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Abstract—A cone-beam CT scanner has recently been devel-
oped for radiotherapy imaging where the source and the flat
detector can rotate independently along concentric circular tra-
jectories. This paper investigates the reconstruction of the central
slice of this system. A new filtered-backprojection algorithm has
been derived that only modifies the weighting schemes of the
projections and the backprojections of the standard fan-beam
algorithm. The accuracy of the algorithm is demonstrated on
simulated projections of a numerical phantom with source and
detector trajectories that image an offset field-of-view.

I. INTRODUCTION

Cone-beam computed tomography (CT) scanners have been
introduced in radiotherapy rooms to acquire three-dimensional
(3D) CTs of patients prior to treatment and guide their delivery
accordingly. Existing cone-beam CT scanners are generally
fixed to the gantry of the linear accelerator with an x-ray
source dedicated to imaging that is orthogonal to the treatment
beam [1].

MedPhoton, a spin-off company of Paracelsus Medical
University (Salzburg, Austria), is developing a new Patient
Alignment system with an integrated x-ray Imaging Ring
(PAIR, Figure 1). The system has been designed to provide
greater flexibility in the positioning of the patients and to
enable re-positioning of the patient based on 3D images
acquired during radiotherapy. A robotic couch is mounted
to the ceiling along which an imaging ring surrounding the
patient table can translate in the cranio-caudal direction. The
x-ray source and the flat panel detector are mounted on the
ring and can rotate independently to acquire x-ray projections
of any part of the patient with various incidences. The x-
ray source is collimated with four motorized jaws that can
dynamically adapt the dimension of the x-ray beam. The
device allows, for example, the acquisition of x-ray projections
for CT reconstruction with an offset field-of-view, i.e., a field-
of-view that is not centered on the mechanical center-of-
rotation.

By default, the source follows a conventional circular tra-
jectory with respect to the patient and it is known that for
this geometry, only the plane containing the source trajectory
can be reconstructed exactly [2]. We limit our study to this
plane. Two-dimensional (2D) filtered-backprojection (FBP)
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Fig. 1. Photography of a prototype of the Patient Alignment system with an
Integrated x-ray imaging Ring (PAIR).

algorithms are known for the conventional situation where
the flat detector is orthogonal to the line connecting the
source to the center-of-rotation [3]. FBP formulas have also
been derived for displaced centers-of-rotation [4] and for
noncircular trajectories [5], [6] but these situations do not
cover the geometry of PAIR’s central slice.

In this article, we derive a 2D FBP formula for circular
trajectories with independent rotations of the source and the
detector. The resulting algorithm is tested on simulated data
in which the center of the field-of-view is not at the center-
of-rotation.

II. RECONSTRUCTION ALGORITHM

The geometry is described in Figure 2 with the origin at
the center-of-rotation. The fan-beam source follows a circular
trajectory parameterized by angle β and at fixed radius R from
the center-of-rotation. The source motion is therefore given by
v = (−R sinβ,R cosβ). The flat detector lies at fixed radius
RD from the center-of-rotation and is tilted at an angle α
with respect to the usual position, which would be directly
opposite the x-ray source. The detector and the source can
rotate independently so the tilt angle may also vary with β,
and α is understood to have a β dependence. The origin of
the detector is at the point closest to the center-of-rotation as
shown in Figure 2.

The aim is to reconstruct the unknown two-dimensional
(2D) function f(x, y) from the measured line integrals

g(β, u) =

∫ ∞
0

f(v + tγ) dt (1)
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Fig. 2. Geometry of the central slice of the PAIR.

where γ is the unit vector pointing from source v to point u
on the detector.

One method of reconstruction is to resample (or ”rebin”)
the detector data to an equivalent virtual detector placed at
the origin and oriented directly opposite the source to obtain
projections g(β, s). This virtual detector corresponds to α = 0
and RD = 0, and is illustrated as the s-axis in Figure 2. From
this geometry, the standard fan-beam reconstruction algorithm
described as the equispaced fan-beam in [3] is

f(x, y) =
1

2

∫ 2π

0

bβ(x, y) dβ (2)

with

bβ(x, y) =
1

U2

∫ ∞
−∞

cosσ g(β, s)h(s∗ − s) ds. (3)

bβ(x, y) is the image obtained after filtering and backproject-
ing one projection g(β, .). The quantity cosσ = R/

√
s2 +R2

is the cosine of angle between the central ray and the ray
intercepting point s on the detector. The function h is the
usual ramp filter h(s) =

∫
|σ|exp(2πisσ) dσ. The point s∗ is

where the point (x, y) projects onto the detector, as shown
in Figure 2. The ratio U = [R− (x, y) · (− sinβ, cosβ)] /R
is the distance between the source and the line parallel to
the detector at point (x, y), divided by the source to detector
distance R.

Rebinning from measured g to virtual g has the usual
problems of resolution loss which are compounded by the fact
that even spacing in s does not correspond to even spacing
in u. Therefore, we derive the mathematical expression of
bβ(x, y) using the measured projections g with a change of
variable from s to u. The variables are linked by the following
relation

u =
s(R+RD/ cosα)

R cosα+ s sinα
−RD tanα. (4)

The change of variable invokes the Jacobian term

du = |J |ds =
R2 cosα+RDR

(R cosα+ s sinα)2
ds. (5)

The absolute value has been dropped because the condition
cosα > −RD/R is always met assuming α ∈ (−π/2, π/2).
We also find from Equation 4 that

u∗ − u =
R2 cosα+RDR

(R cosα+ s∗ sinα)(R cosα+ s sinα)
(s∗ − s).

(6)
Combining the well-known result h(at) =

1

a2
h(t) (see, e.g.,

[3]) with the last two equations, we obtain

h(s∗ − s) ds =
R2 cosα+RDR

(R cosα+ s∗ sinα)2
h(u∗ − u) du (7)

=
R

Dα

D2
α

(R cosα+ s∗ sinα)2
h(u∗ − u) du (8)

where we have introduced the source to detector distance
Dα = RD + R cosα. Note that Dα varies with α, unlike
the source to center-of-rotation and the center-of-rotation to
detector distances R and RD which are fixed.

When u satisfies Equation 4, the measured and the rebinned
projections are equal, i.e., g(β, u) = g(β, s), and the change
of variables in Equation 3 gives

bβ(x, y) =
1

V 2

∫ ∞
−∞

cosσ
R

Dα
g(β, u)h(u∗ − u) du (9)

where

V =
R cosα+ s∗ sinα

Dα
U (10)

is to the real detector what U is to the virtual detector, i.e., the
distance between the source and the line parallel to the detector
at point (x, y) divided by the source to detector distance Dα.
For more readability, we have not replaced the term cosσ but
it may be expressed in terms of u by

cosσ = cos (α+ (σ − α)) =
Dα cosα− (u−R sinα) sinα√

D2
α + (u−R sinα)2

.

(11)
It is interesting to consider Equation 9 for the particular

case of a virtual tilted detector passing through the center-of-
rotation (RD = 0). In this case, Equation 9 becomes

bβ(x, y) =
1

V 2

∫ ∞
−∞

cosσ

cosα
g(β, u)h(u∗ − u) du (12)

and we note that the reconstruction algorithm is the same as
the reconstruction algorithm for the untilted case with three
modifications: (1) the backprojection weighting 1/V 2 is with
respect to the tilted detector, (2) the cosσ weighting is with
respect to the non-tilted detector and (3) there is an additional
1/ cosα term in the weighting of the projections.
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III. EXPERIMENTS

The reconstruction algorithm has been validated on simu-
lated projections. The fixed geometric parameters were chosen
to be close to those of the PAIR: the radii of the source
and the detector were R = 700 mm and RD = 400 mm
and the detector measured 1024 samples in the interval u ∈
[−175.3, 233.9] mm. As in the PAIR, the center of the detector
has been intentionnally shifted by 29.3 mm to enlarge the
field-of-view when it is centered.

x

y

Fig. 3. Scale drawing of the experiment for the positions corresponding
to projection #0 and projection #181. The phantom image is the reference
slice in Figure 5. The red cross is the center of the offset field-of-view. The
two red lines correspond to the source to center-of-detector lines of the two
positions of the detector. The pair of angles (α, β) were about (−4◦, 0◦) and
(42◦, 73◦) for projections #0 and #181, respectively. Corresponding vertical
lines have been drawn in Figure 4. Note that the detector is not horizontal
when the source to center-of-rotation line is vertical for projection #0 because
the center of the detector that we align with this line is at u = 29.3mm.

The angles α and β are two degrees of freedom of the
scanner set by the user to acquire one projection g(β, .). We
centered the offset field-of-view on point (0, 200) mm of the
y-axis (Figure 3). The source position β was set to enforce an
equiangular spacing at the center of the offset field-of-view of
the 720 projections. The variation of the speed of the source
rotation (Figure 4) has been accounted for in the discretization
of Equation 2 with a variable ∆β-weight between projections.
The tilt angle α was set to align the source, the center of the
offset field-of-view and the center of the detector for every
projection. Figure 4 illustrates the β and β+α values according
to projection number where β is the angle of the source to
center-of-rotation line with the y-axis and α + β is the angle
of the detector with the x-axis (Figure 2). These curves would
have been parallel lines if the offset field-of-view had been
centered on the center-of-rotation but we varied the speed of
the rotation of the source and the detector in order to focus
on the chosen offset field-of-view.
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Fig. 4. Variations of β and α + β according to the projection number in
the simulated projections of the phantom. Note that the source rotates more
slowly (lower slope) when near the center of the offset field-of-view at the
begin and the end of the scan. Similarly for the detector which is close to the
offset field-of-view at the middle of the scan. The two vertical dashed lines
correspond to the two positions that have been represented in Figure 3.

The phantom was slice z = −0.25 of the 3D version of
the Shepp Logan phantom described in [3], centered on point
(0, 200) mm and scaled to 69 by 92 mm to fill the offset field-
of-view. The reconstruction lattice was also centered on this
point and made of 400× 500 pixels of 0.4× 0.4 mm2.

IV. RESULTS

Several images of the phantom are shown in Figure 5: (1)
the reference image illustrates the original phantom, (2) a naive
modification of the existing equispaced FBP described in the
following, and (3) the image obtained using the proposed fan-
beam FBP algorithm. The naive modification of the existing
equispaced FBP consisted in assuming that the source to
center-of-rotation line was orthogonal to the detector during
the weighting of projection images which comes down to
weighting the projection by cos(σ − α) instead of cos(σ) in
Equation 9 while filtering and backprojecting the weighted
projections in a similar manner. Images are displayed with
two different gray scales, one to illustrate the large discrep-
ancy between the naive reconstruction and the reference, and
another narrow one to illustrate the accuracy of the new FBP
algorithm.

Profiles along the lines drawn in Figure 5 are plotted in
Figure 6. Accurate values have been reconstructed with small
fluctuations (' 0.1%) around the expected values.

V. DISCUSSION AND CONCLUSIONS

A 2D FBP algorithm has been derived and validated for
the reconstruction of the central slice of a cone-beam CT
system, the PAIR, where the source and the detector can rotate
independently. The new FBP algorithm is very similar to the
conventional one [3]: only the weights of the projections and
the backprojections need to be modified.

Other equispaced fan-beam geometries have been proposed
but they did not cover this geometry. Gullberg et al derived
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Fig. 5. Left: reference image of the phantom. Middle: naive modification of existing equispaced FBP. Right: new FBP algorithm.
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Fig. 6. Vertical profiles along the lines drawn on the reference and the
reconstructed images of Figure 5.

a reconstruction formula for a fixed offset τ of the detector
[4] which is covered by the new formula. Their formula may
be obtained from Equation 9 by linking the parameterizations
with τ = R sinα. Other formulas are for non-circular source
trajectories [5], [6].

Independent rotations of the source and the detector enable
offset field-of-views. Offset field-of-views are essential in
PAIR to image areas which could not be imaged otherwise
due to the limited size of the detector. A side effect of moving
the center of the offset field-of-view is the reduction of its
maximum size with increasing distances between the center-
of-rotation and the center of the offset field-of-view.

The formula is inaccurate if projections are truncated which
is expected in many practical situations. One solution is to use
a short scan with a source arc that is opposite the center of the
offset field-of-view with respect to the center-of-rotation. Short
scan acquisitions can be reconstructed with an appropriate
weighting scheme as proposed for the conventional FBP
algorithm [7], provided that the arc is greater than π+ 2σmax

where σmax is the maximum value taken by |σ|. An alternative
is to use an appropriate weighting scheme that accounts for
redundant acquisition lines to truncate projections on one side

only [8]. If it is insufficient, the derivation of other algorithms
for region-of-interest reconstruction [9] will be required.

Three-dimensional reconstruction is beyond the scope of
this article. Exact reconstruction is only possible in the central
plane but the FDK algorithm is commonly used [10]. Future
work includes the derivation of a practical algorithm for the
geometry of the PAIR.
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