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Abstract—We propose to account for curved most likely paths
of protons in proton CT using an approximate adaptation of
filtered backprojection algorithms. The protons are first binned
in several proton radiographies at different distances to the
source of protons. The adequate radiography is then used during
backprojection depending on the distance to the source. The
efficiency of the distance-driven binning on spatial resolution
is demonstrated on a Monte Carlo simulated phantom with a
circular trajectory and a cone-beam of protons.

I. INTRODUCTION

Proton computed tomography (pCT) has been considered
very early in the history of CT [1] with a continuous devel-
opment until the beginning of the eighties. This development
was then slowed down because the ratio between benefits and
cost was too low compared to photon CT scanners. In the
nineties, the development of proton therapy has triggered new
developments on pCT scanners [2].

There are indeed a few advantages of pCT over photon
CT that are foreseen. The main expectation is the reduction
of the uncertainty in the proton therapy planning due to the
lack of accuracy of the proton stopping power computed from
Hounsfield units [3]. Another potential benefit is the reduction
of the imaging dose thanks to the Bragg curve characterizing
the dose deposit of protons in matter [4], [5]. Finally, pCT is
an additional modality which could have its own advantages
for improving the diagnostic [6].

However, pCT has also one major drawback, its lack of
spatial resolution. Indeed, protons traversing matter undergo
multiple deflections due to Multiple Coulomb Scattering
(MCS), resulting in curved trajectories and blurred proton
radiographies [7]. Therefore, in the past decade, most efforts
have focused on improving the spatial resolution of pCT by
constructing most likely proton paths [5], [8], [9]. So far, these
estimates have either been used to reconstruct pCT images
using iterative algorithms [10], or to eliminate protons that
had not followed straight lines before applying filtered back-
projection (FBP) algorithms [4]. Indeed, to our knowledge,
it is always claimed in pCT that FBP can only be applied
to straight acquisition lines, probably because exact FBP has
only been proposed along straight acquisition lines [11].

In this article, we propose a new FBP algorithm for pCT
using curved most likely paths of protons. We have previ-
ously shown [12], as well as others, that approximate FBP
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algorithms for motion compensation along curved acquisition
lines are efficient. The assumption of those algorithms is that
local compensation of the deformation corrects for the motion
blur and improves spatial resolution. In pCT, the problem is
different because one records individual proton information
which requires specific handling. We propose a distance-driven
binning of protons in several radiographies located at different
distances to the source to adapt the binning depending on the
intersection of proton paths with each radiography.

II. PCT RECONSTRUCTION PROBLEM

Along its path, a proton loses most of its energy via inelastic
collisions if it does not undergo nuclear interactions [13]. The
local energy loss dE at point x ∈ R3 is given by

−dE
dx

(x) = η(x)S(I(x), E(x)) (1)

where η : R3 → R is the relative electron density with respect
to a reference medium (water in this study), S : R2 → R is
the proton stopping power in water given by the Bethe-Bloch
equation [14] and I : R3 → R is the ionization potential which
depends on the tissue characteristics.

The ionization potential I varies moderately in human
tissues and has a limited effect on S so, in pCT, it is
typically approximated to that of water, i.e., I(x) = Iwater =
69 eV ∀x ∈ R3 in our simulations. Under this assumption,
integrating Equation 1 leads to the line integral∫

Γi

η(x)dx =

∫ Ein
i

Eout
i

1

S(Iwater, E)
dE = G(Eini , E

out
i ) (2)

with Γi(t) ∈ R3 the curved trajectory of the proton, function
of time t ∈ R, i ∈ I ⊂ Z the proton index, Eini , Eouti the
entrance and exit energies of the proton, and G : R2 → R
the function that computes the energy integral from Eini and
Eouti , defined for simpler notations in the following. Finding
η from Eini , Eouti and an estimate of the path Γi for a set I
of protons is the pCT reconstruction problem.

Proton path estimation is a crucial problem in pCT recon-
struction because it directly influences the spatial resolution
[7]. Several solutions have been proposed to the problem of
most likely path (MLP) estimation [5], [8], [9]. These recent
works on MLP estimation rely on pCT scanners such as the
apparatus described in [2] which measures the position and
the direction of each proton, before and after traversing the
object. Similarly, we assumed a cone-beam pCT scanner with
a proton source following a circular trajectory a(t) ∈ R3

around the axis defined by the isocenter o ∈ R3 and the
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Fig. 1. Schematic top view of the pCT scanner used in this study. The signed
distances wout, win, w and uout

i , uin
i , ui(w) are used in Equation 4, 5 and

6, respectively.

unit axis v ∈ R3, and two pairs of flat panels located before
and after the scanned object to record their entrance and exit
positions and directions xini ,x

out
i , ẋini , ẋ

out
i ∈ R3 (Figure 1).

We define the unit vectors u,w : R3 → R3 depending
on the source position, with w(a(t)) = −a(t)/‖a(t)‖2 and
u(a(t)) = v × w(a(t)), to have a 3D Cartesian coordinate
system {u,v,w} rotating with the source and the detectors.
We also assumed that the convex hull of the object Ω ⊂ R3

was known which can practically be measured with a surface
scanner or a rough initial reconstruction. The algorithm pro-
posed in this work is applicable to any MLP estimation from
measured spatial information (xini , ẋini , xouti , ẋouti and Ω).

III. DISTANCE-DRIVEN BINNING

Our objective is to adapt existing filtered backprojection
algorithms for pCT reconstruction. So far, previous works in
that direction have binned proton information in virtual proton
radiographies. Let j ∈ J ⊂ Z2 be a set of spatial indices
corresponding to a grid of pixels of the exit panel and h :
R2 → R their indicators,

hj(y) =

{
1 if y ∈ R2 is in the jth pixel,
0 else.

(3)

The virtual proton radiography binned at the exit detector for a
subset of protons Ia ⊂ I emitted from a same source position
a is

goutj,a =

∑
i∈Ia

hj(u
out
i , vouti )G(Eini , E

out
i )∑

i hj(u
out
i , vouti )

(4)

with uouti = (xouti −a) ·u(a) and vouti = (xouti −a) ·v (Fig-
ure 1). Repeating this operation for several source positions,
one obtains a typical set of projection images gout that can be
used in a standard filtered-backprojection algorithm.

We observe that one could also use the entrance positions
xini to bin projection images on the exit detector assuming a
straight path going through xini and the source a, i.e.

ginj,a =

∑
i∈Ia

hj(u
in
i , v

in
i )G(Eini , E

out
i )∑

i hj(u
in
i , v

in
i )

(5)

with the distances illustrated in Figure 1{
uini =wout

win

(
(xini − a) · u(a)

)
, win =(xini − a) ·w(a),

vini =wout

win

(
(xini − a) · v

)
, wout=(xouti − a) ·w(a).

The ratio wout

win is the constant magnification from the entrance
to the exit detection plane produced by a cone-beam focused
on a to obtain the coordinates on the exit flat panel. Therefore,
if protons were travelling along straight paths, gin and gout

would be equal. They are actually different due to MCS.
From this observation, we introduce the concept of distance-

driven binning given by

gj,a(w) =

∑
i∈Ia

hj(ui(w), vi(w))G(Eini , E
out
i )∑

i hj(ui(w), vi(w))
(6)

with the distances illustrated in Figure 1{
ui(w)=wout

w ((Γi(ti,w)− a) · u(a)) ,

vi(w)=wout

w ((Γi(ti,w)− a) · v) .

ti,w is the time at which proton i crosses the plane parallel to
the detectors at distance w from the source, i.e. , (Γi(ti,w)−
a) ·w(a) = w. Equation 6 is the extension of Equation 4 and
5 to any distance w using the most likely path Γi of proton i
to interpolate intermediate positions between entrance and exit
positions xini and xouti . Indeed, as the trajectory Γi crosses the
detectors at positions xini and xouti , we have g(wout) = gout

and g(win) = gin.
In practice, g is computed at a finite number of distances in

the w direction and linear interpolation is used between voxels
gj . In combination with bilinear interpolation between spatial
indices j, we obtain a 4D sinogram g : R3 × Z → R instead
of the conventional 3D sinogram, e.g. gout : R2 × Z → R,
where the last dimension is the index of projection images.

IV. DISTANCE-DRIVEN BACKPROJECTION

We use the distance-driven binning in a filtered backprojec-
tion algorithm adapted from the Feldkamp-Davis-Kress (FDK)
algorithm [15]. As in approximate motion-compensated cone-
beam CT [12], we do not modify the 2D processing of
projections in the FDK algorithm (the 2D weighting and the
ramp filtering) but we repeat it for every depth w. We call g̃a
this 3D filtered projection at position source a corresponding
to a source angle θa ∈ R. We use this filtered distance-driven
sinogram by accounting during backprojection for the distance
to the source of the voxel being backprojected to select the
adequate part of the distance-binned sinogram, i.e.

η(x) =

∫ 2π

0

(
‖a‖2
w(x)

)2

g̃a (u(x), v(x), w(x)) dθa (7)

with u(x) = wout

w(x) ((x− a) · u), v(x) = wout

w(x) ((x− a) · v)

and w(x) = (x − a) · w. It is worth noting that both the
backprojection and its FDK weighting are driven by the same
distance to the source w(x).

V. EXPERIMENTS

The algorithm was evaluated with Monte-Carlo simulations
using the latest release of GATE [16], an end-user software
using the Geant4 toolkit [17]. GATE was run on the EGEE
computing grid with the GateLab applet [18]. An ideal pCT
scanner was simulated: a 200 MeV mono-energetic point
source was placed at distance ws = −100 cm from the
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Fig. 2. Experiment 1. Top: drawing of the object. Middle: axial slice at the
isocenter of the distance driven binning. Bottom: profiles along the three lines
drawn on the top image.

isocenter and the characteristics (Eini , Eouti , xini , ẋini , xouti

and ẋouti ) of protons traversing the planes win = −60 cm and
wout = 60 cm were recorded.

Standard 3σ cuts on energy and angle were applied to
eliminate nuclear interactions [13]. Most likely paths Γi were
estimated as straight paths outside Ω and curved paths in Ω ac-
cording to the maximum likelihood formalism of Schulte et al
[9]. The object was assumed to be homogeneous and made of
water. We closely followed their work for its parameterization.

A. Experiment 1

The first experiment was designed to provide the reader
with insights into the effect of the distance-driven binning
by looking at one projection image only. We centered a
spherical shell of water with radii 90 cm and 110 cm around
the proton source, therefore placing the isocenter in the middle
of the water layer (Figure 2, top). Three spherical bone inserts
with identical solid angles were placed in the water sphere
with regular radii from the source (90/92 cm, 99/101 cm and
108/110 cm). Since all objects are portions of hollow spheres
centered on the source, the projection image for particles
travelling along straight lines crossing the source would be
a rectangular function with one rectangle per insert.
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Fig. 3. Experiment 2, full scan. Top-left: axial slice at the isocenter of
the standard FDK reconstruction using the 2D set of projection images
g(110 cm) binned according to the position of protons at the exit of the
object. Gray window: [0.6,1.6]. Top-right: idem with the sinogram g(90 cm)
at the entrance of the object. Bottom-left: distance-driven FDK reconstruction
using the complete set of 3D projections g. Bottom-right: profile along the
three segments drawn on each slice.

B. Experiment 2

The second experiment was designed to evaluate the spatial
resolution of reconstructed pCT images (Figure 3). We used
a resolution phantom similar to the CTP528 high-resolution
module of the Catphan phantom (The Phantom Laboratory,
Salem NY, USA): various resolution gauges made of 2 mm-
thick aluminium sheets were placed on a circle (�10 cm) in
a water cylinder (�20 cm).

VI. RESULTS

A. Experiment 1

Figure 2 is an illustration of the effect of distance-driven
binning in the projection space. The effect of MCS depended
on the distance to the source and the position of the inserts.
The edges of the bone inserts were the sharpest at the distance
which corresponds to their location in space, i.e. at the level
of each line profile (Figure 2, bottom). The loss of sharpness
increased with the distance to their location. We also observed
that the middle insert was not as sharp on the central profile as
the entrance and exit insert on their respective profile because
the uncertainty on the estimate of the proton path was higher
in the middle of the object than on the borders of the object.

B. Experiment 2

The effect on the reconstruction is shown in Figure 3.
The spatial resolution improved with the distance binning
compared to the spatial resolution of reconstruction using a
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Fig. 4. Experiment 2, short scan. Idem as Figure 3 with an additional circle
arc indicating the source trajectory at a false scale (�24 cm on the figure
instead of �200 cm).

standard set of binned projections (Figure 3, bottom left vs.
top). We also observed that using the binning gin according
to the position of protons before the object is more efficient
than using the binning gout according to their exit position
(Figure 3, top right vs. top left).

The effect is emphasized when only a subset of projection
images is used which corresponds to a short scan (Figure 4).
Parker weighting [19] was used to account for the short scan
in the reconstructions of Figure 4.

VII. DISCUSSION AND CONCLUSION

We have proposed an algorithm to use curved most likely
paths in a pCT filtered backprojection algorithm. Our solution
uses a distance driven binning in order to recover sharp edges
at the distance where the edge is located in space (Figure 2).
During backprojection, the spatial position of each voxel is
translated to a distance to the source and the corresponding
position of the distance-driven binning is used so that, at the
location of each edge, its sharpest binning is used.

This FBP algorithm is as approximate as other FBP algo-
rithms used in pCT since there is no exact solution for curved
trajectories. We observed an improved spatial resolution with-
out apparent loss in density resolution (Figure 3) because
the algorithm only modifies high frequencies of the sinogram
without modifying low frequencies. The algorithm is inspired
by our experience in approximate motion compensated FBP
reconstruction where limited differences have been observed
with iterative reconstruction [12]. However, comparison with
existing pCT iterative algorithms will provide a better quan-
tification of the effect of this approximation.

The major advantage of our algorithm over iterative pCT
algorithms is faster and on-the-fly reconstruction. These assets

could become essential for their use in proton therapy treat-
ment rooms when the reconstructed image is required to check
the patient anatomy prior to starting the treatment. In this
context, a short scan could also greatly reduce the acquisition
time and the imaging dose, for which the use of most likely
paths seems crucial.
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