
Fast distance-driven projection and truncation
management for iterative cone-beam CT

reconstruction
Simon Rit and Marcel van Herk and Jan-Jakob Sonke

Abstract—The purpose of this study was to improve the speed
of the Simultaneous Algebraic Reconstruction Technique (SART)
for truncated cone-beam (CB) projections using a distance-driven
forward projector. First, we optimized the innermost loop of
the projector for a cone-beam scanner with a circular source
trajectory and a flat-panel imager. We showed that the innermost
loop of the distance-driven projection reduces to the mapping
of two segments of samples with constant spacings. Second, we
implemented the projector to handle a multi-resolution grid in
the planes orthogonal to the rotation axis in order to reduce
the overhead required to manage the truncation of the cone-
beam projections. The distance-driven projector was 1.4 times
faster than an optimized ray-driven projection with Joseph
interpolation. Moreover, the multi-resolution reduced 4 times
the overhead required to handle an half-truncated Shepp-Logan
phantom.

Index Terms—Optimization, distance-driven projection, cone-
beam reconstruction, truncation.

I. INTRODUCTION

In the past few years, the use of cone-beam (CB) computed
tomography (CT) has rapidly grown for different clinical
applications, e.g. the acquisition of CT images in the treat-
ment room for patient positioning [1]. In-room acquisition
requires efficient CB reconstruction to provide a CT image
to the operator within a few seconds after the end of the
acquisition. This requirement has logically led to the use
of analytical methods, more specifically to the Feldkamp
algorithm [2] for circular source trajectories, and hindered the
use of iterative techniques. However, iterative techniques have
different properties that can turn to their advantage in some
situations. Therefore, faster iterative reconstruction techniques
could increase their clinical relevance. This contribution is a
step in this direction and focuses more specifically on algebraic
reconstruction.

The algebraic reconstruction technique (ART) has been one
of the first CT reconstruction techniques proposed [3]. Starting
from an initial guess of the CT image (generally 0 for all
samples), the algorithm iterates over each pixel of the CB
projections and updates the reconstructed image in three steps:
(1) project the current image along the ray corresponding to
the sample, (2) compute the difference between the estimated
and the acquired projection and (3) backproject the estimated
difference in the image. In [4], Andersen and Kak proposed an

S. Rit, M. van Herk and J.-J. Sonke are with the Department of Ra-
diation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwen-
hoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
j.sonke@nki.nl

improvement of ART, the Simultaneous ART (SART), which
is a block version of ART: an update process simultaneously
all rays of a given CB projection. Its implementation simplicity
and its computational efficiency have brought SART to be one
of the main iterative reconstruction techniques used nowadays.

However, SART remains computationally expensive com-
pared to Feldkamp algorithm. The main reason is its higher
algorithmic complexity due to the additional forward projec-
tion (step 1) and the need to go over each CB projection a
few times. These issues were not investigated in this study
because they can not be addressed without changing the core
of ART. This study identifies and addresses two other reasons:
the computational cost of the forward projection (step 1)
compared to the backprojection (step 3) and the management
of truncation.

II. FAST DISTANCE-DRIVEN PROJECTION

Forward projection of a CT volume produces a Digitally
Reconstructed Radiograph (DRR). Different methods have
been proposed for DRR generation which can be classified
in two main approaches: voxel-driven and ray-driven [5]. The
latter has often been preferred because it produces aliasing-
free DRRs but its computational cost is quite high compared to
backprojection which can now be implemented hyperfast [6].

Hyperfast backprojection takes advantage of the alignment
of one axis of the CT volume with one axis of the projection
image in a circular geometry (Fig. 1). This alignment implies
that all voxels belonging to a segment of the CT volume
parallel to this axis projects on a segment of the DRR parallel
to the same axis. One can take advantage of this property to
optimize both the computation and the memory alignment of
the innermost loop of the backprojection [6].
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Fig. 1. Geometry of the scanner: we assumed a circular source trajectory in
a plane orthogonal to x. The axis x is shared by the volume and the detector
which allows an efficient innermost loop for distance-driven projection.



Using the same property in a forward projection algorithm is
not straightforward. Ray-driven methods are designed to run
along the ray corresponding to each DRR pixel which will
generally not align with any axis of the CT volume due to the
beam divergence. A voxel-driven strategy can be used instead
but it is subject to aliasing in simple implementations, e.g.
splatting each CT voxel on the DRR using a constant kernel
size. De Man and Basu have proposed an alternative solution,
the distance-driven projection [5], which bijectively maps each
slice of the CT volume to the DRR. The bijection produces
aliasing-free forward and back-projection but also allows the
choice of the axis for the innermost loop. We used this property
to implement efficiently a distance-driven forward projection.

We assumed a circular trajectory of the source orthogonal to
the CT volume and selected the x axis for the innermost loop
for the above-mentioned reasons (Fig. 1). The optimization of
the innermost loop comes then to an efficient mapping of a
scaled segment of the CT volume with constant voxel width
vw to a segment of the DRR, also with a constant pixel width
pw (Fig. 2).

We distinguished two cases: shrinking (vw<pw) and stretch-
ing (vw>=pw) the segment of CT voxels. Both cases address
the splitting of a CT voxel in two DRR pixels in the same
way: (1) a fraction of the current voxel value corresponding
to the distance dx between the inferior corner of the current
CT voxel and the superior corner of the current DRR pixel
is accumulated in the current DRR pixel, (2) the rest vw-dx
is accumulated in the next DRR pixel, and (3) the distance
dx for the next voxel is computed by taking the complement
pw-(vw-dx). Moreover, case 1 addresses the specific case
of voxels that do not split but entirely map to one pixel, i.e.
dx>vw, and case 2 addresses the specific case of voxels that
split in more than 2 pixels, i.e. vw-dx>pw. Listing 1 details
our optimized implementation of this innermost loop. The rest
of the projection algorithm will be described in the following
because it also incorporates efficient truncation management.
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Fig. 2. Graphical illustration of cases and variables for Listing 1. Case 1
and 2 are respectively a shrinking and a stretching of a segment of the CT
volume to a segment of the DRR.

III. EFFICIENT TRUNCATION MANAGEMENT

Truncation of the CB projections is a common problem with
in-room CBCT due to the limited size of the flat panels. In
theory, Feldkamp can not reconstruct the image of an object
when its CB projections are laterally truncated but, in practice,
feathering strategies correct most of the artifacts [7], and their
cost is limited because they only act on the 2D CB projections.

Listing 1. Bijective mapping of n voxels of a segment of the CT volume
with constant vw width to pixels of the DRR with constant pw.

void MapSeg(float *CT, // Pointer to first CT voxel
float *DRR, // Pointer to first DRR pixel
int n, // Number of voxels
float dx, // Distance between:

// - current voxel inferior corner
// - current pixel superior corner

float vw, // Projected voxel width
float pw, // Pixel width
float f) // Voxel correction factor

{
int i; // Voxel index
float vv; // Voxel value weighted with f

if (vw<pw) /*** Case 1: 0 or 1 split ***/
{ for(i=0; i<n; i++) // Loop over the voxels
{ vv = (*CT)*f; // Get and weight voxel value
if (dx>vw)
{ // Voxel projects in 1 pixel only

*DRR += vv*vw; // Accumulate full voxel
dx -= vw; // Update distance for next voxel

}
else
{ // Voxel splits in two pixels

*DRR += vv*dx; // Accumulate first part of voxel
dx = vw-dx; // Compute rest of voxel width
++DRR; // Go to next pixel

*DRR += vv*dx; // Accumulate second part of voxel
dx = pw-dx; // Update distance for next voxel

}
++CT; // Go to next voxel

}
}
else /*** Case 2: 1 or more splits ***/
{ for(i=0; i<n; i++) // Loop over the voxels
{ vv = (*CT)*f; // Get and weight voxel value

*DRR += vv*dx; // Accumulate first part of voxel
dx = vw - dx; // Compute rest of voxel width
++DRR; // Go to next pixel
while(dx>=pw)
{ // Rest covers an entire pixel

*DRR += vv*pw; // Accumulate a pixel of voxel
dx -= pw; // Compute rest of voxel width
++DRR; // Go to next pixel

}

*DRR += vv*dx; // Accumulate last part of voxel
dx = pw-dx; // Update distance for next voxel
++CT; // Go to next voxel

}
}

}

On the contrary, iterative reconstruction is theoretically less
limited by truncation [8] but it requires a larger field-of-view
(FOV) during reconstruction (Reconstruction FOV) than the
usable FOV after reconstruction (CT FOV).

The Reconstruction FOV is the part of space which is hit at
least once by the X-ray beam while the CT FOV is the part of
space which is hit by the X-ray beam for every source position
(Fig. 3). Both FOVs are circles in the planes parallel to the
source trajectory but the radius of the Reconstruction FOV is
fixed by the isocenter-detector distance and can be much larger
than the CT FOV which is fixed by the detector size at the
isocenter. Of course, the Reconstruction FOV can be reduced
with a priori information on the maximum patient dimensions
but it will generally remain significantly larger than the CT
FOV.

For iterative reconstruction, the CT grid must encompass the
reconstruction FOV during reconstruction which can lead to a
huge number of voxels when using a fine resolution. However,
the more the voxels are away from the CT FOV, the less they
are used during reconstruction. Therefore, we used a multi-



resolution grid with a progressively lower resolution for voxels
outside the CT FOV. An example of such a grid is provided
in Fig. 3b.

Most previous contributions dealing with fast forward and
back-projection assumed that the CT volume is represented
on a regular grid, i.e. that the CT voxels are regularly spaced
along x, y and z (Fig. 1). Of course, using a regular spacing
simplifies the computation per voxel so we kept a regular
spacing along x (Fig. 3a) to preserve our simple innermost
loop (Listing 1). Nevertheless, we adapted the projection to
handle a set of segments arbitrarily spaced along y and z, e.g.
a rectilinear grid (Fig. 3b). This set is represented by a cloud
of points containing the 3 spatial coordinates of the inferior
and superior corners Ci and Cs of each CT segment parallel
to x (Fig. 3a) as well as the position of the corresponding
voxel index in the CT volume.
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Fig. 3. (a) Example of a segment of voxels along the x axis (Fig. 1):
the coordinates of its corners Ci and Cs are passed to the reconstruction
algorithm in order to know its dimensions and its location. (b) Rectilinear
grid used during reconstruction from truncated data to cover the CT FOV
with a fine resolution and the Reconstruction FOV with a gradually coarser
resolution.

The main loop of the projection goes over all segments
of this cloud. For each segment, its corners Ci and Cs are
projected on the DRR. Similarly to [5], the segment projects
to a rectangle which sides are parallel to x and v. Depending
on its dimensions, the rectangle is then mapped to one or more
segments of DRR pixels using the function MapSeg which
parameter f is set to the fraction along v multiplied by the
length of the intersection between the ray and the segment.

IV. EXPERIMENTS

We analytically simulated 640 CB projections of the Shepp-
Logan phantom regularly spaced around a full revolution
using a 1 m source-isocenter distance to reproduce a typical
acquisition of an existing CBCT scanner [1]. The resolution
of the CB projections was 512× 512 pixels of 0.5× 0.5 mm2

at the isocenter.
The performance of our distance-driven projector was eval-

uated using a CT volume having 512 × 512 × 512 voxels of
0.5 × 0.5 × 0.5 mm3 which computation requires 80 Giga-
voxel Updates (GUP). DRRs were computed for every angle

corresponding to the 640 CB projections. The performance
was compared to local implementations of an optimized ray-
driven algorithm using Joseph interpolation [9] with adequate
orientation of the volume [10] and an optimized voxel-
driven backprojection [6]. Only single-threaded implementa-
tions were evaluated because the full (back-)projections were
sequentially computed in each direction which is known to be
mainly limited by communication bandwidth [6]. The test was
performed on an Intel Core Duo 2.1 GHz processor.

The truncation management was evaluated by generating
a new set of CB projections with the center of the Shepp-
Logan phantom shifted to the border of the CT FOV in the
y direction. First, reference images were reconstructed using
the same 512 × 512 × 512 grid. Second, the superior half of
the grid along y (part in the Reconstruction FOV but not in
the CT FOV) was replaced with a multi-resolution grid. The
voxel width along y was increased by a factor 2 every 16
voxels such that only 64 voxels covered the space normally
occupied by 256 voxels. All CT images were reconstructed
using 3 iterations of SART and a 0.2 convergence factor.

V. RESULTS

Table I summarizes the speed of the different operators
evaluated in this study. Backprojection is hyperfast because
its innermost loop requires very little operations per voxel
and uses an optimized memory layout [6]. In contrast, the ray-
driven implementation is 4.5 times slower because the memory
layout is less optimal and it requires more computation.
Finally, our distance-driven operator is only 3.3 times slower
than backprojection, i.e. 1.4 times faster than the ray-driven
implementation because it uses the same memory layout as
the backprojection and its innermost loop remains sufficiently
simple (Listing 1). The overhead required to manage a rec-
tilinear grid along y and z is limited as the innermost loop
along x still consumes more than 90% of the total time.

TABLE I
SPEED IN GUP/S OF THE 3 OPERATORS EVALUATED IN THIS WORK.

Voxel-driven backprojection 0.236
Ray-driven projection 0.052

Distance-driven projection 0.072

Fig. 4 shows slices of the reconstructed images. When there
is no truncation, the full Shepp-Logan phantom is adequately
reconstructed in the CT FOV. We observe noise introduced by
the edges of the phantom but it is a known artefact of both
ray-driven and distance-driven projectors [11]. When there is
truncation, the Shepp-Logan is adequately reconstructed in the
CT FOV although it is less accurate at the edge of the CT
FOV. Finally, the multi-resolution correction of the truncation
reconstructs a very similar CT image but with 512×320×512
voxels instead of 512 × 512 × 512. The small ellipsoids are
still well defined and only the edge noise is more pronounced.

VI. DISCUSSION AND CONCLUSION

In this paper, we presented an implementation of SART with
an optimized distance-driven operator and management of the
truncation of the CB projections.



Fig. 4. Slices of the reconstructed images. Top: axial slices. Bottom: sagittal slices. Left: reconstruction without truncation. Middle: reconstruction with
truncation. Right: reconstruction with truncation and a multi-resolution grid. The lines indicate the limit of the CT FOV. Greyscale window: [1.00, 1.03].

First, we showed that the innermost loop of the distance-
driven algorithm can be efficiently implemented if it runs
along the rotation axis x in contrast to what other papers have
reported, e.g. [12]. Indeed, all the voxels having the same y
and z coordinates project with a constant width along x on
the detector. Using this property, we developed an optimized
mapping of two parallel segments with constant spacings of
their samples (Fig. 2, Listing 1). Therefore, we obtain a
faster implementation than our optimized implementation of
a ray-driven projection with Joseph interpolation. Moreover,
in contrast to ray-driven projection [10], this implementation
does not require flipping the volume depending on the source
angle which is an advantage for SART. Note that faster forward
and back-projections can be obtained with multithreading as
well as with additional tricks to optimize the flow of data
through the memory cache [10].

Second, we used a multi-resolution grid in the y and z
directions to correct for the truncation of the CB projections.
We evaluated the algorithm on a half-truncated Shepp-Logan
phantom and observed similar convergence with 4 times less
voxels in the part added to the CT FOV to correct for the
truncation. However, the edge noise is enhanced because the
larger voxels of the Reconstruction FOV have an influence
on the CT FOV. Among other solutions, future works will
include adequate prefiltering of the CB projections [13] or
more constrained iterative reconstruction techniques, e.g. the
conjugate gradient method.

The object size was known in advance in this case and
the reconstruction grid tailored to fit the object but it is not
possible in practice. If truncation can be expected at every
side of the object, the multi-resolution grid schematically
represented in Fig. 3 reduces even more significantly the
overhead required for full coverage of the Reconstruction FOV.
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