all image 
reconstructions shown was 280 mm × 280 mm with 1 mm × 1 mm  pixels.

Ideal WEPL projections for parallel rays, calculated analytically for the water cylinder, were discretized on the 
same grid as the rear-tracker or DDB binned projections. These were used to reconstruct RSP images as described 
above. We used these images to evaluate the impact of partial volume effects (for example at the object’s edge) 
and reconstruction from discretized projections on the standard deviation calculated with the annular ROIs. 
This was done by calculating the standard deviation analytically instead of using Gaussian fits.

3. Results

Equation (22) gives σ2
WEPL of a projection as a function of SW, σEout and N within the pixels. In figure 6, each of 

the aforementioned components is shown along the lateral coordinate, for the MC data, the central pixel model 
and the improved model taking into account the effect of MCS. The three curves for SW and N were nearly 
indistinguishable, while for σEout and σ2

WEPL good agreement between the MC data and the improved rear tracker 
model accounting for MCS was observed. The largest σWEPL error between the MC data and the improved model 
was about 8% at ξ = 100 mm. The central pixel model, which ignores MCS, failed to correctly predict σEout and 
σ2

WEPL away from the object’s center.
Figure 7 shows the effect of the binning location on σWEPL. The distance is measured from the front tracker 

(η = 0). Binning at the rear tracker (η = 260 mm) results in high noise at the edges of the object (equivalent to 
the MC data σWEPL of figure 6). We observed that the increase of σWEPL with ξ approaching the object’s edge was 
most pronounced at the rear tracker, and that this effect gradually disappeared as η approached 0 near the front 
tracker.

Figure 8 presents a 2D noise reconstruction obtained using either noise projections obtained by binning 
the protons at the rear tracker (equation (15)) or with DDB (equation (21)). The effect on the noise image of 
the ‘interference’ between the 2D image pixel grid and the 1D projection grid, as well as that of using a constant 
term for the linear interpolation as explained in section 2.2.3, are shown. Generally, with rear tracker binning, the 
noise increased towards the object’s edge, while for DDB it appeared constant with a slight decrease at the edge. 
High noise was observed at the object’s boundary.
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Finally, in figure 9, profiles through the 2D noise reconstructions based on the central pixel model, the 
improved model for rear tracker binning and DDB (in this case direct use of MC data, see section 2.3.2) are 
compared to that obtained from the MC reconstructed RSP image (using annular ROIs), as a function of the 
radius from the center of the object. For indicative purposes, the standard deviation for the RSP image from 
discretized ideal projections is also shown. We observed that the improved model and MC data-based DDB accu-
rately reproduced the behavior of the noise observed in the reconstructed RSP images. When using rear tracker 
binning, an increase of 60% in image noise was observed at the edge of the 12.5 cm radius object when compared 
to its center. This effect was poorly captured by the central pixel model, which underestimated noise by up to 40% 
in this case. Interestingly, DDB negated the radial noise increase observed with rear tracker binning, producing 
generally lower noise values which decreased less than 5% with radius. The ideal projections yielded large stand-
ard deviations at the object’s edge which corresponded to the spikes observed in the noise from the annular ROIs.
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Figure 6. Results from rear tracker binning (η = 260 mm) for a single projection as profiles along the lateral coordinate ξ for 
the components of equation (22) for the central pixel model, the improved model and MC data. The stopping power evaluated 
at the mean exit energy (upper left) is shown only for the MC data, as the three curves overlapped. Data from high statistics MC 
simulations were used.

Figure 7. Noise projection profiles along the lateral coordinate ξ, shown as a function of the longitudinal coordinate of the binning 
position η. η = 0 corresponds to a binning at the front tracker, while η = 260 mm at the rear tracker. Data from high statistics MC 
simulations were used.
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4. Discussion

In this study, we presented a formalism for 2D noise reconstruction in pCT based on a beam of incident protons 
traveling in parallel. 2D noise reconstructions of a cylindrical water phantom were obtained from variance 
projections (equation (22)) using an FBP algorithm, either for rear tracker binning or DDB.

For projection noise, results from MC simulation data, a central pixel model and an improved model were 
shown for rear tracker binning (see figure 6). Good agreement was obtained for rear tracker binning when using 
the improved model and the MC data. We made use of the improved analytical model, in addition to MC simu-
lations, to better isolate the contributions to projection noise and help explain the shortcomings of the central 
pixel model, which were not readily deduced from MC data. As a side note, the central pixel and improved models 
yielded smoother variance projections and noise images as they do not suffer from statistical fluctuations as MC 
does, while being less demanding on computing resources. This may increase convergence speeds when optimiz-
ing fluence patterns for FMpCT.

An important finding of this work is the influence of MCS on the calculation of the variance projections. As 
shown in figure 6, the result of the calculation of the variance projection using the central pixel model, which 
neglects the effect of MCS, deviates considerably from the results obtained with MC. The deviation mainly stems 
from the estimation of the variance of the energy in a pixel. Even for a mono-energetic proton beam, there are 
two main contributions to the variance of the energy. The first is the proton energy straggling. It is the domi-
nant contribution at the center of the object and as it is accounted for in the central pixel model, both analytical 
 models (central pixel and improved) and MC yield very similar results for the variance projections in this region 

Figure 8. Noise images reconstructed without DDB ((a) and (b)) and with DDB ((c) and (d)). The left column ((a) and (c)) shows 
the effect of ‘interference’ between the 2D image pixel grid and the 1D projection grid. The right column ((b) and (d)) shows the 
smoothed versions reconstructed by using a constant term for the linear interpolation. The results from rear tracker binning were 
obtained from the improved model while for the DDB directly from high statistics MC data. Notice the different scales.
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of the phantom. The second contribution to the variance of the energy comes from MCS. Protons can scatter in a 
pixel having traversed very different paths. This leads to an increase of the variance of the energy beyond the level 
expected from energy straggling of protons which follow very similar paths and cannot be described by the cen-
tral pixel model. The improved model takes this effect into account and therefore reaches very good agreement 
with the MC. Nevertheless, the results shown in this study refer to a homogeneous cylindrical phantom. (Homo-
geneous water is yet a typical assumption for the MLP, especially if no prior image is available.) The impact of 
heterogeneities as well as more complex phantom surfaces will have to be incorporated to the improved model.

As shown in figure 7, the shape of the noise projection profiles along the lateral coordinate ξ changes when 
binning protons at different depths along the longitudinal coordinate η. The noise projection is described by 
higher noise at the edges of the object. For rear tracker binning (η = 260 mm), this effect is very pronounced 
due to the importance of drift along the increasing air gap between the object and the rear tracker which causes 
protons with widely different paths to reach the same projection pixel. DDB mitigates this for projections with 
η in the object by using the MLP. This can also be appreciated in figure 9 where we observed that the image noise 
from DDB is about 80% lower at 100 mm radius than for rear tracker binning, and more interestingly, relatively 
flat versus the object’s radius.

Good agreement between the results from our noise reconstruction formalism and noise analysis using 
annular ROIs on the reconstructed image was observed. Slight deviations at the object’s edge could be attributed 
to effects present in the reconstruction of discretized ideal projections (see figure 9). In order to reduce the com-
putational time needed, we exploited the radial symmetry of the phantom and the resulting radial symmetry of 
the reconstructed noise map and therefore used annular ROIs for the quantification of the noise from the MC. 
This assumes that there is no correlation between the different pixels, which is not entirely true (Wunderlich and 

Figure 9. Noise profile comparison, as a function of the radius, between MC, the central pixel model, the improved model and exact 
mathematical projections, for rear tracker binning (upper) and distance driven binning (lower) reconstructions. The noise from 
the MC and from the exact mathematical projections RSP image is obtained from the annular ROIs. The noise of the central pixel 
model and improved model are obtained from a line profile along the diameter of the reconstructed noise map (with the simplified 
interpolation effect, i.e. figures 8(b) and (d)).
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Noo 2008). A noise quantification from MC that would bypass this assumption would be done pixel-wise on a 
large set of different RSP images. In that case, the noise in every pixel would be the standard deviation of the RSP 
values of that pixel from all RSP image realizations.

Note that any analytical noise reconstruction depends on the choice of the convolution kernel. It has a sig-
nificant impact on the noise, via the corresponding frequency windowing. Alternatives include the Shepp–Logan 
or the Hanning convolution kernels, which show greater noise suppression and reduction of ringing artifact 
(Buzug 2008a). In the present work, we chose the Ram-Lak kernel, given in equation (3) or shown in figure A1. Its 
alternating side-lobes cancel one another in the expression of the convolution kernel, which results in minimal 
correlation (only nearest neighbors contribute to the covariance) as discussed in appendix A.1. The general pCT 
noise reconstruction with an arbitrary filter is given by equation (21), where different expressions for g ( j∆ξ) 
can be implemented in equations (16) and (17).

How different convolution kernels affect the noise in the reconstructed image has been investigated before by, for 
example, Zhang and Ning (2008) for x-ray cone-beam CT. Here it is shown that different filters cause an approximate 
(multiplicative) global shift on the overall noise distribution. Similar behavior can be expected for the pCT noise 
reconstruction.

In addition to the intrinsic physical effects mentioned above, real detector performance will also affect the 
noise in a pCT image. In reality, the energy of every proton can be measured with finite accuracy. This will be 
manifested as increased variance of the energy. Bashkirov et al (2016) reported that for their pCT setup, the 
energy detector uncertainty was 3 mm water equivalent path length for any given object’s water equivalent thick-
ness. Similarly, the tracking system position resolution will impact the estimation of the proton trajectory, which 
in turn will magnify the MSC effect on the final noise image. Finally, other detector limitations such as pile-up 
and non-uniform detector performance could alter the noise image with respect to what is reconstructed assum-
ing that every proton that exits the object can be detected with the same accuracy. Further work will aim at care-
fully investigating the impact of detector uncertainties by making use of the validated simulation platform of 
Giacometti et al (2017) as well as experimentally acquired pencil beam scanning data from Dedes et al (2018).

The formalism for 2D noise reconstruction we presented was developed for FMpCT; figure 10 illustrates how 

a clinical implementation would rely on prior imaging data to generate a patient model used for calculating σ2
pγn

 
as input to noise reconstruction. σ2

pγn
 would be calculated on the basis of an extension of the improved model we 

presented, or using MC simulation to fully account for heterogeneities in the patient. By comparing the noise 

Figure 10. Flowchart illustrating how a fluence pattern would be optimized on the basis of the noise reconstruction formalism 
presented in this work.
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reconstruction for a given fluence to a prescribed Var
[

f (xp, yp)
]
, the fluence may be optimized in an iterative 

procedure, as in Bartolac et al (2011). The patient model may be generated on the basis of an existing diagnostic 
CT scan, a previous full fluence pCT scan or even a pseudo-CT generated from a magnetic resonance imaging 
scan (Rank et al 2013, Koivula et al 2016, Maspero et al 2017). In addition to incorporating a realistic detector 
model, future work will also establish the FMpCT fluence optimization strategy, the development of the corre-
sponding PBS modulation as well as the validation of noise reconstruction using experimental data.

5. Conclusion

In this paper, we developed a 2D image noise reconstruction formalism to account for both rear tracker binning 
and DDB in pCT in homogeneous media, assuming parallel proton beams for eventual use in FMpCT fluence 
optimization. We obtained good agreement between our formalism and with noise estimated from reconstructed 
images using annular ROIs. The use of DDB slightly decreased the image noise when compared to rear tracker 
binning and yielded more uniform noise throughout the image. MCS should not be neglected when predicting 
image noise for pixels away from the center of an object in a pCT scan.

Acknowledgments

This work was supported by the German Research Foundation (DFG) project #388731804 ‘Fluence modulated 
proton computed tomography: a new approach for low-dose image guidance in particle therapy’ and the DFG’s 
Cluster of Excellence Munich-Centre for Advanced Photonics (MAP), by the Bavaria-California Technology 
Center (BaCaTeC) and by the Bavaria-France Cooperation Centre (BFHZ). David Hansen and Chiara Gianoli 
are acknowledged for fruitful discussions. We thank Jannis Dickmann for help at the proofreading stage as well as 
Marco Riboldi for his support of this work.

Appendix

A.1. Approximate variance reconstruction
In this section, we describe how equation (15) can be approximated through equation (20). Consider the 
two convolution kernels g2( j∆ξ) (equation (3)) and gC( j∆ξ) (equation (18)) (shown in figure A1) of the 
convolutions necessary for the reconstruction of the variance in Vγn (equation (16)) and Cγn  (equation (19)) 
respectively. With the Ram-Lak filter, gC( j∆ξ) takes an especially simple form. Due to the alternating structure 
of g( j∆ξ), a shift by 1∆ξ cancels all side lobes. Only adjacent pixels mutually influence each other (different 
apodization windows may have more complex convolution kernels).

In figure A1, one can see that g2( j∆ξ) and gC( j∆ξ) have both very limited reach. As a consequence, each  
filtered projection value is approximately only a weighted sum of its nearest neighbors (for the Ram-Lak covari-
ance kernel, it is exactly only one nearest neighbor). Under the assumption that the projections are locally 
approximately constant, we are able to approximate all projection values (noise values) with the one at the center 
of the convolution kernel

Vγn( j∆ξ) ≈ σ2
γn
( j∆ξ)

D/2−1∑
m=−D/2

g2(m∆ξ) (A.1)

Cγn( j∆ξ, ( j + 1)∆ξ) ≈ σ2
γn
( j∆ξ)

D/2−1∑
m=−D/2

gC(m∆ξ). (A.2)

As the sum of equation (A.1) converges quickly, we can extend it to infinity. Thus, with the expression of the 
Ram-Lak filter (equation (3)), one is able to evaluate the sum analytically by applying Parseval’s identity to the 
corresponding Fourier expansion components (as explained in any book on Fourier calculus)

D/2−1∑
m=−D/2

g2(m∆ξ) ≈
∞∑

m=−∞
g2(m∆ξ)

equation (3)
=

1

(2∆ξ)4
+

2

(π∆ξ)4
·

∞∑
m=1

1

(2m − 1)4

︸ ︷︷ ︸
π4/96

=
1

12(∆ξ)4
.

 (A.3)

With the Ram-Lak filter, the sum in equation (A.2) has only two (equal) terms (see figure A1)
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D/2−1∑
m=−D/2

gC(m∆ξ)
equations (18) and (3)

= − 1

2π2(∆ξ)4
. (A.4)

Finally, we can factorize equation (15):

Var
[

f (xp, yp)
]
=

(
π

Np
∆ξ

)2 Np∑
n=1

σ2
γn
( j∆ξ)

12(∆ξ)4

{
(1 − u)2 + 2(1 − u)u

−12

2π2
+ u2

}
. (A.5)

The factorized term is the approximation of the convolution, given by equation (A.1), while the term in curly 
brackets comprises the interpolation effect on the noise. The reconstruction in terms of the interpolation effect 
is then given through

Var
[

f (xp, yp)
]
=

(
π

Np
∆ξ

)2 Np∑
n=1

Vγn( j∆ξ) finterp(u), (A.6)

where

finterp(u) = (1 − u)2 + 2(1 − u)u
−12

2π2
+ u2. (A.7)

Since there is no preferred query point for the interpolation, we assume u to be uniformly distributed in [0, 1], 
therefore finterp can be approximated by its mean

finterp,µ =

∫ 1

0
finterp(u)du =

2

3
− 2

π2
. (A.8)

Replacing finterp(u) by finterp,µ in equation (A.6) yields the expression given in equation (20).
In reality, the distribution of u-values is not perfectly uniform. Figure A2 shows the mean of equation (A.7) 

for a finite set of projections. The resulting structures in figure A2 are caused by the ’interference’ between the 2D 
image pixel grid and the 1D projections grid. It is an inherent property of accurate noise reconstruction, which 
eventually superimposes with the noise projections.

A.2. 2D noise reconstruction including DDB
Here we will present a more thorough discussion of the 2D interpolation involved in the DDB variance 
reconstruction, as mentioned in section 2.2.4. We will discuss the effect of this 2D interpolation on the pCT noise 
based on bilinear interpolation (see figure A3). With the bilinear interpolation, the reconstruction becomes

Figure A1. Variance and covariance filters (black lines) for unit detector spacing ∆ξ = 1.
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f (xp, yp) =
π

Np
∆ξ

Np∑
n=1

D/2−1∑
m=−D/2

pγn(m∆ξ, k∆η)g(( j − m)∆ξ) [1 − u] [1 − v]

+ pγn(m∆ξ, k∆η)g(( j + 1 − m)∆ξ)u [1 − v]

+ pγn(m∆ξ, (k + 1)∆η)g(( j − m)∆ξ) [1 − u] v

+ pγn(m∆ξ, (k + 1)∆η)g(( j + 1 − m)∆ξ)uv,

 

(A.9)

where

v = v(ηn) =
ηn − k∆η

∆η
, (A.10)

and ηn = ηn(xp, yp) = −xp sin (γn) + yp cos (γn). Just as in equation (15), the dependencies j = j (ξn) and 
k = k (ηn) are implicit.

Just as we had before, projection values from different angles γn as well as along the ξ-coordinate m∆ξ are 
independent. However, this holds only true for m∆ξ-values binned at the same depth η. Since, due to the bilinear 
interpolation, we sum up projection values from different depths, we have to take their covariance into account.

Cov
[

pγn(m∆ξ, k∆η), pγn′ (m
′∆ξ, k′∆η)

]
= δn,n′δm,m′Cov [ pγn(m∆ξ, k∆η), pγn(m∆ξ, k′∆η)]

≡ δn,n′δm,m′Cγn(m∆ξ, k∆η, k′∆η).
 

(A.11)

Without further specifying this covariance term and following the procedure from above (equations (11), (14) 
and (15)), the variance of equation (A.9) becomes

Figure A2. Exact noise reduction per pixel for an image, reconstructed with linear interpolation and the Ram-Lak filter. The image 
measures 280 mm × 280 mm with 1 mm × 1 mm  voxel size. The structures are a consequence of the interference with the 1 mm 
spaced projections. Notice that the center is particularly high, as its pixel center is for most angles close to a sampled projection value 
and thus profits from the interpolation less. Pixels with higher values happen to fall on the discrete projection values more often than 
in between. Deviations from the approximation are, however, in general quite small.
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Figure A3. Interpolation for a 2D image reconstruction (a) without and (b) with DDB. (a) For binning at the rear tracker, the value 
at the pixel center (black dot) requires a 1D interpolation (at the dashed line) of the convolved projection values (red and blue dot), 
which are a weighted linear combination of all projection values and thus mutually dependent due to the prior convolution with the 
convolution kernels (red and blue zigzag lines), as shown in figure A1. (b) In the DDB case, a 2D interpolation is necessary, where 
projections, binned at different depths (i.e. k∆η and (k + 1)∆η), are involved. The four hatched pixels contribute to the value at 
the pixel center (black dot). The convolution is still only along ξ. The detector spacing ∆ξ and the depth spacing ∆η  are only drawn 
different for visual clarity.

Figure A4. Mapping of the Radon space in units of the exit energy (a) to F( j∆ξ, IP) (b). The data on the white lines in (b) was 
interpolated from the data shown in (a) along the corresponding curved lines, where the dashed lines in both figures belong together 
and are supposed to give orientation.
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Var
[

f
(
xp, yp

)]
=

(
π

Np
∆ξ

)2 Np∑
n=1

{
[1 − u]2 [1 − v]2 Vγn( j∆ξ, k∆η) + u2 [1 − v]2 Vγn(( j + 1)∆ξ, k∆η)

+ [1 − u]2 v2Vγn( j∆ξ, (k + 1)∆η) + u2v2Vγn(( j + 1)∆ξ, (k + 1)∆η)

+ 2 · [1 − u] u [1 − v]2 Cγn( j∆ξ, ( j + 1)∆ξ, k∆η, k∆η)

+ 2 · [1 − u]2 [1 − v] vCγn( j∆ξ, j∆ξ, k∆η, (k + 1)∆η)

+ 2 · [1 − u] u [1 − v] vCγn( j∆ξ, ( j + 1)∆ξ, k∆η, (k + 1)∆η)

+ 2 · [1 − u] u [1 − v] vCγn(( j + 1)∆ξ, j∆ξ, k∆η, (k + 1)∆η)

+ 2 · u2 [1 − v] vCγn(( j + 1)∆ξ, ( j + 1)∆ξ, k∆η, (k + 1)∆η)

+ 2 · [1 − u] uv2Cγn( j∆ξ, ( j + 1)∆ξ, (k + 1)∆η, (k + 1)∆η)
}

,

 

(A.12)

where the equivalent expressions of Vγn and Cγn  in two dimensions are

Vγn( j∆ξ, k∆η) =

D/2−1∑
m=−D/2

g2(( j − m)∆ξ)σ2
γn
(m∆ξ, k∆η), (A.13)

Cγn( j∆ξ, j′∆ξ, k∆η, k′∆η)

=

D/2−1∑
m=−D/2

g(( j − m)∆ξ)g(( j′ − m)∆ξ)Cγn(m∆ξ, k∆η, k′∆η).
 

(A.14)

The covariance values between two data points from the same depth (k = k′) becomes again 

Cγn(m∆ξ, k∆η, k∆η) = σ2
γn
(m∆ξ, k∆η), just like in equation (12). The remaining covariances are between 

projection values from adjacent depths, which we have not yet discussed. Note that projection values 
pγn(m∆ξ, k∆η) and pγn(m∆ξ, (k + 1)∆η) are calculated from almost the same data set of protons, given that 
the pixel spacing in the η-direction (∆η) is sufficiently small. This is due to that fact that within [k∆η, (k + 1)∆η] 
only very few protons outside of m∆ξ will scatter laterally into m∆ξ and at the same time only very few protons 
within m∆ξ will scatter to neighboring pixels. Thus projection values from any two neighboring depths are 
hardly different (below approximately 0.2 mm WEPL for the reconstruction of our simulation (see section 2.1), 
using ∆η = 1 mm) and can therefore be considered equal. We can thus assume that depth adjacent projection 
values are perfectly correlated while the two diagonal pixels in the bilinear interpolation have no correlation

Cγn(m∆ξ, k∆η, k′∆η) = δk,k′σ
2
γn
(m∆ξ, k∆η). (A.15)

As there is now no difference between the projection values at k∆η and (k + 1)∆η, we can now make the 
replacement

Cγn( j∆ξ, j′∆ξ, k∆η, k′∆η) → Cγn( j∆ξ, j′∆ξ, k∆η). (A.16)

The noise reconstruction including DDB is then given by the expression of equation (21). It is similar to the 
noise reconstruction of the rear tracker binning (equation (15)), as we neglected the covariance along η. The 
v-dependence in equation (A.12) cancels under the approximation of equation (A.16). The index k = k(ηn) is 
still query point dependent, but as the projection values of two neighboring depths are considered to be equal, 
nearest neighbor or linear interpolation along η is sufficient for the noise map reconstruction.

A.3. Sinogram interpolation
We can estimate the function F(ξ, IP) that maps the IPs to the corresponding energy loss along the straight 
line from the IP-hull intersection to some exit detector pixel j∆ξ  by interpolating across the Radon space, as 
the various straight proton paths, that contribute to one pixel, are line integrals from neighboring projections 
coming from different angles γn. The set of angles results from the IP-hull intersection coordinate (i.e. projecting 
the IPs onto the hull) and the exit detector pixel coordinate. Therefore every IP determines an angle γIP( j∆ξ), 
which is different for every j∆ξ. The set of the corresponding ξ values in the Radon space is determined by

ξ( j∆ξ, IP) = xbin cos (γIP( j∆ξ)) + ybin sin(γIP( j∆ξ)), (A.17)

where (xbin, ybin) is the coordinate of the exit detector bin j∆ξ  on the rear tracker in the image space (x, y). The 
determination of F( j∆ξ, IP) is demonstrated in figure A4. This process is similar to transforming parallel beam 
projections to fan beam projections, where (xbin, ybin) can be considered the source point. The set of angles is 
quite irregular though, depending on the object hull.
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