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Purpose: To automatically learn directional relative positions (DRP) between mediastinal lymph
node stations and anatomical organs. Those spatial relationships are used to semiautomatically seg-
ment the stations in thoracic CT images.
Methods: Fuzzy maps of DRP were automatically extracted by a learning procedure from a database
composed of images with stations and anatomical structures manually segmented by consensus be-
tween experts. Spatial relationships common to all patients were retained. The segmentation of a new
image used an initial rough delineation of anatomical organs and applied the DRP operators. The al-
gorithm was tested with a leave-one-out approach on a database of 5 patients with 10 lymph stations
and 30 anatomical structures each. Results were compared to expert delineations with dice similarity
coefficient (DSC) and bidirectional local distance (BLD).
Results: The overall mean DSC was 66% and the mean BLD was 1.7 mm. Best matches were ob-
tained from stations S3P or S4R while lower matches were obtained for stations 1R and 1L. On
average, more than 30 spatial relationships were automatically extracted for each station.
Conclusions: This feasibility study suggests that mediastinal lymph node stations could be sat-
isfactory segmented from thoracic CT using automatically extracted positional relationships with
anatomical organs. This approach requires the anatomical structures to be initially roughly delin-
eated. A similar approach could be applied to other sites where spatial relationships exists between
anatomical structures. The complete database of the five reference cases is made publicly available.
© 2014 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4873677]
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1. INTRODUCTION

In the staging and treatment of lung cancer, it is important
to assess lymph node involvement. An accurate labeling of
the regions of mediastinal and hilar nodes is essential as it
allows for the assessment of treatment outcomes, to select ap-
propriate therapy for patient and to perform consistent clinical
trials across institutions. Accurate and consistent definitions
for the nodal stations is important. In radiation therapy, there
is currently no consensus on whether to include lymph node
stations in the target volume and to electively irradiate unin-
volved mediastinal nodal regions.1, 2

Lymph node station labeling is performed using anatomi-
cal reference definitions know as lymph node “maps.” These

maps have been historically used in describing the clinical and
pathological extent of lymph node metastases in lung cancer.
Naruke et al. developed the first nodal map in Japan in the
1960s.3 The American Thoracic Society (ATS) subsequently
developed its own map. In 1997, modifications were made
to the ATS map by Mountain and Dresler.4 Mountain and
Dresler’s map was adopted by the American Joint Commit-
tee on Cancer (AJCC) to describe nodal metastases for lung
cancer in the 6th edition of the TNM classification. Chapet
et al.5 from the University of Michigan published a CT atlas
with definitions of the mediastinal nodal stations in 2005. The
International Association for Study of Lung Cancer (IASLC)
created the lung cancer staging project and in turn devel-
oped an international lung cancer database. With analysis of
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FIG. 1. Example of mediastinal lymph node stations delineated on three
slices of a thoracic CT.

this database, the IASLC International Staging Committee
proposed changes to the TNM staging system for lung can-
cer and were adopted in the new AJCC TNM 7th edition in
2010.6

The guidelines are composed of descriptions based on
anatomical structures in the mediastinum. Each station is de-
scribed with its position relative to surrounding anatomical
organs such as aorta, trachea, vessels, and veins. The limits
are mostly indicated via the principal patient axes LR (Left-
Right), SI (Superior-Inferior), and AP (Anterior-Posterior).
Nodal stations are labeled by number from their superior to
inferior location, starting with the supraclavicular stations 1R
and 1L (R for Right and L for Left), superior mediastinal:
2R, 2L, 3A, and 3P (A for Anterior, P for Posterior), 4R, 4L,
aortic: 5 and 6, inferior mediastinal: 7-9, and hilar, lobar, and
(sub)segmental: 10–14. The stations’ contours are illustrated
on the slices in Fig. 1. Some geometrical constructions are
also defined in the guidelines to assist in delineating some
nodal stations. For example, the boundary between 2R and
2L is defined by a vertical line passing tangentially along the
left lateral tracheal border. Recently, Lynch et al.7, 8 published
a CT atlas, based on the new IASLC map, analysing the sta-
tions delineated on a CT image.

Automated segmentation procedures are challenging to
develop; however, they have the potential to save clini-
cians’ time and improve segmentation consistency. The chal-
lenge is in the inter-patient anatomical and the inter-experts
variability.9 Several papers have encompassed the detection or
segmentation of nodes;10–13 however, none with the segmen-
tation of mediastinal stations. A review of automated methods
for lymph node segmentation was completed by Feuerstein
et al.10 Lu et al.14 described a method to determine cuboid
(parallelepiped) regions that encompass stations. Recently,
Feuerstein et al.10 proposed an interesting approach based on
deformable image registration to create a probabilistic lymph
node atlas from a database of segmented images. Such an atlas
can be used to assign station labels to detected nodes by using
Voronoi maps. Commowick et al.15 also proposed an atlas-
based method where reference lymph node station contours
were deformed against the current patient image for head and
neck lymph node station.

In this paper, we studied the manual delineation of me-
diastinal lymph stations on CT images by the clinicians to
replicate this by an automatic process.7, 8 We investigated the

relationships between stations and surrounding anatomical
structures by means of their relative positioning.

2. METHOD

The method for segmenting mediastinal nodal stations
consisted of two steps. In the first one, directional rela-
tive position (DRP) operators were extracted from a training
dataset, which was composed of mediastinal nodal stations
and anatomical structures manually delineated by clinical ex-
perts on thoracic CT images. All manual segmentations were
approved by consensus. In the second step, the DRP operators
were used to segment an image that was not present in the
learning set. Initially, starting regions were automatically de-
limited for all stations by the parallelepipedic areas according
to LR, SI, and AP limits. Then, this initial segmentation was
progressively refined by applying the directional constraints
of the DRP operators with respect to anatomical structures.

2.A. Building the fuzzy maps

Directional fuzzy maps were the basis for the construction
of the DRP operators proposed in this work. They were built
from a set of Np manually segmented thoracic CT images (see
Sec. 3.A). Each image contained a set Ap of NA anatomical
structures (AS), and a set Sp of NS lymph stations (LS), with
p the patient image index. Segmented AS and LS were binary
images, A(x) : �A ∈ R3 → {0, 1}, S(x) : �S ∈ R3 → {0, 1},
with �A, �S the image domains, x ∈ R3 a point coordinate, 0
the background, and 1 the foreground.

In computer vision, relationships between spatial entities
can be classified into topological, distance and orientation
relations.16 The inherent imprecision of those relations makes
fuzzy set theory a successful mathematical model to study
them. In this work, we considered fuzzy directional rela-
tions such as “left to,” “right to,” “anterior to,” etc., or more
generally, directions given by orientation angles. Several ap-
proaches have been proposed to build and analyze these re-
lationships, e.g., the centroid method and the histogram of
angles, see Ref. 16 for a review. Here, we relied on the mor-
phological approach proposed by Ref. 17, which consists of
two steps: first a fuzzy landscape is defined around a given
reference object A, such that each point in this landscape cor-
responds to the degree of at which the spatial relation of in-
terest (for example, “left to”) is satisfied; second, an object B
is placed on the fuzzy map in order to evaluate how well this
object matches the referred spatial relation.

More formally, let us consider a direction α defined in 2D
by an angle (two angles in polar coordinates in 3D). Given
an anatomical structure A, the fuzzy map (FM) Fα,A(x) : � ∈
R3 → R expresses, for each pixel x, the degree at which x
is along the direction α relative to A. According to Ref. 17,
FM is defined as Fα,A(x) = max

(
0, 1 − 2

π
βmin(x)

)
, with �

the domain on which it is computed. The fuzzy value at
a given point x is thus a linear function of the minimal

value βmin(x) = miny∈�A
β(x, y), β(x, y) = arccos

−→
yx.

−→
dα

||−→yx|| , and
β(x, x) = 0, which considers angles between the unit direction
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FIG. 2. Left: CT slice with the contour of the Superior Vena Cava (SVC).
Right: Examples of four fuzzy maps computed from the SVC binary image
for four different α values (−45◦, 0◦, 45◦, 90◦).

−→
dα and every point y in A. It has been shown that the presented
FM can be computed by the fuzzy dilation of object A with

the structuring element ν(x) = max
(

0, 1 − 2
π

arccos
−→
yx.

−→
dα

||−→yx||
)

.

We thus used the propagation algorithm proposed in Refs. 18
and 19 with a neighborhood radius equal to three pixels.

We considered a discrete set D of Nα relative directions,
and computed the NP × NA × Nα fuzzy maps for all AS in the
database. Figure 2 illustrates some fuzzy maps.

2.B. Learning phase

The goal of the learning phase was to extract from the
training database a set of DRP between anatomical structures
and lymph stations that were common among all patients.
Given a set of directions D, only those spatial relations that
were satisfied across the entire patient database were kept. For
example, if we observed that the station S4R was posterior to
the superior vena cava (SVC) for all patients in the database,
this “posterior to” relation (represented by a corresponding
DRP) was kept. Otherwise, it was not considered.

To find if a certain spatial relationship α between an
anatomical structure A and a station S was common to all
patients, we first needed to devise an algorithm to evaluate

the relationship of interest for a single patient. Having the
fuzzy map Fα,A at hand, we proposed to employ a cumula-
tive histogram HS to indicate whether S respects the DRP de-
fined by Fα,A. The histogram HS(t) determined the number
of pixels belonging to station S having a fuzzy value in Fα,A

lower than a threshold t. Namely, HS(t) = |{x | S(x) = 1 and
Fα,A(x) < t}|.

With this cumulative histogram, we could determine how
well S satisfied the DRP defined by A and α. To achieve this,
we calculated the optimal threshold tS = arg maxt HS(t) < ε,
with ε a given tolerance expressed in number of pixels. The
optimal threshold determined, in the end, the proportion of S
contained in areas of high values of Fα,A. If the proportion
was high, the relation “S is α-oriented with respect to A” was
satisfied. Figure 3 illustrates this notion. When considering all
patients in the database, we kept the minimal value tmin among
the NP optimal thresholds. If, for one patient, tS did not exist,
no tmin was considered. We denoted the triplet {A, α, tmin},
the DRP operator for a given relation between A and S. The
sets RS of all DRP associated with S constitute the spatial
relationships between anatomical structures and stations that
are common to all patients.

Note that a global rigid registration between patient images
was not strictly required. However, we considered, without
loss of generality, that the patients were in the same orien-
tation according to the principal image axes. The underlying
assumption of the proposed method was that the positions of
stations relatively to the anatomical structures in the patient
coordinate system were similar. This is in fact the assumption
made in all published guidelines.

2.C. Segmentation

Once the sets RS were build, they could be used to segment
a new image. The algorithm (see Fig. 4), started from an initial
S0 segmentation and successively considered all spatial rela-
tionships DRPi in RS . For each DRPi operators {A, α, tmin}
in RS , a binary image Fi was build such that Fi(x) : �S

FIG. 3. Left: Example of one slice of the fuzzy map computed for the Superior Vena Cava (SVC). The station S4R is shown below. The line depicts the
threshold tS. Right: Cumulative histogram HS computed from FS,α=45◦ and S4R. The optimal threshold tS is computed according to the tolerance ε (set to 20
pixels in this example).
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FIG. 4. Algorithm to segment a station according to a set of spatial
relationships.

→ [0 : 1] = {1 if Fα,A(x) > tmin; 0 otherwise}. The pixels in
this image having value 1 were the ones considered to be “at
a degree tmin” in the direction α relative to the structure A. So
every candidate pixels in S0 that did not belong to Fi could be
discarded. The final segmentation S was obtained by the prod-
uct of all binary images Fi, i.e., S = S0 × ∏

iFi. This process
is illustrated Fig. 5.

The initial S0 was built by considering pixels belonging
to the mediastinum. The mediastinum was automatically ex-
tracted by first removing the lungs20 and then applying DRP
operators to areas between them. For each station, the supe-
rior and inferior limits were automatically determined as in-
dicated in the segmentation guidelines, similarly to Ref. 14.
For example, the superior limit of station S1R is the Cricoid
Cartilage, and the inferior limit is the Sternum. We thus re-
moved from the mediastinum all slices above and below both
anatomical structures.

The whole procedure could be performed with 3D oper-
ators. However, in this work, we opted to use 2D operators
on a slice-by-slice basis, which were then aggregated to form
the 3D fuzzy maps. The cumulative histogram HS and opti-
mal thresholds tS were all computed in 3D. We chose this ap-
proach because by using 3D operators, we would assume that
every anatomical structures was defined in a consistent man-
ner between patients, with similar limits, which is not always

FIG. 5. Illustration of the segmentation process for the station S4R. Top left
image depicts a slice of the initial CT image with the contour of the medi-
astinum. We also depict the targeted station S4R (considered as unknown).
The other images illustrate five steps, starting from the initial S0 mediastinum
contour. A first DRP operator (1) is applied with the structure SVC and re-
move part of the mediastinum (2). The three other DRP operators used As-
cending Aorta, Descending Aorta, and Trachea (2,3,4). All thresholds are
shown in dotted line and correspond to the tmin values extracted from the
learning step. The reference S4R area is displayed on the last image (5) for
comparison.

possible. Moreover, the guidelines6 were also determined on
a slice-by-slice basis.

3. EXPERIMENTS AND RESULTS

3.A. Database

CT images, acquired in breath-hold, of five patients have
been manually segmented by three radiation oncologists (RL,
LC, and GP). The patients were being treated for lung can-
cer at the Centre Léon Bérard, in Lyon, France. They received
an intravenous (IV) contrast agent, the inplane image resolu-
tion was in the range [0.63–0.83] mm, and the slice thickness
was of [0.8–2] mm. The radiation oncologists delineated the
lymph node stations from 1 to 11 following the new IASLC
station definitions.6 Segmentation was performed on a slice
by slice basis, following these guidelines. Experts provided
a single consensual segmentation for each station. They also
provided the delineation of several mediastinal anatomical
structures that were used during the contouring process of the
stations. This set of structures was composed of vessels, ar-
teries, etc. mentioned in the guidelines.5–7 The instructions
were to delineate anatomical structures only on the slices that
are needed to guide the segmentation of stations, so most of
the anatomical structures were not completely delineated. It is
worth noting that this manual delineation of about 250 struc-
tures (16 stations and more than 30 structures per patient)
was a very time consuming process,21 estimated to 8 to 10 h
per patient. The segmentation of the stations being consensus-
based meant that only one delineation was available for each
station preventing us from assessing inter-observer variability
and to use conventional performance evaluation approaches
such as STAPLE-related methods.22, 23

3.B. Criteria

In order to quantify the overlap between two 3D structures
A and B, the Dice similarity coefficient DSC(A,B) = 2|A∩B|

|A|+|B|
was used. As proposed by Kim et al.,24 we also used a ro-
bust point-to-surface distance measure named bidirectional
local distance BLD(A,B), based on the Hausdorff metric, ex-
pressed in millimeter.

3.C. First experiment

The goal of this first experiment was to evaluate the maxi-
mum performance that could be reached using the DRP con-
cept explained above. For a given patient p, we extracted the
DRP operators and used them to segment the same patient.
The tolerance ε was fixed at 0.5% of the station volume. The
binning of the HS histogram was set to 100 (threshold inter-
vals of 0.01). Three sets of orientations with increasing sizes:
Nα = 4 (0◦, 90◦, 180◦, and 270◦ corresponding to the main
AP and LR directions), Nα = 8 (every 45◦), and Nα = 16 (ev-
ery 22.5◦) were compared. This experiment was performed
for five patient images and ten stations: supraclavicular, supe-
rior mediastinal, and aortic stations (1 to 6), corresponding to
stations above the Carina. Table I shows the DSC and BLD
values by station averaged over the five patients.

Medical Physics, Vol. 41, No. 6, June 2014
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TABLE I. Dice similarity coefficients and BLD distance averaged for the five
patients for each ten stations according to three numbers of orientations. Dice
criteria is expressed in percentage and BLD in mm. The mean station sizes
are also indicated in cm3.

DICE BLD in mm

Angles 4 8 16 4 8 16 Size in cc

Stations
S1R 74% 77% 77% 2.0 1.7 1.7 15
S1L 71% 73% 74% 2.0 1.9 1.8 15
S2R 74% 74% 74% 1.1 1.1 1.0 11
S2L 68% 68% 69% 1.3 1.3 1.2 7
S3A 71% 73% 73% 1.4 1.3 1.3 28
S3P 83% 84% 84% 1.2 1.2 1.1 51
S4R 82% 82% 83% 0.9 0.8 0.9 7
S4L 73% 74% 74% 1.8 1.3 1.3 4
S5 87% 87% 86% 0.8 0.8 0.8 9
S6 70% 70% 70% 0.8 0.8 0.8 2

Mean 75% 76% 76% 1.3 1.2 1.2

3.D. Second experiment

The second experiment was aimed at evaluating the pos-
sibility of detecting common DRPs across several patients
and extracting stable spatial dependencies between stations
and anatomical structures. A leave-one-out procedure was ap-
plied. Successively, Np − 1 images were considered and the
learning process described above was performed. The last im-
age was then automatically segmented from the set of DRP
operators learned from the other images. DSC and BLD were
computed between reference and segmented stations. This
procedure was repeated Np times with all the images and av-
eraged. The learning stage was performed with Nα = 8 angles
values (based on the results of the first experiment).

Table II depicts the mean DSC and BLD values for the
leave-one-out procedure, for each station. Figure 6 depicts
box plots for DSC and BLD values for the five experiments.
Table III depicts the number of DRP operators extracted by
the learning process (size of RS) for the five experiments.
As the ground truth is known, we computed the DSC val-
ues obtained by applying each operator DRPi individually,

TABLE II. Dice similarity coefficients and BLD distances for the five exper-
iments. Dice criteria are expressed in percentage and BLD in mm. The means
by stations are also indicated.

Stations S1R S1L S2R S2L S3A S3P S4R S4L S5 S6 Mean

DICE (%) 62% 62% 69% 57% 68% 80% 78% 61% 70% 55% 66%
BLD 2.9 2.3 1.4 1.6 2.1 1.7 1.1 1.7 1.1 1.2 1.7
(in mm)

�i = DSC(Si) − DSC(Si−1), and counted the number of
times �i is greater (�+), lower (�−), and equal (�0) to zero.
�+ (resp. �−) corresponds to an improvement (resp. degra-
dation) of the segmentation. We computed the average DSC
improvement �̄+ and degradation �̄−.

4. DISCUSSION

In Table I, DSC ranged from about 60% to more than
80%, meaning that DRPs can retrieve a large part of the seg-
mentation. As expected, using Nα = 8 directions, rather than
Nα = 4 improves results (mean 76% vs 75%), but larger
values (Nα = 16) only led to marginal improvements. The
smallest stations in size (S2L, S6) led to lower DSC values
(around 70%) but depicted good BLD (around 1 mm). Sta-
tions S1R and S1L, with some ambiguities in the guidelines,
as shown in Ref. 7, were the ones with the lowest BLD values
(1.7–1.9 mm).

In Table II and Fig. 6, the mean DSC ranged from 55%
(S6) to 80% (S3P), the BLD from 2.9 mm (S1R) to 1.1 mm
(S4R and S5), illustrating that the learning stage managed to
extract useful DRP operators. Among the stations, S3A, S4R,
and S5 were the ones that yielded the best results among pa-
tients. Station S6 was the one with the lowest DSC (55%), but
this was the smallest station in size and the BLD was good,
around 1.2 mm. A similar trend was obtained for station 4L.
Among all patients, BLD was lower than 3 mm. Stations S1R
and S1L depicted the least good results, 2.3 and 2.9 mm (and
62 % DSC).

The worst DSC/BLD result was obtained with patient
3 and station S3A. The images were reviewed and it was

FIG. 6. Minimum, 1st quartile, median, 3rd quartile, and maximum values, per patient and among stations, for DSC (left) and BLD (right) measures, for the
five experiments.
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TABLE III. Analysis of the RP operators by patient. First column depicts the
number of used RPs (|R|). The column �+ (resp. �−) indicates the number
of operators leading to positive (resp. negative) gain in DSC. The �̄+ and
�̄− columns, the mean DSC gain/loss. Last column depicts the number of
operators that did not modify the DSC.

|R| �+ �̄+ �− �̄− �0

p1 332 132 2.2% 15 −0.3% 185
p2 335 131 2.1% 19 −1.0% 185
p3 328 131 2.4% 24 −0.8% 173
p4 331 131 2.0% 18 −1.6% 182
p5 333 132 2.3% 27 −1.0% 174
Mean 332 131 2.2% 21 −0.9% 180

found that, during the delineation by the experts, the Bra-
chio Cephalic Vein (BCV) was not removed from station S3A
while it is the case for the four others patients, as illustrated
in Fig. 7. According to the guidelines,6 only the most anterior
part of the BCV should be included in station S3A, but only
from the slice where the BCV divides into two parts. This
situation was illustrated here to exemplify the interest of the
proposed approach, not only as an automated segmentation
method, but also to highlight situations where discrepancy
occurs with guidelines.

In Table III, on average over the five leave-one-out
procedures, 332 DRP operators were extracted (about 33 per
stations). As the DRP were built according to the spatial re-
lationships observed in the four other patients, there was no
guarantee that these relationships were going to be of value
for the fifth patient. Interestingly, few DRPs led to a DSC
degradation (�−), and in those cases, the mean DSC loss
(�̄−) was less than 1%. There were thus few situations where
spatial relationships can be observed on four patients and are
different for the fifth patient. More than 50% (180 over 332)
of the DRP operators did not modify the DSC value. It means
that in those cases, the pixels removed by the operators had
already been removed by previous operators. In the other pos-
itive cases, the mean DSC gain �̄+ by RP was of 2.2%. It is
not possible to determine in advance if a DRP operator will
lead to a DSC gain or loss.

One limitation of this method is that it requires the delin-
eation of several anatomical structures prior to undertaking
segmentation of the mediastinal nodal stations. The perfor-
mance of the proposed method is thus linked to the accuracy
of delineation of those anatomical structures. However, these

FIG. 7. The reference station S3A is depicted by its contour and the result
of the automated segmentation is shown as the filled area. Part of the brachio
cephalic vein (BCV) is included in the contour for patient 3 (right), while it
is excluded in patient 1 (left).

anatomical structures needed to be only roughly segmented.
We did not investigate precisely the impact but it is expected
to be limited because only part of the structures are used. For
example, consistence between patients for starting and end-
ing slices of an organs delineation (which could be some-
times difficult for organs such as arteries or veins) is not re-
quired. What is needed is a correct delineation for the part of
the structure that is adjacent to a station. Segmentation of the
anatomical structures could be obtained automatically using
conventional methods.

Another limitation is that the learning phase was based on
five patients and this small number of patients is not sufficient
to cover all anatomical variations. Increasing the number of
cases in the database could reduce the number of DRP opera-
tors because of the conservative method used to set the thresh-
olds (minimum). Among the different relationships between
spatial entities, we decided here to only study directional rel-
ative positions. Other relationships, such as relationships to
multiple structures (“between,” “along”), adjacency notions,
fuzzy distances, symmetry measures, etc., see Ref. 25, could
also be integrated into the generic learning process.

Regarding the computation time, the application of each
DRP was fast, a few seconds on a single core Intel Xeon CPU
E5-1660 3.3GHz. The computation time is linear in the num-
ber of voxels of the stations and anatomical structures consid-
ered. The complete segmentation of a patient ranged from 2
to 7 min on a single core. No particular optimization has been
made and there is no doubt that faster parallel implementa-
tions could be performed. The learning dataset is composed
of NP × NS × NA × Nα fuzzy maps. For example, with NP

= 5 patients, Ns = 10 stations, NA = 10 anatomical structures
(in mean by stations), and Nα = 16 orientations, it leads to a
size of 8 GB (highly compressible).

5. CONCLUSION

The positional relationships between stations and anatom-
ical structures by means of DRP operators was investigated.
We showed feasibility of automatically learning those oper-
ators from a set of reference segmented images in order to
provide automatic segmentation of a new image. This pro-
cess intends to mimic the manual delineation based on the
guidelines. It is a purely geometrical method, which provides
insights into the segmentation process. To our knowledge,
no other method has been published to segment mediastinal
lymph stations.

Access for the research community to the database of
cases used in this study is provided, in an open-data
approach.26, 27 The CT images were anonymized and made
available. The segmented stations and anatomical structures
are also available as binary images or Dicom-RT-Struct file
format. We hope it will help further research in this field:
http://www.creatis.insa-lyon.fr/lymph-stations-atlas.

The proposed approach was designed specifically for au-
tosegmenting the mediastinal lymph nodes stations. It could
also be useful to help the definition of atlas. This approach
is complementary to other segmentation methods based on
pixel intensities. A similar approach could be applied to other
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sites where spatial relationships exist between anatomical
structures.
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