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List-mode proton CT reconstruction using their
most likely paths via the finite Hilbert transform of

the derivative of the backprojection
Simon Rit, Rolf Clackdoyle, Jan Hoskovec and Jean Michel Létang

Abstract—Modern prototypes of proton computed tomography
(CT) scanners can measure the energy, the position and the
direction of each proton, before and after the scanned object,
in a list mode. Each detected proton contributes to an estimate
of a line integral along an estimated curved proton path. In
this work, we propose a backproject first algorithm based on
the two-step Hilbert transform to reconstruct proton CT images.
The algorithm takes into account the estimated curved paths.
A pixel-specific backprojection is computed from the average
measurements of protons which traverse the pixel with the same
direction according to the proton path estimates. Our simulations
studies show that the algorithm has similar spatial resolution to
a previous filtered backprojection (FBP) algorithm for proton
CT using most likely paths while being computationally more
efficient and able to handle truncated data.

I. INTRODUCTION

The concept of proton CT was proposed early in the history
of CT [1]. From measurements of the energy loss of protons
through matter, a reconstructed image can be formed of the
relative stopping power (RSP) map of tissues. The main
disavantadge of proton CT is its poor spatial resolution which
is caused by multiple Coulomb scattering that generates quasi-
continuous deflections of the protons in matter. However, the
potential of proton CT to improve proton therapy treatment
planning has lead to new hardware and software developments
to combat the spatial resolution issues.

Much improvement of the spatial resolution in proton CT
has been achieved thanks to the use of pairs of position sensi-
tive detectors that record the position and the direction of each
proton, once before the scanned object and once afterwards
[2]. The acquired list-mode information has the advantage
that the most likely path of each proton can be estimated
[3] and incorporated into the reconstruction algorithm. This
technique substantially improves the spatial resolution over
methods that use straight-line models, and several groups are
now developing such scanner prototypes. Incorporating the
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most likely path in an iterative reconstruction algorithm is
straightforward since it can be accounted for in the projection
matrix (see, e.g., [4]). However, the practical applicability
of iterative reconstruction is limited by the computational
time, particularly for some clinical applications such as image
guided proton therapy.

Use of proton list-mode data in FBP algorithms is typically
performed after binning the data into a set of projection
images. It has long been considered impossible to account
for curved proton paths since all protons binned together have
followed different paths. Therefore, the most likely path was
first used with FBP to only include the protons that had
followed close to straight paths [5] but it is preferable to make
use of all acquired data.

There is no exact analytic reconstruction from integrals
along randomly curved lines, but heuristic use of most likely
paths of protons in FBP algorithms has recently been demon-
strated. First, Rit et al. proposed the distance-driven binning
[6] where multiple projection images per source position are
binned using different approximations of proton paths by
straight lines. For each of these projections, the straight lines
are defined by the same source point but a different point
along the most likely proton paths, at the intersection with
planes parallel to the detector at different distances from the
source. The most likely path of each proton is then indirectly
accounted for by using a different set of input projection im-
ages for the reconstruction of each voxel using the Feldkamp
algorithm [7]. The improvement of the spatial resolution of
reconstructed images is similar to what is obtained with an
iterative least-square algorithm using curved most likely paths
at a much lower computational cost [4].

More recently, Poludniowski et al. have proposed another
FBP algorithm that more directly uses the most likely paths
by switching the order of the filtering and the backprojection
[8]. The list-mode data are used to compute the discrete
backprojection by averaging the measurements of protons that
went through the same voxel with the same direction. The
problem of this switching is that the backprojection should
theoretically be computed on an infinite support. Since the
backprojection array must inevitably be truncated in practice,
some low frequency artifacts might be introduced by this
procedure.

In this work, we follow a similar approach to that of [8]
using another backproject first algorithm. Zeng derived a two-
dimensional (2D) reconstruction algorithm [9] from the two-
step Hilbert transform method [10] that starts with weighted

The 13th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

324



2

backprojections. As he pointed out, this property is useful with
list-mode data such as those acquired by proton CT scanners.
We applied this algorithm to proton CT and investigated its
performance on phantom and patient simulations.

II. METHOD

We start with a brief description of Zeng’s reconstruction
method before deriving an algorithm for its use in proton CT.

A. Backproject first reconstruction algorithm

Let p(s, θ) be parallel projections of an unknown 2D
function f(x, y) where the coordinates s ∈ R and θ ∈ [0, π)
define a line by its signed distance to the origin and its angle
with the x-axis, respectively. Noo et al. have shown [10] that
f can be recovered from p using

f(x, y) = H

∫ π

0

∂

∂s
p(s, θ)

∣∣∣∣
s=−x sin θ+y cos θ

dθ (1)

with H the inverse Hilbert transform. The resulting algorithm
involves (1) taking the derivative of the projections p along s,
(2) backprojecting the result and (3) taking the finite inverse
Hilbert transform of the backprojection along the x direction.

Zeng proposed inverting the order of the derivative and the
backprojection in this formula to obtain a backproject first type
of algorithm [9]. Zeng’s formula is

f(x, y) = H

{
∂

∂x
bs(x, y) +

∂

∂y
bc(x, y)

}
(2)

with the weighted backprojections

bs(x, y) =−
∫ π

0

p(−x sin θ + y cos θ, θ) sin θ dθ (3)

bc(x, y) =

∫ π

0

p(−x sin θ + y cos θ, θ) cos θ dθ. (4)

Zeng obtains a reconstruction algorithm consisting of the
following steps: (1) calculate two weighted backprojection
images bs and bc, (2) take the sum of the derivative in
orthogonal directions of each backprojection bs and bc, and
(3) take its inverse Hilbert transform. The next section focuses
on how to obtain the two backprojection images bs and bc in
the context of proton CT.

B. Backprojection for proton CT

We consider an ideal proton CT scanner made of two pairs
of flat trackers that record in a list the position and direction of
each proton, before entering and after leaving the target object.
The energy at the trackers is assumed to be known before the
object and is measured after the object. The incidence angle
of the protons is varied by rotating the cone-beam source and
two pairs of detectors along a circular trajectory.

Protons are deflected many times when going through mat-
ter so their overall path is slightly curved. We let Γi(t) ∈ R3

denote the proton path, with time t ∈ R used to parameterize
the curved lines and i ∈ {1, ..., I} the proton index in the list-
mode data. Using the Bethe-Bloch equation, one can relate

the energy loss of the proton to the sum gi of the three-
dimensional (3D) relative stopping power map f of tissues
along the proton path Γi

gi ≡
∫ Eout

Ein

1

dE/dxw(E)
dE '

∫ touti

tini

f(Γi(t)) dΓi(t) (5)

with Ein and Eout the energy before and after the object,
dE/dxw the stopping power of water, and tini and touti the
times at which the proton is measured entering and leaving the
patient, respectively. The proton CT reconstruction problem
is to obtain an image of f from the path integrals gi and an
estimate Γ̂i of each proton path, both of which can be obtained
from the measurements.

Γ̂i

Γi(t
out
i )

Γi

Θi,l ' θk

Γi(t
in
i )

Γ̂i(ti,l)
ζj

Fig. 1. Illustration of the notation used for the backprojection. The proton
follows the path Γi and its most likely path Γ̂i is estimated from its
measured positions Γi(t

in
i ) and Γi(t

out
i ) and the corresponding directions

before entering and after leaving the object, respectively. A discrete set of
positions (indexed by l, from tini = ti,0 to touti = ti,L) regularly samples
Γ̂i to evaluate which pixels are reached by the most likely path and the
corresponding angle with the horizontal line. For example, here, the position
Γ̂i(ti,l) falls in the indicator function ζj of the j-th pixel with an angle
Θi,l that is binned to the closest angle θk and contributes to the average
measurement bj,k for the j-th pixel and the k-th direction.

Our solution to this reconstruction problem uses Zeng’s
algorithm which starts by computing the two backprojection
images bs and bc from the proton data. Only the 2D central
slice is considered here but the 3D trajectories of protons are
used. Our approach to compute the weighted backprojections
is based on [8], i.e., a discretization of Equations 3 and 4.
First, we discretize space with j ∈ {1, ..., J} the pixel index
of the reconstructed slice. The variable θ is also discretized and
we let k ∈ {1, ...,K} be the index of the discrete values θk.
Finally, the curved most-likely path of each proton is evaluated
at a discrete number of time positions ti,l between tini and touti

with l ∈ {1, ..., L} the time indices, tini = ti,0 and touti = ti,L
(Figure 1). At each of the positions Γ̂i(ti,l) along the proton
paths, we estimate the angle Θi,l between the x-axis and the
direction of the proton using the proton velocity dΓ̂i/dt(ti,l).
Using these discretizations, we compute a pixel-specific and
direction-specific average of the measurements with

bj,k =

∑
i,l ζj(Γ̂i(ti,l))ξk(Θi,l)gi∑
i,l ζj(Γ̂i(ti,l))ξk(Θi,l)

(6)

where ζj and ξk are basis functions for the j-th pixel and the
k-th angle θk respectively. In this work, the basis functions
ζj and ξk are indicator functions such that each measurement
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gi contributes to the the nearest pixels and directions along
the proton path. Therefore, bj,k is the average value of the
measurements gi of protons whose most likely paths traverse
pixel j with a direction θk.

Recalling that p(−x sin θ + y cos θ, θ) is the measurement
that corresponds to the line that goes through point (x, y)
with an angle θ, images of bs and bc are obtained from the
average measurements bj,k by discretizing Equations 3 and 4
and summing over the measurements for the same pixel, i.e.,

bsj =−
∑
k

bj,k sin θk∆θ (7)

bcj =
∑
k

bj,k cos θk∆θ (8)

with ∆θ the angular gap between consecutive θk. From the
two discrete images bsj and bcj , one can reconstruct an image
f of the relative stopping power map of tissues using Zeng’s
algorithm (Equation 2).

III. SIMULATIONS

Proton CT data simulated in previous studies were used
to validate the new algorithm. All simulations used Geant4
Monte Carlo simulations [11] performed via Gate [12], the
details of which (versions, geometry, physics parameters, etc.)
are specified in [6] and [13].
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Fig. 2. Slices and profiles of the CTP528 high-resolution module (window
[0.8, 2.0]). Left: proton CT image obtained with the distance driven binning
[6]. Right: proton CT image obtained with the new backprojection-first
algorithm. Bottom: profiles along the lines displayed in each reconstruction.
The green boxes are zooms in square regions-of-interest.

Two phantoms from [6] were used to evaluate spatial
resolution. The first one was a virtual version of the CTP528
high-resolution module of the Catphan phantom (The Phan-
tom Laboratory, Salem, NY) made of a 20 cm-diameter wa-
ter cylinder with various resolution features along a 10 cm-
diameter circle (Figure 2). The second phantom was also a

20 cm-diameter water cylinder with 5 mm cylindrical rods of
aluminium at linearly increasing distances from the center of
the water cylinder (Figure 3). For these images, there were
about I = 260 million protons simulated, the recontructed CT
image had J = 1000×1000 pixels of 0.25×0.25 mm2, binned
in K = 720 directions with L = 880 positions taken along
each proton path, i.e., about one every 0.25 mm. Each image
was compared to the result obtained with the distance-driven
binning [6] with the same parameters.

Backproject firstDistance-driven binning

Distance from center (mm)
0 20 40 60 80 100

S
p
a
ti
a
l 
re

s
o
lu

ti
o
n
 (

m
m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Backproject first
Distance-driven binning

Fig. 3. Slices and spatial resolution measurements of the second spatial
resolution phantom (window [0.8, 2.0]). Left: proton CT image obtained with
the distance driven binning of [6]. Right: proton CT image obtained with
the new backprojection-first algorithm. Bottom: spatial resolution of each
aluminium insert plot against distance to center. The green boxes are zooms
in square regions-of-interest.

The spatial resolution was quantified for each aluminium
rod of the second phantom. Radial profiles were taken every
degree from the rod center to a distance of 4 mm. A gaussian
error function was then fitted to the average profile and its σ
value used as a measure of the spatial resolution.

A third simulation was used to illustrate the region-of-
interest (ROI) capability of the algorithm, i.e., its ability to
reconstruct accurate CT images along segments in the field-
of-view (FOV) whose end points were out of the patient. An
axial slice of the ICRP phantom [14] was simulated in the lung
region in [13]. The detector width was limited to 26 cm at the
center-of-rotation. In this case, I = 3 million protons were
used, the recontructed CT image had J = 270 × 270 pixels
of 1 × 1 mm2, binned in K = 360 directions with L = 270
positions taken along each proton path, i.e., about one every
1 mm.

All the simulations were 3D but the reconstructions were
2D and limited to the axial slice that contains the source
trajectory. A slice thickness of 2 mm was used to evaluate
if the proton was within the slice but the axial direction was
not used otherwise.
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IV. RESULTS

The new backprojection-first algorithm gave very similar
results to the distance-driven binning method of [6]. The
profiles of Figure 2 show different noise patterns but the
resolution features are equally visible with both reconstruc-
tion algorithms. The quantification of the spatial resolution
confirmed these observations (Figure 3). Also, the spatial
resolution was better for the rods that were closer to the
phantom surface, a behavior that has been observed with
iterative reconstruction as well [4] and which can be linked to
the difference between the estimated proton path Γ̂i and its
real path Γi. This difference increased with the distance to the
pairs of position-sensitive detectors and was maximal near the
center of the scanned object.

Fig. 4. Reconstructed slices (left, window [0, 1.5]) of the ICRP phantom
and absolute differences with the reference (right, window [0, 0.1]) when the
FOV of the scanner is not large enough for the patient. Top: distance-driven
binning [6]. Bottom: backprojection-first algorithm proposed in this article.
The FOV is a disk whose diameter is visible in the bottom-right image.

One advantage of the new algorithm is its ability to deal
with detectors that are not large enough for the scanned
object, as illustrated in Figure 4. The differences show that
it can accurately reconstruct the vertical segments that are in
the field-of-view with both ends in air, whereas no region
is accurately reconstructed with the distance-driven binning
method.

V. DISCUSSION AND CONCLUSION

The idea of switching the order of the filtering and the
backprojection in proton CT, proposed in [8], allows use of the
most likely path of each proton during backprojection rather
than using an intermediate distance-driven binning before
filtering and backprojection [6]. Following the same idea here,
we have proposed a different backproject first algorithm [9].
However, the new algorithm did not appear to improve the
spatial resolution of the reconstructed image compared to the

distance driven binning method, probably because the same
most likely path estimation was used in both methods and the
difference with the true proton paths is the main source of
degradation of the spatial resolution.

The reconstruction time was improved with the new algo-
rithm, for example from 16 s to 3 s for the two reconstructions
of Figure 4, excluding the distance-driven binning and the
computation of bj,k, because filtering is only done once in
the image space whereas many sets of projections are filtered
in [6]. However, most of the reconstruction time is spent
in the computation of the most likely paths which takes a
few minutes for both algorithms and would require faster
implementations.

The new algorithm is based on the two-step Hilbert trans-
form method [10] and can therefore handle truncated list-mode
data (Figure 4). Note that a similar advantage would have been
obtained if we had modified the original version in [10] for
the use of the distance-driven binning, as was done in [6] with
the Feldkamp algorithm. This advantage will be most evident
in situations where the detector size is limited, although the
proton energy must still be high enough to go through the
object in every direction.
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