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Abstract

Proton therapy is a promising radiation treatment modality that uses proton beams
to treat cancer. Current treatment planning systems rely on an X-ray computed to-
mography (CT) image of the patient’s anatomy to design the treatment plan. The
proton stopping-power ratio relative to water (SPR) is derived from CT numbers (HU)
to compute the absorbed dose in the patient. Protons are more vulnerable than photons
to changes in tissue SPR in the beam direction caused by movement, misalignment or
anatomical changes. In addition, inaccuracies arising from the planning CT and intrin-
sic to the HU-SPR conversion greatly contribute to the proton range uncertainty. In
clinical practice, safety margins are added to the treatment volume to account for these
uncertainties at the expense of losing organ-sparing capabilities. The use of dual-energy
(DE) in proton therapy was first suggested in 2009 to better estimate the SPR with
respect to single-energy X-ray imaging.

The aim of this thesis work is to investigate the potential improvement in determining
proton SPR using DE to reduce the uncertainty in predicting the proton range in the
patient. This PhD work is applied to a new imaging device, the Imaging Ring (IR),
which is a cone-beam CT (CBCT) scanner developed for image-guided radiotherapy
(IGRT). The IR is equipped with a fast kV switching X-ray source, synchronized with
a filter wheel, allowing for multi-energy CBCT imaging.

The first contribution of this thesis is a method to calibrate a model for the X-
ray source and the detector response to be used in X-ray image simulations. It has
been validated experimentally on three CBCT scanners. Secondly, the investigations
have evaluated the factors that have an impact on the outcome of the DE decomposi-
tion process, from the acquisition parameters to the post-processing. Both image- and
projection-based decomposition domains have been thoroughly investigated, with special
emphasis on projection-based approaches. Two novel DE decomposition bases have been
proposed to estimate proton SPRs, without the need for an intermediate variable such as
the effective atomic number. The last part of the thesis proposes an estimation of proton
SPR maps of tissue characterization and anthropomorphic phantoms through DE-CBCT
acquisitions with the IR. A correction for X-ray scattering has been implemented off-
line, and a routine to linearly interpolate low-energy and high-energy sinograms from
sequential and fast-switching DE acquisitions has been proposed to perform DE material
decomposition in the projection domain with real data. DECT-derived SPR values have
been compared with experimentally-determined SPR values in a carbon-ion beam.
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Resumé

La proton thérapie est une modalité de traitement du cancer qui utilise des faisceaux
de protons. Les systèmes de planification de traitement actuels se basent sur une image
de l’anatomie du patient acquise par tomodensitométrie (Computed Tomography en
anglais, CT). Le pouvoir darrêt des protons relatif à l’eau (Stopping Power Ratio en
anglais, SPR) est déterminé à partir des unités Hounsfield (Hounsfield Units en anglais,
HU) pour calculer la dose absorbée au patient. Les protons sont plus vulnérables que
les photons aux modifications du SPR des tissus dans la direction du faisceau dues au
mouvement, au mauvais positionnement ou aux changements anatomiques. De plus,
les inexactitudes issues du CT de planification et intrinsèques à la conversion HU-SPR
contribuent énormément à l’incertitude sur la portée des protons. Dans la pratique
clinique, des marges de sécurité s’ajoutent au volume de traitement pour tenir compte
de ces incertitudes au détriment de la capacité dépargner des tissus sains autour de
la tumeur. L’usage de l’imagerie bi-énergie en proton thérapie a été proposé pour la
première fois en 2009 pour mieux estimer le SPR du patient par rapport à l’imagerie
mono-énergie.

Le but de cette thèse est d’étudier l’amélioration potentielle de l’estimation du SPR
des protons en utilisant l’imagerie bi-énergie pour réduire l’incertitude dans la prédiction
de la portée des protons dans le patient. Cette thèse est appliquée à un nouveau système
dimagerie, l’Imaging Ring (IR), un scanner tomodensitométrique conique (Cone-Beam
CT en anglais, CBCT) développé pour la radiothérapie guidée par l’image. L’IR est
équipé d’une source de rayons X avec un système d’alternance rapide du voltage, syn-
chronisé avec une roue contenant des filtres de différents matériaux qui permet des
acquisitions CBCT multi-énergie.

La première contribution est une méthode pour calibrer les modèles de source et
la réponse du détecteur pour être utilisés en simulations d’imagerie X. Deuxièmement,
les recherches ont évalué les facteurs qui peuvent avoir un impact sur les résultats du
processus de décomposition bi-énergie, des paramètres d’acquisition au post-traitement.
Les deux domaines, de la tomodensitométrie et des projections, ont été étudiés, avec
un accent particulier sur les approches basées dans le domaine des projections. Deux
nouvelles bases de décomposition ont été proposées pour estimer le SPR, sans avoir
besoin d’une variable intermédiaire comme le nombre atomique effectif. La dernière
partie propose une estimation du SPR des fantômes de caractérisation tissulaire et d’un
fantôme anthropomorphique à partir d’acquisitions avec l’IR. Il a été implémenté une
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correction du diffusé, et il a été proposé une routine pour interpoler linéairement les
sinogrammes de basse et haute énergie des acquisitions bi-énergie pour pouvoir réaliser
des décompositions en matériaux avec données réelles. Les valeurs reconstruites du SPR
ont été comparées aux valeurs du SPR expérimentales déterminées avec un faisceau
d’ions de carbone.
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Introduction

Computed tomography (CT) images provide the spatial distribution of the linear
attenuation coefficient of the object being imaged. Two objects having different mass
density and elemental composition might exhibit the same photon attenuation value and,
therefore, cannot be distinguished in a CT scan. However, by exploiting the dependence
on energy of the attenuation coefficient of tissues, two materials might be differentiated
when recording the attenuation at different beam spectra. This is the basic principle
of dual-energy imaging, which was already mentioned in 1973 by Sir Hounsfield in the
paper describing the invention of the CT scanner.

Proton therapy is a cancer treatment modality that uses proton beams to damage
cancer cells, preventing them from growing and dividing. In principle, the finite and
controllable range of protons (by adjusting their kinetic energy) and the reduced inte-
gral patient dose with respect to photons, for the same target dose, allow for a more
conformal radiotherapy. Current treatment planning systems rely on an X-ray CT image
of the patient’s anatomy to design the treatment plan. The proton stopping-power ratio
relative to water (SPR) is derived from CT numbers (HU) to compute the absorbed dose
in the patient. Protons are more vulnerable than photons to changes in tissue SPR in
the beam direction caused by movement, misalignment or anatomical changes. In addi-
tion, inaccuracies arising from the planning CT and intrinsic to the HU-SPR conversion
greatly contribute to the proton range uncertainty. In clinical practice, safety margins
are added to the treatment volume to account for these uncertainties at the expense of
losing organ-sparing capabilities. The use of dual-energy imaging for proton treatment
planning was first proposed in 2009 to better estimate the patient SPR with respect to
single-energy imaging.

In this work, the main motivation has been to investigate the potential improvement
in determining proton SPR using dual-energy to reduce the uncertainty in predicting
the proton range in the patient. This PhD work is applied to a new imaging device,
the Imaging Ring (IR), which is a cone-beam CT (CBCT) scanner developed for image-
guided radiotherapy (IGRT). The IR is equipped with a fast-kV switching X-ray source,
synchronized with a filter wheel, allowing for multi-energy CBCT imaging.

This work is organized as follows: Chapter 1 starts out by providing an introduction

1
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to radiotherapy developments in the last century, an overview of proton-matter interac-
tions and the clinical rationale for proton therapy. We then proceed in describing the
role of CT in radiation treatment planning, an overview of photon-matter interactions,
the sources of uncertainty in proton therapy and an outline of the existing imaging
modalities to minimize these uncertainties.

To set the basis for further discussion, Chapter 2 describes the principles and techni-
cal approaches to perform dual-energy imaging, provides an overview of the clinical and
industrial applications with special mention to radiotherapy applications, and a review
of the existing decomposition methods for material segmentation and dose calculation
in both the image- and the projection- domain.

Chapter 3 then deals with the first objective of this PhD work, that is to provide
a model for the source and the detector response of the IR system. A procedure to
calibrate and validate kilo-voltage CBCT models is described, as well as a procedure
to simultaneously assess the validity of the source and the detector response models.
In addition, a scatter-mitigation technique for the IR data, implemented off-line, is
illustrated.

We then proceed, in Chapter 4, in reviewing the existing methods to determine the
SPR from dual-energy data and we compared them with two novel approaches. We also
compared image- and projection-based decomposition domains in terms of SPR accuracy.
The last part of this chapter shows the results of the second objective of this PhD work:
the estimation of proton SPR maps of tissue characterization and anthropomorphic
phantoms through dual-energy CBCT acquisitions with the IR system.

Chapter 5 deals with the third objective of the thesis, that is to investigate the main
factors that would have an impact on the outcome of the dual-energy decomposition
process, from the acquisition protocols to the post-processing.

Chapter 6 reviews some of the works that have studied the influence of the mean
excitation energy of human tissues on the proton range, and evaluates the feasibility of
an experimental setup to extract volumetric distributions of the I-value of patients by
combining two tomographic imaging modalities: proton CT and dual-energy CT.

This document ends with a synthesis of the conducted work and the future prospects.
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The main objective of this thesis was to improve the estimation of the range of pro-
tons in patients using Dual-Energy Computed Tomography (DECT) for proton therapy
treatment planning. This thesis was part of the Dual-Energy X-ray imaging for TargEt-
ing Radiotherapy (DEXTER) project, a collaboration between Institute for Research and
Development on Advanced Radiation Technologies (radART) (Salzburg, Austria) and
Centre de Recherche En Acquisition et Traitement de l’Image pour la Santé (CREATIS)
(Lyon, France) co-funded by Agence Nationale de la Recherche (ANR) and Austrian
Science Fund or Fonds zur Förderung der wissenschaftlichen Forschung (FWF). Most of
the work has been conducted in the Léon Bérard Cancer Center in Lyon.

The aim in this chapter is to describe the key elements for establishing the context
of the Ph.D. thesis:

- radiotherapy developments in the last century, proton-matter interactions, clinical
rationale for proton therapy;

- radiation treatment planning and the role of computed tomography, photon-matter
interactions, sources of uncertainty in proton therapy, imaging modalities to min-
imize range uncertainties and to verify proton range in the patient.

1.1 Clinical context

1.1.1 Radiotherapy: from X-rays to particle therapy

Radiotherapy, also known as radiation therapy or radiation oncology, is a cancer
treatment modality that uses ionizing radiation to damage cancer cells, preventing them
from growing and dividing. The most limiting factor in radiotherapy is the normal tissue
radiation tolerance. To ensure the success of radiotherapy, the main goal is to conform
the dose, i.e., to deliver the maximum radiation dose to the tumor while minimizing the
dose delivered to the surrounding healthy tissues.

Radiotherapy came out shortly after the discovery of X-rays by Wilhelm Röntgen in
1895. A year later, in 1896, Henri Becquerel discovered that certain elements sponta-
neously emit energetic particles or radiation from matter, property named spontaneous
radioactivity. For this discovery, Henri Becquerel together with Marie Curie and Pierre
Curie received the Nobel Prize in Physics in 1903. One of their findings was the cutaneous
damage induced by the continuous exposition to radium. This evidence of biological and
harmful effects suggested that radiation could be used to treat diseases [Slater, 2012]. A
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new era of research began. In the following decades, the growing interest in understand-
ing radiation response, radiobiological damage and how to optimize the use of radiation
for therapeutic purposes yield to tremendous developments in radiotherapy.

X-rays or gamma-rays (cobalt sources) were the first radiation sources employed in
radiotherapy. In 1940, electron beam therapy became also a therapeutic option. Due to
the low energy available, a limitation of the first X-ray machines was the difficulty to
treat deeply-seated tumors without producing excessive skin reactions. In the 1960s, low
energy X-ray machines were substituted by high energy mega-voltage (MV) treatment
units, known as linear accelerators or linacs. Linacs were also suited to produce electron
beams ideal to treat superficial tumors up to 4 cm depth.

The introduction of new imaging modalities, such as Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI) in the 1970s and Positron Emission Tomog-
raphy (PET) in the 1980s, along with computer-assisted Treatment Planning System
(TPS), allowed large improvements. Treatment planning shifted from 2D to 3D and
CT-based planning improved target tumor and Organ At Risk (OAR) delineation, al-
lowing dose distributions better conformed to the tumor [Thariat et al., 2012]. Image
Guided Radiotherapy (IGRT) started in the 1980s with the introduction of portal imag-
ing.

In concomitance with technological developments, the improved knowledge in radio-
biology introduced dose fractionation schemes, which have proven to increase survival
rates and to reduce radiation side effects. With the advent of linacs equipped with a
gantry, a rotating structure around an horizontal axis, multiple beams pointing to the
target center were used in clinical routine to irradiate deep-seated tumors and to better
conform the dose.

Another development towards delivering therapeutic doses with higher precision,
and thus avoiding normal tissue irradiation, was the introduction of Intensity Modulated
Radiation Therapy (IMRT) in the late 1990s and Cone Beam Computed Tomography
(CBCT) at the beginning of the XXI century. Volumetric Modulated Arc Therapy
(VMAT) was introduced in the last years as an evolution of IMRT. The so-called
mega-voltage era is still in continuous technological development looking for machines
and techniques to produce better conformed dose plans.

In the context of improving radiotherapy by better targeting the tumoral volume
and sparing the surrounding tissues, the performance of other particle beams such as
neutrons, protons, pions or heavier ions early aroused interest [Amaldi and Kraft, 2005].
This led to the birth of particle therapy.

Particle therapy or hadron therapy encompasses those techniques of external radio-
therapy that use hadrons, non elementary particles composed of quarks such as neutrons,
protons or light nuclei, to irradiate solid tumors.

In 1938, low energy neutrons were the first hadrons used in radiotherapy. It was
observed in clinical trials that neutrons produced better tumor control rate, especially
for radio-resistant tumors, thanks to the high Relative Biological Effectiveness (RBE)1

1The Relative Biological Effectiveness (RBE) of a given radiation is the ratio of dose of reference
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[Stone et al., 1940]. Nevertheless, as the depth-dose distribution of fast-neutrons is
similar to that of X-ray beams (see Figure 1.1), the high biological effective dose behaved
as a double-edge sword causing severe side effects due to the difficulty of sparing healthy
tissues. Radiotherapy with neutrons was abandoned until mid-1970’s where the interest
in fast neutrons was renewed.

Between the 1940s and the 1970s, physicists and biologists demonstrated the superi-
ority of charged particle beams with respect to photon and neutron beams [Slater, 2012].
Negative pions were then studied. Despite an increase of dose at the end of the range,
pions were soon abandoned mainly due to the difficulty to produce pions and also be-
cause clinical trials showed no improved tumor control rate with respect to conventional
photon therapy.

In 1946, Robert Wilson proposed the clinical use of proton and carbon ion beams
[Wilson, 1946]. He observed that these charged particle beams presented an inverse
depth-dose profile with respect to X-rays, with a maximum dose deposit at the end of
their range, near the so-called Bragg Peak (see Figure 1.1). The first treatment with
proton beams was carried out at the Lawrence Berkeley National Laboratory (Berkeley,
California, U.S.A.) in 1954. Three years later, in 1957, treatments with helium beams
started. Other particle beams, such as neon ions, were used for treatment in 1975. Heavy
ion therapy in Berkeley was done at the Bevalac, a combination of linear accelerator with
a Bevatron, i.e. a weakly focusing synchrotron. Other laboratories accelerated particle
beams using a cyclotron, which produces a fixed beam energy, and passive shaping
systems such as energy absorbers, scatterers, compensators and collimators were used
to shape the beam to the target volume.

Most of the clinical data available with carbon ion beams derive from the clini-
cal activity started in 1994 at the Heavy Ion Medical Accelerator Center (HIMAC,
Chiba, Japan), using the passive shaping technique. In 1997, the active beam deliv-
ery technique, which consists in using magnetic fields to deflect hadron beams across
the treatment volume, was started at the Gesellschaft für Schwerionenforschung (GSI,
Darmstadt, Germany) and at the Paul Scherrer Institute (PSI, Villigen, Switzerland).

One advantage of particle beams with respect to photons is the possibility to bet-
ter spare normal tissues when treating deep-seated tumors or close to organs at risk
[Paganetti, 2011]. Consequently, in the last twenty years, interest in proton and car-
bon ion therapy has significantly increased worldwide. At present2, 61 proton facilities
and 10 carbon ion therapy facilities are in operation. Around 40 proton facilities and
3 carbon ion facilities are under construction, and more than 15 proton facilities are
in the planning stage worldwide. The Particle Therapy Cooperative Group (PTCOG)
reported that, by the end of 2015, 131240 patients had been treated with protons and
19376 patients had been treated with carbon ions worldwide3. Despite some clinically
proved advantages [Tsujii et al., 2004; Okada et al., 2010], the main reason of the limited

radiation (photons) to that of test (e.g. neutrons) required to produce a defined biological response.
This quantity is used to compare the biological effects of different radiation sources.

2According to www.ptcog.ch. Last update: November 2016.
3According to www.ptcog.ch. Last update: December 2015.
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spread of heavy ion therapy around the world is cost-efficiency. The cost of building such
a facility, generally a synchrotron, is two to three times higher than building a proton
facility.

Figure 1.1: Normalized central axis depth dose profiles from several particle beams.
Proton and carbon ion beams exhibit relatively low entrance dose, followed by a region
where dose increases slowly with depth (plateau region), until reaching the maximum
dose deposit in depth, in the so-called Bragg peak. Photons present a maximum dose
deposit close to the patient skin and afterwards an exponential decay. Protons present a
sharp edge at the end of the range whereas carbon ions show a sharper Bragg peak than
protons, and a non negligible tail due to nuclear fragmentation. Figure from [Quiñones,
2016].

1.1.2 Physics of proton interactions in matter

A proton is a subatomic particle with a positive charge. A therapeutic proton beam
has an initial kinetic energy comprised between 60 MeV and 250 MeV. In this energy
range, the mechanisms that describe the energy transfer from the proton beam to the
traversed matter are:

1. Energy loss in inelastic Coulomb interactions with electrons of the medium: exci-
tation and ionization of target atoms.

2. Multiple Coulomb scattering due to elastic interactions with the target nuclei.

3. Elastic and inelastic nuclear interactions with the target nuclei.
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In general terms, protons continuously lose kinetic energy through frequent collisions
with atomic electrons; while most of the changes of direction are due to repulsive elastic
Coulomb interactions with the atomic nuclei. Inelastic nuclear interactions between
protons and atomic nuclei also occur but are less frequent. A schematic illustration of
the mechanisms that govern proton interactions with matter in the therapeutic energy
range is shown in Figure 1.2 and a more detailed description of each mechanism is
provided in the following subsections.

Figure 1.2: Illustration of proton-matter interaction mechanisms: a) energy loss via in-
elastic Coulomb interactions with electrons; b) deflection of the proton trajectory via
repulsive elastic Coulomb interactions with the atomic nuclei; c) absorption of the pri-
mary proton by the nucleus and creation of secondary particles via inelastic nuclear in-
teractions (p: proton, e: electron, n: neutron, γ: gamma rays). Figure from [Newhauser
and Zhang, 2015].

1.1.2.1 Energy loss

Protons primarily lose kinetic energy due to frequent inelastic Coulomb interactions
with the electrons of the medium. When a proton traverses matter, it collides with
electrons causing the excitation and ionization of atoms. The range of the secondary
electrons produced is less than 1 mm (except delta-rays [Newhauser and Zhang, 2015]),
so dose is locally absorbed along the proton path. Protons travel following an almost
straight line because there is no significant deflection of protons by electrons. As proton
mass is much higher than electron mass4, protons lose a small fraction of their energy

4µ = mp/me = 1836.15267389(17) is the proton-electron mass ratio which is the rest mass of the
proton mp divided by that of the electron me. Retrieved from The NIST Reference on Constants, Units,
and Uncertainty. US National Institute of Standards and Technology. November 2016.
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in each interaction causing a continuous slowing down.
The linear stopping power (S) is the quantity that defines the rate of energy loss (dE)

of a proton beam per unit length (dx) in a homogeneous material, expressed in MeV/cm.
S increases as protons slow down (valid in the high velocity regime, i.e. v >> ve, where
v is the velocity of the projectile and ve the velocity of the electrons of the medium) and
it depends on the kinetic energy and the target material. The stopping power is defined
for a beam, not for a single particle.

Another useful quantity, independent of the mass density ρ, is the mass stopping
power (S/ρ) expressed in MeV/g·cm2 defined as

S

ρ
= −1

ρ

〈
dE

dx

〉
. (1.1)

The mean electronic energy loss of charged particles in a homogeneous medium is
described by the Bethe-Bloch equation ([Bethe, 1930; Bloch, 1933]) which is valid for
projectile energies above ∼ 1 MeV/u:

S = −

〈
dE

dx

〉
= 4πr2

emec
2ρe

z2

β2

[
ln

2mec
2β2

I(1− β2)
− β2 −

δ

2
−
C

Z

]
(1.2)

where re is the classical electron radius, me is the mass of an electron, c is the speed
of light in vacuum, ρe is the electron density of the medium, z is the charge of the
projectile (z = 1 for protons), β = v/c where v is the velocity of the projectile, Z is
the atomic number of the medium, I is the mean excitation energy of the medium, δ/2
is a density correction term and C/z is a shell correction term. Correction terms were
added to the initial formulation to account for the quantum mechanical effects. The
density effect term δ/2 is important at high energies (typically outside the therapeutic
range, i.e. 1% for 500 MeV protons [ICRU, 1993]) and it corrects for the fact that the
electric field of the projectile tends to polarize the target atoms along its path. As a
consequence, electrons far from the projectile path would feel less the electric field of the
projectile and would contribute less to the energy loss, reducing the stopping power. The
shell correction term C/Z is important at very low energies, it depends on the medium
and on the projectile velocity [Leo, 1994], and corrects for the assumption that target
electrons are at rest. When the projectile velocity is comparable or smaller than the
orbital velocity of the bound electrons, the probability that the projectile collides with
the orbital electrons decreases and so does the stopping power (i.e. up to 6% for protons
between 1 MeV and 100 MeV [Ziegler, 1999]).

Due to the loss and capture of electrons from the target when the projectile velocity
is comparable to the electron orbital velocity (' 0.008 c), to extend the Bethe-Block
formula to lower energies, the projectile charge z is replaced by an effective charge zeff .
The dependency of zeff with the projectile velocity can be approximated by the Barkas
formula [Barkas and Evans, 1963]:

zeff = z(1− e−aβz−2/3
) (1.3)
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where a ' 125.
The quasi-continuous energy loss determines the proton range in the patient (see

section 1.1.3.2). Looking at Equation 1.2, it is easy to understand the typical depth
dose distribution of charged particle beams (see Figure 1.1). Energy loss is governed by
the projectile’s characteristics and the properties of the absorber material. In particular,
energy loss is proportional to the inverse square of the projectile’s velocity (1/β2) and
to the square of its charge z, but it is independent of the projectile’s mass. In other
words, the energy loss rate increases as the kinetic energy of the particle decreases along
the penetration depth (plateau region), followed by a steep rise at low residual energies
at the end of the particle range (Bragg peak region). At very low energies, the effective
charge zeff is rapidly reduced according to Equation 1.3, causing an abrupt drop of the
stopping power (sharp edge). Moreover, the energy loss rate is directly proportional to
the density of electrons in the absorber medium (ρe) (see section 1.1.3.4) and it also
depends on the logarithm of the mean excitation energy I of the target (see section
1.1.3.5).

Clinical applications require to deliver a uniform dose to the target volume. This is
achieved by adding fluence-weighted proton beams of different energies –Bragg peaks at
different depths– which results in a Spread Out Bragg Peak (SOBP) (see Figure 1.3). As
cyclotrons produce a fix beam energy, a range modulator wheel is used to adjust Bragg
peak positions in depth; whereas synchrotons produce beams of variable energy.

Figure 1.3: Depth dose distribution for a Spread Out Bragg Peak (SOBP, red) generated
by adding fluence-weighted pristine Bragg peaks (blue), and a 10 MV photon beam
(black). Figure from [Levin et al., 2005].
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1.1.2.2 Multiple Coulomb scattering

When protons slow down and pass close to the target nuclei, they also interact with
the electromagnetic Coulomb field of target nuclei (repulsive force). In these collisions,
protons lose little energy, but change direction due to multiple scattering with atomic
nuclei. A lateral divergence of the beam is observed after many scattering events (>20).
The beam angular distribution with respect to the incident direction after traversing
a certain thickness of material can be interpreted as the summation of small angle
deflections (highly probable) and large angle deflections (rare events) [Leo, 1994].

For small deviation angles, the most complete theory was proposed by Molière in
1948. Assuming that scattered protons are mainly emitted at small deflection angles
(sin θ ≈ θ) the beam angular deviation can be approximated by a Gaussian distribution
[Gottschalk, 2004]. Based on Molière’s theory, Highland in 1978 derived a formula to
quantify the scattering angle θ0 after traversing a thickness L of material (with L� pro-
ton range) expressed in radians:

θ0 =
14.1 MeV

pv
z

√
L

X0

[
1 +

1

9
log10

(
L

X0

)]
(1.4)

where z, p and v are the charge (z = 1 for protons), the initial momentum and the
velocity of the projectile, respectively. X0 is the radiation length of the target material,
which is a value characteristic of electromagnetic processes at high energy (in particular
bremsstrahlung), i.e. it is proportional to Z2; and L is the target thickness in the same
units (g/cm2).

As θ0 ∝ 1/pv, the scattering angle θ increases as the kinetic energy T of the proton
beam (pv ' 2T ) decreases. To reach the same depth, massive particles (e.g. carbon ion
beams) require more kinetic energy than lighter ones (e.g. protons). Consequently, at a
given penetration depth, carbon ion beams show little lateral scattering, while protons
exhibit an angular spread approximately three times larger. Moreover, the scattering

angle is inversely proportional to X
1/2
0 of the traversed material.

Multiple Coulomb Scattering (MCS) is responsible for the lateral divergence of the
beam (lateral penumbra) and of the growth of the lateral spot size of a scanned beam
in depth.

1.1.2.3 Nuclear interactions

Besides the electromagnetic mechanisms hereabove described, protons can undergo
elastic and inelastic nuclear reactions with the atomic nuclei. In the therapeutic energy
range, these interactions contribute significantly less to energy loss than electromagnetic
processes. In elastic interactions, the incident projectile scatters off the target nucleus,
with the total kinetic energy conserved. In inelastic interactions, the proton is absorbed
by the nucleus, whereas the nucleus is irreversibly transformed (i.e. left in an excited
state and then fragmented). Most of the secondary particles resulting from proton-
nucleus interactions are protons, neutrons, γ rays, heavy fragments such as alphas,
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short-lived isotopes such as positron emitters, e.g. predominantly 15O and 11C for proton
irradiations, and recoiling residual nuclei. Active research is being conducted to test if
the distribution of γ rays (prompt gammas), and 15O and 11C isotopes can be used for
in vivo range verification during proton treatment delivery (see section 1.2.5.2) [Knopf
and Lomax, 2013].

The main consequence of nuclear interactions is a gradual decrease of the number
of primary protons before reaching the depth of the Bragg Peak (i.e. about 1% of the
incident protons are removed from the beam per centimeter of range in water [Lomax,
2009]). In other words, at a depth of 20 cm in water, the primary proton fluence is
reduced by about 20%.

1.1.3 Quantities of interest

In this section, some useful quantities that will be referenced to in the rest of the
manuscript are defined.

1.1.3.1 Energy and range straggling

Statistical fluctuations in the proton-electron interactions (see section 1.1.2.1) result
in small variations in the energy loss rates of individual protons. This phenomenon is
known as range or energy straggling and results in a broadening of the measured Bragg
peak with respect to the Bragg peak determined with Equation 1.2. The range straggling
depends on the mass of the projectile and it varies approximately as the inverse of the
square root of the particle mass. Thus, Bragg peaks for carbon ion beams are narrower
in the direction of the beam compared with protons beams (see Figure 1.1). Moreover,
range straggling increases with the penetration depth in a given material, resulting in
Bragg peaks of larger width and smaller height for higher initial energy (see Figure 1.4).

1.1.3.2 Average range

The range is intrinsically an average quantity, defined for a beam and not for indi-
vidual protons. The range is defined as the depth at which half of the protons of a beam
have come to rest [Newhauser and Zhang, 2015] (see Figure 1.5). For a monoenergetic
beam, the depth at which 50% of the protons have stopped coincides with the 80%
fall-off position [Paganetti, 2012].

To a good extent (if neglecting lateral scattering), proton path can be approximated
by a straight line. Under this assumption and the assumption that protons lose energy
in a continuous manner, i.e. the Continuous Slowing Down Approximation (CSDA), the
range R can be computed as:

R(E) =

∫ E

0
S(E′)−1dE′ (1.5)

where E is the proton initial kinetic energy. This equation gives the length of proton
path which, for most clinical situations, is a good approximation of the average proton
range.
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Figure 1.4: Depth dose distributions in water for different proton beam energies. Figure
from [Fix et al., 2013]. Range straggling increases with the penetration depth. MMC:
macro Monte Carlo.

1.1.3.3 Absorbed dose

The absorbed dose is a quantity that measures the energy deposited in a medium by
primary and secondary particles (e.g. electrons, see section 1.1.2.1) per unit mass. In
most situations, secondary electron equilibrium prevails, i.e., the energy carried in and
out of a volume of interest by secondary electrons is on average the same. Under this
assumption and discarding nuclear interactions, the macroscopic dose D delivered to a
medium of density ρ by a fluence φ of mono-energetic charged particles is proportional
to the mean energy loss of the particle beam:

D =
φ

ρ

〈
dE

dx

〉
(1.6)

1.1.3.4 Electronic density

The electronic density ρe, expressed in electrons/cm3, of a compound or mixture
composed of N elements is given by:

ρe = ρ NA

N∑
i=1

ωi
Zi
Ai

(1.7)
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Figure 1.5: Proton beam fluence φ (in arbitrary units) as a function of depth z in
water. Nuclear interactions are responsible of the gradual decrease of the number of
primary protons. The sharp distal edge is caused by ions being absorbed by the medium
when running out of energy. Range straggling and stochastic energy loss variations of
individual protons within the beam results in the sigmoid shape of the distal fall-off.
Figure from [Newhauser and Zhang, 2015].

where ρ is the mass density (in g/cm3) of the compound, NA is the Avogadro’s number5,
ωi, Zi and Ai are the fraction by weight, the atomic number and the molar mass (in
g/mol) of the i-th element, respectively.

Z/A varies by about 16%, from 0.5 to 0.42, for the main elements present in the
human body. Hydrogen is an exception with 0.99, but the concentration of hydrogen
in the human body is low (about 10%) and nearly uniform thorough the body [ICRU,
1992].

1.1.3.5 Mean excitation energy

The mean excitation energy, sometimes referred to as average ionization potential
or I-value, expressed in electron volts (eV)6, is defined as the mean energy required to
excite an atomic electron from its initial ground state E0 to an excited state Ei. Its value

5The Avogadro’s number or constant represents the number of constituent particles, usually atoms
or molecules, that are contained in one mole of substance. In the International System of Units (SI) it
has the value of 6.022140857(74) × 1023, expressed in atoms or molecules per mol.

6An electron volt (eV) is the amount of energy gained by an electron moving across an electric
potential difference of one volt: 1 eV = 1.6 × 10−19 J.
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is usually the energy difference between final and initial state: I = 〈Ei − E0〉.
The knowledge of the mean excitation energy or I-value of a medium is necessary to

compute the stopping power (Equation 1.2) and, therefore, the range (Equation 1.5) of
charged particle beams penetrating the medium. The I-value is a quantity independent
of the properties of the projectile, and it only depends on the properties of the medium
[ICRU, 1993].

Atomic electrons bounded to atomic nuclei can be described as individual oscillator
systems with a characteristic resonance frequency. The excitation energy spectrum of
atoms or molecules is discontinuous and each energy transition– from its ground state to
a certain excited state– (or oscillator frequency) has a certain probability (named dipole
oscillator strength). Based on this representation, Fano [Fano, 1964] defined the mean
excitation potential as:

ln I =
∑
i

fi lnEi (1.8)

where fi and Ei are the dipole oscillator strength and the excitation energy of the
transition from its ground state to the excited state i, respectively. Most elements
have excitation energies (Ei) in the range 10 eV to 1000 eV and the difficulty of this
computation relies on the knowledge of oscillator strengths (fi) in this energy range
[Hsu, 1979].

Bloch [Bloch, 1933] suggested the semi-empirical formula

I(Z) = k · Z (1.9)

where k '15 eV for low Z absorbers and k '10 eV for high Z absorbers, which applies
quite well for high Z atoms (Z > 20), as shown in Figure 1.6.
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Figure 1.6: Mean excitation energy I divided by the atomic number Z as a function of
Z. I-values taken from ICRU Report 49 [ICRU, 1993].
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Mean excitation energies are most commonly determined experimentally through:
1) the measurement of the stopping power relative to a reference absorber, 2) the absolute
stopping power or 3) the particle range [Hsu, 1979; ICRU, 1993]. First, the determination
of the relative stopping power requires to measure the energy lost by charged particles
in the test absorber and in the reference absorber (e.g. aluminum or copper [Hsu, 1979]
and water, see section 1.1.3.6). In addition, it is necessary to know the I-value and
the shell corrections for the reference absorber. Second, the absolute stopping power
of an absorber can be obtained by a direct measurement of the energy lost by charged
particles in the absorber. Then, the I-value is determined using Equation 1.2. Third,
the I-value can be determined through range measurements of monoenergetic charged
particles in an absorber material, neglecting scattering (CSDA formalism) and solving
Equations 1.5 and 1.2 for I.

The determination of the I-value for compounds, either experimentally or theoreti-
cally, has a large associated uncertainty (i.e. on the order of 10-15% for human tissues
[Andreo, 2009]). Consequences on how this uncertainty affects particle range estimation
and dose calculation are addressed in Chapter 6.

Alternatively, and to a good approximation, the I-value of compounds can be deter-
mined using the Bragg additivity rule [ICRU, 1993]:

ln I =

∑
i ωi (Zi/Ai) ln Ii∑

i ωi (Zi/Ai)
(1.10)

where ln Ii is the logarithm of the mean excitation energy of i-th element. This relation
adds the contributions from different atoms although it ignores the influence of chemical
bonds.

In ICRU Reports 37 [ICRU, 1984] and 49 [ICRU, 1993], to improve the agreement
with experimental data, the I-value for atomic constituents of compounds was given a
different value (i.e. ' 13% higher) with respect to the I-value of the same atoms in the
elemental state. In these reports, there is also the distinction between compounds in gas
and in condensed phases (liquid or solid).

According to the Bragg additivity rule, the mass stopping power (Equation 1.1) for
a compound can be approximated by a linear combination of the mass stopping powers
(Si/ρi) for the atomic constituents [ICRU, 1993]:

S

ρ
=

N∑
i

ωi
Si
ρi

(1.11)

1.1.3.6 Stopping Power Ratio

In proton therapy, a useful quantity to determine the range in the patient and to
compute the absorbed dose (see section 1.2.1) is the proton Stopping Power Ratio (SPR)
to water7. For human tissues in the therapeutic energy range, the SPR in a medium

7Water is commonly used as reference medium. Human bodies are assumed to be composed of water
by about 70%.
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m can be approximated by the ratio of stopping powers given by Equation 1.2 without
shell and density corrections [Schneider et al., 1996; Yang et al., 2012]:

SPRm = REDm

[
ln

2mec
2β2

Im(1− β2)
− β2

]
[

ln
2mec

2β2

Iw(1− β2)
− β2

] (1.12)

where Im and Iw are the mean excitation energies of the medium m and water, respec-
tively. The Relative Electron Density (RED) is the ratio of electronic densities (see
section 1.1.3.4) of the medium m and water, respectively:

REDm =
ρe,m
ρe,w

. (1.13)

1.1.4 Clinical rationale for proton therapy

In the previous section (section 1.1.2), the physical processes responsible of the spatial
distribution, i.e. both lateral and longitudinal, of energy deposited and absorbed dose in
the patient caused by incident proton beams were introduced. The physics of protons
is precisely the central rationale for the increased interest in proton therapy observed in
the last ten years.

The highly conformal and uniform dose to the target volume is no longer the main
advantage of protons over photons because recent developments in conventional radio-
therapy (see section 1.1.1) provide comparable target coverage [Newhauser and Zhang,
2015]. The main advantages of proton therapy are the finite range of protons, the pos-
sibility to control the penetration depth by adjusting the proton energy, the flat dose
distribution in correspondence of the tumor location by overlapping several Bragg peaks,
the lower integral dose8, the possibility to treat deep-seated tumors with high doses which
results in an increased Tumor Control Probability (TCP), and the superior capabilities
to spare healthy tissues with respect to photons and thus increased patient tolerance
(see Figure 1.7). By exploiting the sparing in normal tissues with proton therapy, it
should be possible to reduce the incidence of treatment-related complications such as
secondary cancers, cardiovascular diseases, fertility complications, growth and muscu-
lar problems in children and other long-term side effects [Paganetti and Bortfeld, 2005;
Levin et al., 2005; Amaldi and Kraft, 2005; Oeffinger et al., 2006; Paganetti, 2011; Slater,
2012; Newhauser and Zhang, 2015].

The survival rate in pediatric oncology has increased in the last decades, i.e. 58% in
the mid-1970s to more than 80% nowadays9. Hence, the main goal in pediatric oncology
is to reduce late side effects and toxicity to ensure a better and long-standing quality
of life. For these reasons, children are ideal candidates to benefit from proton therapy
[Zhang et al., 2013; Rombi et al., 2014; Indelicato et al., 2016].

8The integral dose is the total energy deposited in a patient for a given target dose.
9Retrieved from www.cancer.org – Key statistics for childhood cancers. December 2016.
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Figure 1.7: Comparison of highly conformed isodose distributions obtained with a 3
beams Intensity Modulated Proton Treatment (IMPT) plan (A) and with a 7 beams
Intensity Modulated Radiotherapy (IMRT) plan (B). The IMPT plan improved sparing
of temporal lobes, orbital structures and optical nerves. Moreover, the integral dose to
the brain tissue was reduced with IMPT. Figure extracted from [Rombi et al., 2014].

Nowadays, only proton and carbon ion beams are used clinically. A debate is ongoing
on which are the most suited ions for cancer therapy. From one side, ions with atomic
number greater than 6 (carbon) are less prone to be used clinically due to the fragmen-
tation tail after the Bragg Peak and the high RBE already in the entrance region [Jäkel,
2006]. On the other hand, some studies reveal that ions with an atomic number between
1 and 6 might be good candidates, such as Helium beams [Jäkel et al., 2003; Thariat
et al., 2012; Slater, 2012; Krämer et al., 2016]. This is a very interesting discussion
but it is beyond the scope of this thesis which is focused on improving proton therapy
treatment planning, even-though the findings could be extrapolated to other ion species.

1.1.5 Conclusion

More than one century after the discovery of X-rays, technological developments in
radiotherapy together with improved knowledge of biological effects of radiation have
resulted in the delivery of highly conformal dose plans with maximized healthy tissue
preservation. Radiotherapy with high energy photons and with charged particle beams
have experienced a parallel development over time and, nowadays, both techniques are
available. Due to the physical characteristics of proton beams when interacting with
matter as compared to photons, protons present a superior advantage in sparing healthy
tissues, particularly when treating deeply seated-tumors, which can reduce long-term
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side effects. Each treatment modality presents advantages and limitations and both
techniques have specific clinical indications. This thesis is focused on minimizing one of
the main drawbacks of proton therapy –range uncertainty– in order to take full benefit
of proton therapy.

1.2 Radiation treatment planning

The first step of a radiation treatment, named simulation, consists of acquiring a CT
scan of the patient without any contrast agent and with all the contention items that
would be used during the whole treatment (e.g. mask, head or legs holder, bite block,
bolus, etc). The patient has to be placed in a comfortable and reproducible manner in
order to be positioned exactly in the same way during all treatment fractions. This CT
receives the name of planning CT. It gives information on the internal anatomy of the
patient and it allows to account for heterogeneities during the treatment planning stage.
CT with contrast agent, MRI and PET images are additionally acquired and registered
with the planning CT to provide additional anatomical or functional information.

In the second step, named contouring and prescription, the physician delineates the
target volume and the OARs on the planning CT and prescribes the dose to the tumor
volume. The ICRU Report N.62 [ICRU, 1999] defines the target volumes to which
dose has to be prescribed: the Gross Tumor Volume (GTV) is the macroscopic tumor,
visible on the planning CT; the Clinical Target Volume (CTV) contains the GTV and
sub-clinical tumor extensions at a certain probability level, not visibles; the Planning
Target Volume (PTV) is a geometrical concept introduced for treatment planning to
ensure that the prescribed dose to the CTV is actually delivered despite uncertainties
in the treatment delivery. A schematic illustration of the different volumes is provided
in Figure 1.8.

The third step of a radiation treatment is the planning stage in which medical physi-
cists design the treatment plan, i.e. decide the most appropriate beam entrances, the
number of fields and the optimization method. For example, due to range uncertainties
in the patient, caused by inhomogeneities or patient positioning, beams stopping in front
of an OAR are avoided in particle therapy. Afterwards, the absorbed dose in the patient
is calculated on the planning CT by the TPS and validated by the physician.

Next, the plan verification step is part of the Quality Assurance (QA) program to
ensure that the dose distribution calculated by the TPS is actually delivered to the
patient, and to discard potential errors in the treatment delivery chain.

The last step is the treatment delivery where the position of the patient is checked
prior and during treatment using X-ray imaging. Patient position defined in the simu-
lation stage, at which the planning CT has been acquired, has to be reproduced in each
treatment fraction.
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Figure 1.8: Volume definition according to the ICRU. GTV: Gross Tumor Volume, CTV:
Clinical Target Volume, PTV: Planning Target Volume. GTV and CTV are oncological
concepts, whereas PTV is a geometrical concept. Figure extracted from [ICRU, 2004].

1.2.1 The role of computed tomography in radiation treatment plan-
ning

CT images play an important role in radiation treatment planning. As mentioned
before, the planning CT is used to define the treatment volumes and the OARs, and to
compute the absorbed dose.

CT images provide the spatial distribution of photon attenuation coefficients µ of
the scanned object. CT scanners are commonly calibrated with respect to water and
CT numbers are expressed according to the Hounsfield Units (HU)10 scale. In a voxel
with average linear attenuation coefficient µx, the corresponding HU value is given by:

HUx = 1000 · µx − µw

µw − µa
(1.14)

where µw and µa are the linear attenuation coefficient of water and air, respectively.
According to Equation 1.14, a 1 HU variation represents a 0.1% variation of the atten-
uation coefficient of water, since the attenuation coefficient of air is nearly zero. By
definition, the HU value of water is 0 and the HU value of air is -1000. These two points
are used to calibrate the CT scanner at different photon spectra.

Most TPSs report dose to water or water-equivalent dose and human bodies are
assumed to be composed of water with varying mass density, electron density or stopping

10Named after Sir Godfrey Hounsfield who shared the Nobel Prize in Physiology or Medicine in 1979
with Allan Cormack for the invention of the X-ray CT.
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power [Paganetti, 2009]. Consequently, in conventional photon therapy, each voxel of
the patient CT scan is converted into mass density or RED (Equation 1.13); whereas
in proton therapy treatment planning, TPSs require the conversion of HU values into
proton SPRs relative to water (Equation 1.12).

CT-based treatment planning and dose computation is the clinical standard in ra-
diotherapy. However, at present, many groups are also evaluating the feasibility of using
MR images for treatment planning. MRI-based treatment planning has the advantage
to be radiation-less and it has superior soft-tissue contrast compared to CT [Schmidt
and Payne, 2015].

In the next sections the main processes that govern photon-matter interactions and
some useful quantities that would be referenced to in the following sections of the
manuscript are described.

1.2.2 Physics of photon interactions in matter

When a photon –X-ray beam or gamma radiation– traverses an object, three situa-
tions might occur:

1. It penetrates through the object without interacting.

2. It interacts with matter and it is completely absorbed.

3. It interacts with matter, it is scattered or deflected with respect to its initial
direction and deposits part of its energy.

The process in which some of the photons are removed from the beam due to photon
interactions is known as attenuation. The probability of photon interaction with matter
per unit path length is given by the linear attenuation coefficient µ expressed in cm−1. µ
is related to the mean free path11 τ in the target, the atomic cross-section σa (expressed
in cm2/atom) and the electronic cross-section σe (expressed in cm2/electron) by the
following expression [Jackson and Hawkes, 1981]:

µ =
1

τ
= n · σa = n · Z · σe (1.15)

where n is the number of atoms per unit volume of the absorber (n = ρ · NA/A) and
n · Z = ρe is the electron density (expressed in electron/cm3).

Another useful quantity, which is independent of the mass density of the absober
material, is the mass attenuation coefficient µ/ρ expressed in cm2/g.

The mass attenuation coefficient of a mixture, for a given photon energy or spectrum,
is computed through the so-called mixture rule [Jackson and Hawkes, 1981]:(

µ

ρ

)
med

=
∑
i

ωi

(
µ

ρ

)
i

(1.16)

11τ is the average distance a photon travels between collisions with atoms of the target material.



1. Thesis context 22

where ωi is the fractional weight of the i-th element of the mixture.
There are four major effects which lead to the attenuation of a photon beam: the

photoelectric effect, the Compton effect or incoherent scattering, the Rayleigh or coher-
ent scattering and the pair production. All mechanisms satisfy the laws of conservation
of energy and momentum.

The total electronic cross-section for X-ray collisions can be written as the sum of
the cross-sections for the processes contributing to the attenuation:

σe = σph
e + σC

e + σR
e + σP

e (1.17)

where the labels ph, C, R and P denote the photoelectric, the Compton, the Rayleigh
and the pair production electronic cross sections, respectively.

1.2.2.1 Photoelectric effect

The photoelectric effect is an interaction between an incoming photon and a tightly
bound electron, typically from the K or L shells. The energy transfer is a two-steps
process. First, the photon transfers practically all of its energy Eph to the electron
and it ceases to exist. Second, the electron departs with most of the energy from the
photon (Ee = Eph − Ebinding) and deposits its energy in the surrounding matter by
ionizing the neighboring molecules. Since the interaction creates a vacancy in one of the
electron shells, an electron moves down to fill in and this drop in energy often produces
a characteristic X-ray photon (see Figure 1.9), also named fluorescence radiation, or the
liberation of an Auger electron from an external shell. These are the so-called atomic
relaxation processes.

Figure 1.9: Photoelectric effect: a) photon absorption and electron ejection; b) fluores-
cent X-ray emission.

This interaction depends on the energy of the incoming photon and the atomic num-
ber (Z) of the tissue. The atomic cross section of the photoelectric effect is proportional
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to:

σpha ∝
Zn

Em
(1.18)

where n '4-5 and m '2-3. The lower the energy and the higher the atomic number of
the target, the more likely a photoelectric effect (see Figure 1.11).

1.2.2.2 Compton effect or incoherent scattering

The Compton effect is an interaction where an incoming photon collides preferably
with a loosely bound electron. In this interaction, both the photon and the electron are
scattered. The photon has lost some of its energy but can continue to undergo additional
interactions. The electron begins to ionize the surrounding media with the energy given
by the photon.

Figure 1.10: Compton effect: a) scattered photon and electron; b) ionized atom.

The probability of a Compton interaction is inversely proportional to the energy
of the incoming photon and it is independent of the atomic number (Z) of the target
material. The electronic cross section of the incoherent scattering is described by the
Klein-Nishina formula fKN , given by:

σCe = fKN = 2πr2
e

[
1 + α

α2

(
2(1 + α)

1 + 2α
− ln(1 + 2α)

α

)
+

ln(1 + 2α)

2α
− 1 + 3α

(1 + 2α)2

]
(1.19)

with α = E/(mec
2) the normalized incident photon energy and re the classical electron

radius. For the case of water this effect is predominant from 25 keV to 25 MeV (see
Figure 1.11).

1.2.2.3 Rayleigh or coherent scattering

Rayleigh scattering is a process where an incoming photon is scattered by bound
atomic electrons and in which the atom is neither ionized nor excited. The scattered
photon is forward peaked and it hardly changes the initial photon field [Jackson and



1. Thesis context 24

Hawkes, 1981]. This process is maximum at low energies (E <25 keV) and for high-Z
materials (Z >6):

σRa ∝
Z2

E2
(1.20)

For diagnostic CT energies (i.e. from 30 keV to 150 keV), Rayleigh scattering is
usually neglected but, for mammography applications, where X-ray energies between
15 keV and 30 keV are used, this effect is not negligible (for the case of water).

1.2.2.4 Pair production electron-positron

This effect takes place when an incoming photon interacts with the nucleus of an
atom. The photon gives its energy to the nucleus and, in the process, creates a pair
of electron-positron. The positron ionizes until it combines with a free electron. This
generates two photons that are emitted in opposite directions.

The probability of a pair production is proportional to the atomic number of the
material and there is an energy threshold below which no pair production can occur,
equal to twice the rest mass energy of an electron (E = 2mec

2 = 1.022 MeV):

σPa ∝ Z2 (1.21)

For the case of water this effect is predominant for energies superior to 25 MeV (see
Figure 1.11) so, for most kV imaging applications (i.e. diagnostic CT), this effect is
usually neglected.

Figure 1.11: Illustration of the relative importance of the main three mechanisms of
photon-matter interaction as a function of the incident photon energy (hν) and the
atomic number Z of the absorber.
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1.2.2.5 Beer-Lambert attenuation law

When a photon beam traverses a slice of material, some of the photons interact
with the material and some simply pass through without interactions. The attenuation
of monochromatic photons, collimated into a narrow beam, traversing a thickness of
absorber is governed by the exponential decay law, known as the Beer-Lambert law :

I = I0 · e−µ∆x (1.22)

where I0 is the flux of photons emitted by the X-ray source, I is the flux of photons
measured by the detector after traversing a thickness ∆x of absorber, and µ is the linear
attenuation coefficient.

This equation can also be expressed as:

− ln
I

I0
= µ∆x. (1.23)

When a polychromatic photon beam passes through an heterogeneous object, Equa-
tion 1.22 can be written as:

I(y) =

∫ E

0
S(E) exp

(
−
∫
Ly

µ(xl, E) dl

)
dE (1.24)

where S is the polychromatic spectrum, Ly is the line-segment between the source and
a detector pixel y and xl is a point in space of the object.

1.2.3 Stopping-power conversion from single-energy CT

As earlier discussed (see section 1.2.1), analytical TPSs require the conversion of
each voxel of the patient CT scan into electron density relative to water (RED) for
photon dose calculations and into proton stopping power ratios (SPR) relative to water
for proton dose calculations. In the literature, there are several ways to convert patient
CT numbers into SPR using Single-Energy Computed Tomography (SECT) or DECT
(see chapter 4). In the case of SECT, two main approaches have been proposed: a
direct calibration using a dedicated phantom (see section 1.2.3.1) and the stoichiometric
calibration [Schneider et al., 1996] (see section 1.2.3.2).

1.2.3.1 Empirical calibration

This approach consists in establishing a relation between CT numbers of human tissue
surrogates with the measured stopping power ratio (SPR) relative to water through a
calibration curve. The generation of the calibration curve is a three-steps procedure.
First, a CT scan of a phantom containing tissue equivalent materials, such as the CIRS
Model 062M Electron Density Phantom (CIRS Inc., Norfolk, U.S.A)12, using the CT

12The CIRS Model 062M Electron Density Phantom consists of two concentric disks made of plastic
water, that can represent both head and abdomen configurations, with seventeen holes to place tissue
equivalent inserts with mass densities ranging from 0.2 g/cm3 (lung) to 4.51 g/cm3 (titanium).
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scanner and the imaging protocols used for radiotherapy treatment planning is done.
Then, the average HU value inside each insert is taken. In a second step, the SPR of
each sample of known thickness a is determined experimentally by measuring the shift in
the Bragg peak position when interposing this material to the beam (BPx) with respect
to the Bragg peak position in water without insert (BPw/o) using a water-column device
(e.g. PTW PeakFinder):

SPRx =
BPw/o − BPx

a
=

∆P

a
(1.25)

where ∆P and a have to be expressed in the same units (e.g. mm), because SPR is
dimensionless. Finally, a piece-wise linear fit between the measured SPR values and
the corresponding CT numbers is done for each CT protocol evaluated. The curve
exhibits two main slopes: materials with HU lower than zero and higher than zero (see
Figure 1.12). The reason of these two segments is the dependency of the photoelectric
effect on the atomic number: for materials with HU lower than zero (e.g. lung tissues),
the linear attenuation coefficient depends little on the atomic number, but for materials
with HU higher than zero (such as bone inserts) there is a Z3 dependency because
the photoelectric effect is predominant. Materials with high atomic number have a
higher I-value and, according to Equation 1.12, a reduced SPR value with respect to
RED, which explains the reduced slope for increasing HU values. In the transition
of the two segments, which corresponds to the soft tissue region, there is some fitting
ambiguity between CT numbers and SPR values because the atomic number of inserts
does not necessarily increase with RED [Paganetti, 2009; Tremblay et al., 2014]. This
is an opposite behavior to materials with HU higher than zero (e.g. bone) where a
well-defined correlation exists between RED and atomic number [Chen et al., 1979].

The accuracy of this method strongly depends on how much the elemental compo-
sition of tissue equivalent materials differs from that of human tissues and it is also
sensitive to the tissue substitutes used for the calibration [Schneider et al., 1996].

1.2.3.2 Stoichiometric calibration

To overcome the above-mentioned limitations, Schneider et al proposed the stoichio-
metric calibration [Schneider et al., 1996], which is the most widely used calibration
method in clinical practice. The method consists in scanning a set of materials with
known physical density and chemical composition, not necessarily body-like tissues, in
the CT scanner. The measured HU values are then used to determine some coeffi-
cients of a parametric model of the linear attenuation coefficient. Then, the theoretical
HU values of real tissues can be computed through this parametrization. With tabu-
lated composition data of the selected human tissues [Woodard and White, 1986; White
et al., 1987; ICRU, 1992; ICRP, 2009], the theoretical SPR can be determined through
equation 1.12. Finally, the calibration curve is generated by making an appropriate fit
between theoretical CT numbers and SPR values.

Nevertheless, this method is not exempt of uncertainty, as pointed out by Yang et
al [Yang et al., 2012]. In particular, the method is sensitive to the goodness of the
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Figure 1.12: Example of bi-linear curve fitting between Hounsfield Units (HU) and
proton stopping power ratio (SPR) relative to water using human tissue surrogates. In
the soft tissue region (HU'0), there is a fitting ambiguity due to the lack of one-to-one
relation between HU and SPR values. Figure extracted from [Arbor et al., 2015].

parametric model used to model the CT scanner, and to variations in the human tissue
composition and mass density. Despite the improvement with respect to the direct
calibration approach [Schneider et al., 1996], the HU-SPR degeneracy in the soft tissue
region still persists (Figure 1.13). Another source of uncertainty is related to the ongoing
discussion on how to compute the theoretical SPR values of human tissues. The Bethe’s
equation without correction terms is used in the stoichiometric calibration, however,
there are other approaches in the literature that employ different correction terms and
different I-values, i.e. Bichsel et al 1972 [Bichsel, 1972], Janni et al 1982 [Janni, 1982]
and ICRU Report 49 [ICRU, 1993]. On the one hand, Oden et al [Ödén et al., 2015]
concluded that it is safe to use the Bethe’s formula without correction terms as the
errors obtained for biological tissues were below 0.1%. On the other hand, substantial
differences in terms of the SPR have been reported when comparing the four existing
approaches and the different sets of elemental I-values available [Ödén et al., 2015;
Doolan et al., 2016], being larger when using the approach proposed by Schneider et al
in the stoichiometric calibration [Doolan et al., 2016].

The range uncertainty associated to this procedure using animal tissues was found
to be 1.8% for bone tissues and 1.1% for soft tissues, which means a range error between
1 mm and 3 mm [Schaffner and Pedroni, 1998].
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Figure 1.13: Conversion of Hounsfield Units (HU) to proton stopping power ratio (SPR)
relative to water obtained though the stoichiometric calibration [Schneider et al., 1996].
On the right, zoom in the region of HU numbers close to zero (scaled to 1000 in this
figure). The ambiguity of this conversion in the soft tissue region is visible by the five
lines used to fit the data. Figure extracted from [ICRU, 2007].

1.2.4 Uncertainties in proton therapy

In theory, the finite and controllable range of protons –by adjusting the position of
the Bragg peak– and the reduced integral dose with respect to photons allow a precise
dose delivery (see section 1.1.4). However, uncertainties in treatment planning and in
treatment delivery have dosimetric consequences and might cause severe damages to the
patient, such as target miss or accidental exposure of OAR.

Uncertainties in proton therapy can be classified according to the source of errors
[Both, 2012]:

1. Patient-related: setup or geometric errors, errors in target definition, target and
organ motion, tumor regression or growth during the treatment course, and tis-
sue inhomogeneities (e.g. different organ filling) along the beam path and in the
transverse direction.

2. Physics-related: conversion of CT numbers into SPR values (see section 1.2.3),
dose calculation approximations and dose uncertainties.

3. Machine-related: Dose Delivery System (DDS) tolerances, Patient Positioning Sys-
tem (PPS) tolerances, beam energy tolerance, etc.
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4. Biology-related: RBE is assumed to be constant and equal to 1.1. However, it is
not constant as it depends on dose, cell type and clinical endpoint.

Patient-related sources of uncertainty are common to conventional photon radiother-
apy. For setup errors and systematic uncertainties, such as target definition errors and
machine-related uncertainties, the geometrical concept of the PTV (see section 1.2) is
applicable. Safety margins are added to the target volume to ensure that the CTV
receives the prescribed dose.

Due to the sharp dose gradient at the distal edge of the Bragg peak (see Figure 1.1),
the effect of tissue inhomogeneities or changes in density along the proton beam path
is superior for protons than for photons [Goitein, 1982] and it has a severe impact on
the proton range (see Figure 1.14). To limit the consequences of tissue inhomogeneities
and biological uncertainties, particularly after the Bragg peak position, beams stopping
in front of OARs are avoided. In addition, range uncertainty margins are added in the
treatment planning stage. Besides the uncertainties in the longitudinal direction, density
changes perpendicular to the beam direction might also have a dosimetric impact in
proton therapy dose calculations.

X-ray CT-based treatment planning is one of the major sources of uncertainty in
proton therapy [Jäkel, 2006]. Since photons and protons interact differently inside the
human body, there is no clear functional relation between CT numbers and SPRs. A
piece-wise linear relation exists between HU and SPRs for low density and bone mate-
rials, whereas it is not unique for soft tissues (see Figure 1.13). The conversion of HU
to SPR using the stoichiometric calibration introduces a range error of 1.1% for soft
tissues and 1.8% for bone tissues [Schaffner and Pedroni, 1998]. Stochastic (i.e. noise)
and systematic variations of the CT numbers (i.e. drifts of the scanner with time) can
also affect the calibration curve [Yang et al., 2012]. This relation also depends on the
CT scanner, the CT resolution and the parameters of the imaging protocol. HU val-
ues can also be wrongly assigned because of beam hardening [Schaffner and Pedroni,
1998], scattering inside the patient and reconstruction artifacts due to high-Z materi-
als (e.g. metallic implants, prosthesis, dental filling) [Jäkel, 2006]. Proper corrections
have to be implemented in the reconstruction pipeline before treatment planning. More-
over, the choice of the reconstruction algorithm and the detector sensitivity might also
influence the accuracy of HU numbers [Doolan et al., 2016].

There are also uncertainties related to dose calculation. On the one hand, most
commercial TPSs are based on analytical pencil-beam dose calculation algorithms [Pa-
ganetti, 2012]. To compute the range of protons stopping at a certain point, these
algorithms typically scale the depth-dose distribution in water by the water-equivalent
depth in the patient, computed from the patient CT, using straight proton trajectories
and neglecting the relative position of heterogeneities in depth [Schaffner et al., 1999;
Paganetti, 2012]. MCS is typically approximated by a sum of two Gaussian functions
and it can have an impact on the lateral beam penumbra and on the dose distributions
because range degradation is not correctly predicted. Compared with Monte Carlo (MC)
algorithms, these algorithms are less sensitive to complex geometries and density varia-
tions, particularly near the interface of two materials [Grevillot, 2011; Paganetti, 2012;
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Schuemann et al., 2014]. The uncertainty in the proton range due to dose calculations
using analytical algorithms was estimated to be 2.7% for homogeneous geometries and
4.6% for heterogeneous geometries [Paganetti, 2012]. Therefore, dose uncertainties could
be reduced by using MC dose calculations which provide a higher level of accuracy with
respect to analytical algorithms [Paganetti, 2012]. The main drawback is that they are
not fast enough for clinical applications [Mairani et al., 2013]. Another source of dose
uncertainty resides in the mean excitation energy values of water and tissues necessary
to compute the SPR (see section 1.1.3.6). Recommended I-values of water by ICRU
Report 37 [ICRU, 1984], 49 [ICRU, 1993], 73 [ICRU, 2005] and Errata and Addenda
of Report 37 [Sigmund et al., 2009] are 67 eV, 75 eV, 80 eV and 78 eV, respectively.
Based on the range of possible values, Andreo [Andreo, 2009] studied the influence of
this variation on the Bragg peak position for proton and carbon ions. Excluding the
smallest value, the uncertainty in the I-value for water results in a SPR variation be-
tween 0.8% and 1.2% in the therapeutic energy range [Paganetti, 2012]. For tissues, the
uncertainty in the I-value was estimated to be ∼ 10− 15% [Andreo, 2009] which might
result in a range uncertainty of 1.5% in tissue [Paganetti, 2012]. Another source of dose
calculation uncertainty associated to some TPS algorithms is to not account for the SPR
dependency on the proton energy (see section 1.1.3.6). [Yang et al., 2012] concluded that
when ignoring the SPR variation with the proton energy along the beam path, range
errors were about 0.5%.

Range uncertainty margins are clinically used in proton treatment planning and
depend from one proton facility to another. Typical margins are 3.5% + 1 mm, 3.5%
+ 3 mm or 2.5% + 1.5 mm [Paganetti, 2012]. [Goitein, 1985] introduced the generic
margin recipe of 3.5% + 1 mm. The 1 mm margin was introduced to compensate for
patient-related uncertainties and beam-modifying compensator errors. The 3.5% was
obtained from the quadratic sum of errors:√

(2%)2 + (1%)2 × 1.5σ ∼= 3.5% (1.26)

where 2% is the uncertainty associated to the HU determination in the early 1980s
[Schuemann et al., 2014], and 1% comes from the conversion between CT numbers and
SPR. A 1.5 standard deviation margin was chosen to characterize a 85% confidence limit,
which was found to be reasonable for some clinical applications [Goitein, 1985]. However,
this margin recipe does not account for dose calculation uncertainties [Schuemann et al.,
2014]. To take full benefit of proton therapy, some authors are arguing that generic
margins should be replaced by site-specific margins based on the specific geometry and
beam angle [Park et al., 2013; Schuemann et al., 2014].

With a better understanding of range uncertainties and by using appropriate miti-
gation techniques such as in vivo imaging (i.e. IGRT and range verification techniques)
during the treatment fraction, adaptive radiotherapy and robust optimization treatment
planning (e.g. multiple beams to reduce the sensitivity to range uncertainties [Knopf
and Lomax, 2013] and beam-specific PTVs [Park et al., 2012]), it would be possible
to deal with movements and range errors due to internal anatomical changes, to re-
duce treatment volumes and thus decrease the Normal Tissue Complication Probability
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Figure 1.14: Effect of a 3 cm slab of bone placed in: a Cobalt-60 beam (a); and in the
SOBP of a proton beam (b). The photon beam intensity is reduced by 11% but still
penetrates deeply, whereas the proton beam range is reduced by 2 cm due to the high
density object interposed along the beam path. Figure extracted from [ICRU, 2007].
Analogously, an air cavity in the proton path would result in a high dose deposit at the
distal edge whereas the photon tail would be almost unaltered.

(NTCP).

1.2.5 Imaging modalities to reduce uncertainties

Several sources of uncertainty in proton therapy have been listed in section 1.2.4. This
section briefly describes two imaging approaches aiming at mitigating these uncertainties
but in different phases of the proton treatment: before (in the planning stage) and during
treatment delivery.

1.2.5.1 Imaging alternatives in treatment planning

Treatment planning systems require SPR information of the patient to compute dose
distributions and proton ranges. At present, SPR values are estimated from CT numbers
of the planning CT through a calibration procedure (see section 1.2.3). To circumvent
range uncertainties associated to this conversion, at least two imaging modalities could
be used instead: proton CT and multi-energy CT (e.g. dual-energy).
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Proton CT Proton CT is an attractive alternative in treatment planning as it directly
reconstructs the SPR map of the patient. It consists in irradiating the patient with high
energy protons, in order to place the Bragg peak position outside the patient (i.e. from
200 MeV for the head to 250 MeV for the trunk), and measure the energy lost by the
protons after traversing the patient. The Water Equivalent Path Length (WEPL) can be
derived and the SPR map reconstructed. The idea of using protons for imaging was early
proposed in the 1960s [Cormack, 1963]. However, due to the poor spatial resolution of
first reconstructed images and the high cost of those scanners, X-ray imaging prevailed
over protons. In the late 1990s, a renewed interest in proton imaging was experienced
[Quiñones et al., 2016]. Despite the active research of last years, no commercial proton
CT scanner is currently available; there are just prototypes.

Multi-energy CT A recent approach in X-ray CT imaging is multi-energy CT which
encompasses all those imaging modalities in which attenuation data of an object is
measured at two (i.e. dual-energy CT, see chapter 2) or more energies (e.g. spectral CT,
see section 2.2.6). The main idea behind these imaging modalities is that, since photon
attenuation depends both on the elemental composition and the density of an object (see
section 1.2.2), two materials might not be distinguished in a CT scan, e.g. if one contains
a high-Z element and the other has a high density [Heismann et al., 2012]; however, as
the attenuation for these materials does not have the same energy dependency (see
Figure 2.1), they can often be differentiated when having CT measurements at different
energies. Therefore, having attenuation measurements at two or more energies allows
material discrimination and can improve diagnostic information. The use of Dual-Energy
(DE) in proton therapy was first suggested in 2009 [Bazalova et al., 2009; Beaulieu
et al., 2009]. One year later, Yang [Yang et al., 2010] demonstrated that DECT could
provide a better estimate of the SPR with respect to single-energy X-ray CT imaging
(see chapter 4).

1.2.5.2 Image-guided radiotherapy

“Image-guided radiotherapy (IGRT) is the process of frequent imaging (i.e. 2D or
3D) the patient in the treatment room during a course of radiotherapy to guide the
treatment process” [Verellen et al., 2007]. The purpose of IGRT in proton therapy
is two-fold. First, IGRT is used in areas of the body that are prone to movements
and it allows the physician to track interfractional tumor motion, and to eventually
adjust the patient position or the beam position to target the tumor more precisely.
CBCT systems mounted on the treatment couch are used for this purpose. Another
approach, MRI-guided proton therapy, which uses MRI instead of X-rays to obtain
anatomical information of the patient, is currently being investigated [Lagendijk et al.,
2014]. Second, imaging in the treatment room can be used to verify protons range and
dose distributions. Integrated online PET systems are an attractive and non-invasive
possibility to image the dose delivered by protons. Due to nuclear interactions (see
section 1.1.2), a small fraction of protons create positron emitting isotopes (e.g. 11C, 13N
and 15O) [Knopf and Lomax, 2013]. PET imaging is based on the coincident detection
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of gammas resulting from the annihilation of emitted positrons with electrons. A 3D
distribution of the induced activity in the patient is thus obtained and it is subsequently
compared with predicted PET activity distribution calculated with MC simulations.
However, physiological wash-out in the tissues has to be correctly modeled to achieve an
accurate comparison and the low statistics problem has to be solved. Another approach
for in vivo range verification is prompt gamma imaging which consists in monitoring the
emitted gammas produced in the inelastic collisions between the incident particle and
the medium (see section 1.1.2). Prompt gamma emission is almost isotropic and can
be detected instantaneously (few nanoseconds) after the nuclear interaction [Knopf and
Lomax, 2013; Huisman et al., 2016]. However, due to the low prompt gamma signal
and the low efficiency of current detectors, the clinical application of prompt gamma
for range verification is still under development. Other solutions under development
are ionoacoustic characterization of the Bragg Peak position [Assmann et al., 2015] and
interaction vertex imaging [Henriquet et al., 2012].

1.2.6 Conclusion

Protons are more vulnerable than photons to changes in density and tissue inho-
mogeneities in the beam direction caused by movement, misalignment or anatomical
changes. Image-guidance in the treatment room can be beneficial to mitigate motion
and to verify proton ranges in the patient during the treatment fraction. Current treat-
ment planning systems rely on X-ray CT image information of patient’s anatomy to
design the treatment plan. To calculate the proton range in the patient and to com-
pute the absorbed dose, patient SPR information derived from CT numbers is required.
Inaccuracies arising from the planning CT and intrinsic to this conversion are an im-
portant source of range uncertainty. To account for these uncertainties, safety margins
are added in the planning stage. The aim of this thesis is to investigate the benefits of
using dual-energy CBCT to reduce uncertainties in predicting the proton range in the
patient.
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2.1 Principles

When scanning an object, the measured CT number in a voxel is related to its linear
attenuation coefficient (see Equation 1.14). As the attenuation depends both on the
mass density and the elemental composition of the scanned object (see section 1.2.2),
similar HU can be measured at a certain photon energy for different materials and, as
a consequence, cannot be distinguished in a CT scan. However, by exploiting the dif-
ferences of X-ray attenuation coefficients of tissues at different energies (see Figure 2.1),
materials can be distinguished when recording the attenuation at different energies or
beam spectra.
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Figure 2.1: Linear attenuation coefficient as a function of the photon energy for some
human tissues and iodine. Data retrieved from NIST database [Hubbell and Seltzer,
2004].

In 1973, Sir Hounsfield mentioned in his paper describing the invention of the CT
scanner [Hounsfield, 1973] the possibility to distinguish between materials having differ-
ent atomic number (e.g. calcium and iodine) when scanning an object at two different
beam spectra (e.g. 100 kV and 140 kV).

The basic principle of dual-energy consists in acquiring two datasets from the same
anatomical area with different X-ray voltages (see sections 2.2.1, 2.2.2 and 2.2.3) or with
one voltage but recording different portions of the spectrum (see sections 2.2.4 and 2.2.5)
or energy windows (see section 2.2.6).

The theoretical basis for dual-energy CT (DECT) was established in the late 1970s.
First studies were published in 1976 by Alvarez and Macovski [Alvarez and Macovski,
1976] and by Rutherford et al [Rutherford et al., 1976]. In both papers, they proposed
the decomposition of the linear attenuation coefficient into terms describing the two
main interaction processes for X-ray photons in the diagnostic CT range: photoelectric
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absorption and Compton scattering (see section 1.2.2). The approaches differed in the
sense that Alvarez and Macovski directly decomposed projection data obtained from
the CT scan, prior to image reconstruction whereas Rutherford et al decomposed into
photon interactions the reconstructed images at low and high energy voltages and then
estimated the effective atomic number and the effective electron density of the scanned
object. An approach similar to Rutherford’s was chosen by Brooks [Brooks, 1977]. These
approaches can be classified as projection-based or pre-processing methods and image-
based or post-processing methods, respectively. Lehmann et al [Lehmann et al., 1981]
applied the decomposition theory to Dual-Energy Radiography (DER). In the following
years, papers describing the potential of dual-energy for tissue characterization and
quantification [Chiro et al., 1979; Cann et al., 1982; Dunscombe et al., 1984] and for
beam hardening reduction [Hemmingsson et al., 1986] were published. Furthermore, a
two-material decomposition basis was alternatively proposed to the photon interactions
basis, such as aluminum and plastic [Marshall et al., 1984; Kalender et al., 1987] or water
and calcium chloride [Hawkes et al., 1986].

Despite the clinical potential of dual-energy, its implementation was slow due to
limitations of the first DECT scanners such as low resolution, sensitivity to movement
artifacts [Heismann et al., 2012] and decomposition algorithms suffering from noise am-
plifications [Kelcz et al., 1979; Chuang and Huang, 1988]. At the very beginning, sequen-
tial acquisitions at different voltages were used, but suffered from spatial and temporal
misregistration of the two datasets. DECT imaging did not find its way into clinical
routine until 2006 when the first commercial dual-energy scanner was built by Siemens
Healthcare (Forchheim, Germany) [Flohr et al., 2006].

2.2 Technical approaches

A CT scanner consists of an X-ray tube and a detector. Detectors can be classified
into two main groups: energy-integrating or energy-resolved. Energy-integrating detec-
tors integrate the X-ray signal over time with an energy weighting factor (named detector
response) and, therefore, they do not provide energy resolution [Heismann et al., 2012]
(see Chapter 3). These detectors convert X-rays to light via a thin scintillator layer
(typically Cesium Iodide or Gadolinium Oxysulfide) and then to charge by an amor-
phous silicon photodiode (indirect conversion) or directly to charge through a Thin Film
Transistor (TFT) array (direct conversion). On the other hand, energy-resolved detec-
tors are able to distinguish individual photons coming from a polychromatic spectrum
within given energy thresholds. These detectors typically use high speed semiconduc-
tors –e.g. Cadmium Telluride (CdTe) or Cadmium Zinc Telluride (CZT)– combined
with fast readout Application-Specific Integrated Circuit (ASIC)s, with an electronic
chain for each pixel of the detector [Wang et al., 2011]. In other words, with just one X-
ray tube voltage acquisition, energy-resolved detectors are capable to record attenuation
data from multiple energy bins, whereas with energy-integrating detectors acquisitions
with different X-ray tube voltages are necessary to obtain the same kind of information.

Since its initial conception in 1976, several technical approaches have been developed
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to perform DECT imaging. The previous distinction of detector’s technology eases the
classification of the existing modalities to acquire dual-energy data: sequential acquisi-
tions with a conventional CT scanner, dual-source CT systems, twin beam systems and
fast-kV switching systems are based on energy-integrating detectors, whereas dual-layer
detectors and photon-counting systems are based on energy-resolved detectors. A brief
description of each approach or scanner is given in the following subsections.

2.2.1 Sequential Acquisition

The simplest way to acquire dual-energy data consists in performing two consecutive
scans of the same anatomical area at different tube potentials. Initial DECT studies
employed this technique. Different filtration can be applied to the low and the high
tube voltage. The main limitation of this approach is that, as patient data is not
acquired at the same time interval, patient movement may compromise the quality of
the decomposition [McCollough et al., 2015]. Non-rigid anatomical registration could
reduce motion artifacts [Heismann et al., 2012]. This approach is still appropriate for
imaging anatomical regions not prone to movement.

2.2.2 Dual-Source CT systems

A Dual-Source CT (DSCT) scanner is equipped with two X-ray tubes mounted
with an angular offset of about 90◦ and the corresponding detectors. The two X-ray
source/detector systems rotate simultaneously around the patient and each X-ray tube
can have independent filtration. The first commercially available DECT system was a
DSCT scanner (Figure 2.2). In first generation DSCT scanners, the Field Of View (FOV)
of the high voltage was smaller than the low voltage’s FOV due to gantry space limi-
tations [Flohr et al., 2006] to avoid irradiating the electronics. Last generation DSCTs
have overcome this limitation by increasing the angle between X-ray tubes (i.e. from
90◦ to 95◦). Second generation scanners still present a limited FOV (i.e. 33 cm) which
might be a problem to image large patients, but third generation scanners (such as the
DSCT Siemens Somatom Force) can have a full FOV of 50 cm1. Another downside of
DSCT scanners is the cross-scattered radiation between the orthogonal X-ray tubes and
detectors, which can reduce the Contrast-to-Noise Ratio (CNR) of the images. These
artifacts can be reduced by placing anti-scatter grids and with proper scatter modeling
[Heismann et al., 2012; McCollough et al., 2015].

2.2.3 Fast Kilo-Volt Switching systems

Fast Kilo-Volt Switching (FKVS) systems are equipped with an X-ray tube capable
of switching voltage and current settings between consecutive projections of the same
scan. This system enables nearly simultaneous acquisition of the same anatomical re-
gion with two different beam spectra. Low and high voltage projections are interleaved,

1From the technical specifications of the “DSCT Somatom Force scanner”. Retrieved from
www.healthcare.siemens.com
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Figure 2.2: Illustration of the first Dual-Source CT scanner. Figure from [Flohr et al.,
2006]. Detector A covers the entire field-of-view (FOV) with a diameter of 50 cm,
whereas detector B is restricted to a smaller and central FOV to avoid irradiating the
electronics of detector A.

i.e. acquired at consecutive projection angles (see Figure 2.3). The first FKVS scanner
was conceived in 1986 [Kalender et al., 1986], but technical limitations such as the im-
possibility to change current settings between consecutive projections, and the required
fast response of the tube and the detector, limited its clinical implementation [Zou and
Silver, 2008; Heismann et al., 2012; McCollough et al., 2015]. GE Healthcare (Wauke-
sha, Wisconsin, U.S.A.) overcame some of these limitations with the CT750 HD scanner
[Zhang et al., 2011]. One downside of this system is the poor spectral separation of the
low and the high voltage projections due to technical limitations in filtering differently
the two spectra when using a single X-ray source. A recent development, the Imag-
ing Ring (IR) X-ray system (medPhoton, Salzburg, Austria), which is a FKVS scanner
equipped with a filter wheel synchronized with the beam pulse, allows different filtration
of the low and the high voltage projections. A detailed description of the IR system is
provided in Chapter 3.

2.2.4 Dual-Layer Detector systems

A Dual-Layer Detector (DLD) system consists of a single X-ray tube and a so-called
dual-layer detector. Dual-layer detectors, also named sandwich detectors, are composed
of two scintillator detectors where the top layer predominantly collects low-energy X-ray
photons and the bottom layer mainly detects high-energy X-ray photons (see Figure 2.4).
The main advantage of this scanner is the simultaneous acquisition of low and high
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Figure 2.3: Principle of fast kV switching systems to acquire dual-energy CT data.
Figure from [Heismann et al., 2012]. Low (green) and high (orange) voltage projections
are acquired at consecutive projection angles.

energy projections. The performance of dual-energy imaging with this system depends
on the capabilities to provide separate beam spectra, with small overlap, and similar
Signal-to-Noise Ratio (SNR) for the low and the high voltage projections [Heismann
et al., 2012; McCollough et al., 2015]. Detector thicknesses are different to achieve the
same noise level in low and high energy images. However, the optimal thicknesses of the
layers depend on the beam spectrum and also vary with the size and composition of the
imaged object.

2.2.5 Twin beam systems

Another technical solution to perform dual-energy imaging with a single X-ray source
CT scanner is the so-called twin beam technology proposed by Siemens Healthcare
(Forchheim, Germany). In this system, the X-ray beam is filtered by two different
materials, i.e. gold (Au) and tin (Sn), before reaching the patient. In the longitudinal
direction, the rows of the detector are divided into two parts: one half of the rows collect
the X-ray photons filtered with gold and the other half detects X-ray photons filtered
with tin (see Figure 2.5). The K-edge of tin and gold are at 29 keV and 81 keV, respec-
tively. Consequently, tin filters out more low energy photons (detects the high energy
spectrum) than gold which eliminates more high energy photons (detects the low energy
spectrum).
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Figure 2.4: Illustration of the dual-layer detector principle. The front layer predomi-
nantly collects low-energy X-ray photons, while the back layer predominantly collects
high-energy X-rays photons capable to pass through the front layer. Figure from [Mc-
Collough et al., 2015].

Figure 2.5: Illustration of a twin-beam acquisition using a single source CT system.
Figure from [Yu et al., 2016]. X-ray beam is split in two: half is filtered with gold and
half is filtered with tin. Half-rows of the detector collect the X-ray photons filtered with
gold and the other half the X-ray photons filtered with tin.

2.2.6 Photon-Counting Detector systems

Photon-Counting Detector (PCD) systems consist of an X-ray source and an energy-
resolving photon-counting detector. Photon-counting detectors are capable of counting
discrete photon interactions according to the associated photon energy. The detector is
divided into N energy channels or bins, determined by consecutive N+1 energy thresh-
olds, where each one has an independent detector response function (i.e. probability
of a photon with energy E to be detected at energy E) [Taguchi and Iwanczyk, 2013].
Photons detected within one bin are then counted (see Figure 2.6). These systems are
still under development, there is no commercial system yet but small animal prototypes.
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Detector’s technology has to solve two main limitations: pulse pile-up when the count
rate is too high, and charge sharing between adjacent energy bins. Photon-counting
technology with energy discrimination thresholds opens up the potential transition from
dual-energy CT to multi-energy CT or spectral CT imaging, which would allow multi-
material segmentation [Schlomka et al., 2008; Heismann et al., 2012; McCollough et al.,
2015; Van Elmpt et al., 2016].

Figure 2.6: Schematic illustration of the binning of the incident polychromatic spectrum
into six energy windows. Figure from [McCollough et al., 2015].

2.3 Applications

Dual-energy CT imaging has two main fields of application: medical and industrial.
Dual-energy techniques are used in many industrial Non-Destructive Testing (NDT)
applications. Quantitative DECT imaging of composite materials consisting of two or
few materials is used to detect eventual material defects (e.g. wrong thicknesses or
missing fibers) [Létang et al., 2004]. Among other applications, DECT is also employed
in airports for the inspection of luggages to detect the presence of arms or explosives
[Rebuffel and Dinten, 2007].

Dual-energy imaging has many clinical applications: from diagnosis to radiotherapy
applications. Estimation of the contrast agent uptake (e.g. iodine) in suspected lesions,
fat quantification or bone densitometry are examples of quantitative imaging. After
material decomposition one can remove a basis material from the image, such as the
contrast agent, to generate contrast-free images without necessity of acquiring a second
set of images, or bone- and calcium-subtracted images to improve lesion characterization
[Karçaaltncaba and Akta, 2011; McCollough et al., 2015; Van Elmpt et al., 2016]. DECT
is also used to synthesize monoenergetic images of the patient at certain effective energies
to improve diagnosis [Yu et al., 2012]. These images are less affected by beam hardening,
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can improve the CNR [Li et al., 2012; McCollough et al., 2015] and, in the presence
of prostheses or high density materials, show reduced metal artifacts with respect to
conventional single energy CT [Bamberg et al., 2011; Pessis et al., 2015].

Besides many diagnostic applications, DECT imaging is also used in radiotherapy
[Van Elmpt et al., 2016]. As discussed in section 1.2.1, analytical TPSs require the
conversion of each voxel of the patient CT scan into electron density to water (RED)
for photon dose calculations and into proton stopping power ratios (SPR) for proton
dose calculations. The single-energy stoichiometric calibration (see section 1.2.3.2) is
currently the clinical standard. However, the HU-SPR or HU-RED degeneracy, partic-
ularly in the soft tissue region, introduces some range errors that need to be accounted
for in the treatment safety margins. Monte Carlo-based TPSs require more information
than RED or mass density maps to compute the material specific cross sections, such as
the chemical composition or the elemental fraction by weight in every CT voxel. One ap-
proach is to segment the HU-RED curve into several segments, where each segment has a
single tissue assigned with well-known chemical composition and mass density [Schneider
et al., 2000]. However, due to the above-mentioned lack of one-to-one relation between
HU and RED values, particularly in the soft tissue region, wrong tissue assignment might
occur with dosimetric consequences. To solve this ambiguity and to improve material dis-
crimination or segmentation, additional tissue information, such as the effective atomic
number Zeff , can be extracted from DECT imaging [Bazalova et al., 2008a,b; Bazalova
and Verhaegen, 2009; Beaulieu et al., 2009]. Thus, radiotherapy applications include
material segmentation for Monte Carlo dose calculations, improved brachytherapy dose
calculations by decomposition into photon interaction cross sections, SPR estimation for
proton therapy treatment planning, and quantification of carbon content in tissues to
improve proton range verification using PET imaging [Van Elmpt et al., 2016].

In the following, the manuscript is focused on radiotherapy applications of DECT,
particularly for proton therapy treatment planning. A review of the existing decompo-
sition algorithms is provided in the next section.

2.4 Decomposition algorithms: review of methods

The two main approaches to perform dual-energy were proposed in 1976 (see sec-
tion 2.1) and they mainly differ in the order of the decomposition and the reconstruction
step. Since then, many algorithms to decompose DECT data into the required variables
for radiotherapy purposes, e.g. the relative electron density (RED) and the effective
atomic number (Zeff), have been proposed. Some methods directly decompose into
these two variables, some decompose into two material mass densities or concentrations,
and some decompose into photoelectric effect and Compton scattering cross sections. Up
to now, for radiotherapy applications, most of the proposed methods are image-based
(section 2.4.1).

Depending on whether scanner specific information is known or not a priori, a further
classification of the decomposition approaches can be made. The here-named model-
based methods are based on a priori knowledge of source energy spectrum and detector
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response, whereas calibration-based methods rely on a calibration using materials with
known properties to obtain parameters that indirectly characterize the energy spectrum
and the detector response of the CT scanner.

2.4.1 Image-based

Image-based methods use linear combinations of the reconstructed images to obtain
material-selective DECT images. The methods listed below mainly differ on the level of
complexity of the parametrization of the linear attenuation coefficient, and whether or
not they rely on a calibration or on the exact knowledge of scanner properties. Unlike
projection-based methods, image-based methods require a beam-hardening correction in
the reconstruction pipeline. Beam hardening artifacts occur because the energy depen-
dency of the linear attenuation coefficient is neglected (see equation 1.24).

Rutherford et al [Rutherford et al., 1976] proposed a parametric model of the
monochromatic linear attenuation coefficient as a function of two parameters: the ef-
fective atomic number Zeff and the effective number of atoms per unit volume N∗. By
scanning an object at two voltages (i.e. 120 kVp and 140 kVp), a system of two equa-
tions of µ(E1) and µ(E2) with two unknowns (Zeff and N∗) can be numerically solved,
where E1 and E2 are the effective energies of the incident spectra. The effective en-
ergy of a beam is the monochromatic energy at which a given material will exhibit
the same attenuation coefficient as measured on the CT scanner with a polychromatic
beam. Brooks [Brooks, 1977] proposed the decomposition of the scanned object into
Compton and photoelectric coefficients images. His approach is based on the quality
factor Q of the X-ray spectrum, determined through a calibration process with known
materials, which avoids the need of defining an effective energy of the beam. In 2003,
Torikoshi et al. [Torikoshi et al., 2003] proposed a dual-energy X-ray CT decomposition
method into electron density and effective atomic number using synchrotron radiation.
The advantage of using monochromatic X-ray beams is that reconstructed CT images
are exempt of beam hardening effect. Since then, many dual-energy approaches that
decompose into effective atomic number and relative electron density using commercial
DECT scanners have been proposed. To cite some, in 2008, Bazalova et al [Bazalova
et al., 2008b] extended the decomposition formalism proposed by Torikoshi for polychro-
matic X-ray beams, which resulted in an improved tissue segmentation with respect to
the conventional HU-RED curve. This method requires perfect knowledge of the beam
spectrum and the detector response of the system. To limit beam hardening artifacts,
the incident spectrum was filtered with 16 cm of solid water (one half of the phantom
diameter) and, for high-Z materials, a semi-empirical correction for beam hardening was
proposed. Most image-based methods rely on a beam hardening correction (typically a
water precorrection function at the projections level) implemented in the image recon-
struction step [Brooks and Di Chiro, 1976]. Maaß et al [Maaß et al., 2009] proposed an
image-based decomposition method based on generalized precorrection functions that
are not optimized to correct for beam hardening but to generate material-selective im-
ages, which resulted in material-decomposition images less affected by beam hardening.
In 2012, Saito [Saito, 2012] proposed a dual-energy decomposition method based on a
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weighted difference of CT numbers at low and high voltages (∆HU) to extract the rela-
tive electron density (RED). The proposed ∆HU−RED curve showed a low dependence
on the object size used for the calibration. Hünemohr et al [Hünemohr et al., 2014a]
adapted the formalism of Alvarez and Macovski [Alvarez and Macovski, 1976] in the
image-domain. They proposed a decomposition method into Zeff and RED based on a
calibration, not requiring the a priori knowledge of the source spectrum. Landry et al
[Landry et al., 2013b] proposed a calibration-based approach to compute Zeff , without
need to estimate the CT scanner spectrum, by establishing a relation between the ratio
of measured CT numbers at low and high voltages and Zeff . Bourque et al [Bourque
et al., 2014] adapted the stoichiometric calibration method of Schneider et al [Schnei-
der et al., 1996] to dual-energy CT data. This method was further implemented by
Tremblay et al [Tremblay et al., 2014] to monochromatic images previously generated
through a projection-based approach. Mendonça et al [Mendonça, 2014] extended the
material decomposition and discrimination capability of dual-energy CT to more than
two materials, based on the assumption that the mix of materials in the human body
behaves as an ideal solution, for which mass and volume-preservation laws apply. Unlike
other approaches, where a simplified parametrization of the linear attenuation coefficient
was used, van Abbema et al [Van Abbema et al., 2015] extended the full description of
the X-ray total cross section proposed by Jackson and Hawkes [Jackson and Hawkes,
1981] with additional fit functions to derive Zeff and RED values from reconstructed
CT images with an iterative procedure. Ramos-Garcia et al [Ramos Garcia et al., 2016]
proposed another parametrization of the linear attenuation coefficient to decompose
dual-energy data into Zeff and RED. Han et al [Han et al., 2016] extended the represen-
tation of the linear attenuation coefficient as a linear combination of energy-dependent
basis functions of two-materials, initially proposed by Alvarez and Macovski [Alvarez
and Macovski, 1976] and first implemented in the image-domain by Williamson et al
[Williamson et al., 2006], to estimate RED and ln(I) values for proton stopping-power
computations.

2.4.2 Projection-based

Projection-based methods pass the two-energy raw-data sets through a decomposi-
tion function to generate DECT specific sinograms. Afterwards, the image reconstruc-
tion step produces material-selective images. This approach requires that projections
for the low and the high energy spectrum are sampled at the same angle (i.e. effectively
matched or accurately interpolated).

The theoretical framework for projection-based methods was established by Alvarez
and Macovski in 1976 [Alvarez and Macovski, 1976]. The key idea of this approach,
which is based on the mixture rule (see Equation 1.16), is that the linear attenuation
coefficient of the scanned object at a location x can be expressed as a linear combination
of energy-dependent basis functions fi(E) with energy-independent coefficients ai, with
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i = 1, 2, ..., n:

µ(E,x) =
n∑
i=1

ai(x) fi(E) (2.1)

For the particular case of dual-energy, n = 2, a set of two basis functions with two energy-
independent coefficients has to be chosen. Alvarez and Macovski concluded that the
choice of the basis functions was empirical [Alvarez and Macovski, 1976]. They suggested
the decomposition into the photoelectric effect and Compton scattering cross sections,
which was later generalized into a two-material decomposition method [Heismann et al.,
2012] (see section 2.4.2.1).

Unlike image-based methods, where many different ways to combine the recon-
structed CT images have been proposed, the formalism of projection-based methods
remains unaltered. Projection-based methods differ in the way of solving the dual-energy
problem (i.e. generation of DECT-specific sinograms): through a numerical process or
based on a calibration (see section 2.4.2.2).

As the energy dependency is factored out in this decomposition process (see equa-
tion 2.1), the basis-images should not be affected by beam-hardening (with respect to the
image-based ones). Consequently, projection-based approaches do not require a beam
hardening correction prior to image reconstruction.

2.4.2.1 Forward problem

Photoelectric and Compton effect decomposition In the diagnostic energy
range, the linear attenuation coefficient of materials can be represented by a linear
combination of the photoelectric effect and Compton scattering cross sections. If no
absorption edges are located in the energy range of CT imaging, the photoelectric cross
section can be approximated by fph ∝ E−3 (see Equation 1.18), and the Compton cross
section by the Klein-Nishina formula fKN (see Equation 1.19):

µ(E,x) = a1(x)
1

E3
+ a2(x) fKN (2.2)

where the coefficients a1 and a2 have a physical meaning [Alvarez and Macovski, 1976]:

a1 =
K1 ρ Z

n

A
=
K1 ρe Z

n−1

NA
; n ≈ 4 (2.3)

a2 =
K2 ρ Z

A
=
K2 ρe
NA

; K2 = 2πr2
e (2.4)

with [A] = u = (g/mol)/NA and 1 u = 1.660539 10−24 g.
The line integrals Aph (= A1) and AC (= A2) of the energy-independent terms of

the photoelectric and Compton contributions can be expressed as:

Aph(u, θ) =

∫
L(u,θ)

K ′1 ρe(`) Z
m(`) d`; m = n− 1; K ′1 = K1/NA (2.5)
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AC(u, θ) =

∫
L(u,θ)

K ′2 ρe(`) d`; K ′2 = K2/NA (2.6)

where ` ∈ L(u, θ) is the line-segment between the source and a detector pixel located at
position u for a given projection angle θ.

Once Aph and AC are known for each projection angle θ, the effective atomic number
and the electron density can be extracted from equations 2.5 and 2.6 after reconstruction.

It is worth mentioning that in the presence of elements with high atomic numbers
(typically the contrast agent), having a K-edge discontinuity in the diagnostic energy
range, equation 2.2 is no longer valid. A third term describing the attenuation proper-
ties of this element has to be added [Roessl and Proksa, 2007]. This new formulation
requires to perform attenuation measurements at least at three different energy spec-
tra (in case of energy-integrating systems) or to use energy-resolved photon-counting
systems. Alternatively, Mendonça et al [Mendonça, 2014] proposed an image-domain
multi-material decomposition method for DECT based on the assumption that human
body materials behave as an ideal solution, that can be described as a mixture of at
most three materials for which volume and mass preservation laws apply, and some
regularity constraints. Based on this idea, some authors proposed a multi-material de-
composition using statistical methods such as penalized-likelihood reconstruction with
edge-preserving regularization for each material on the projection-domain [Long and
Fessler, 2014] and in the image-domain [Xue et al., 2017].

Two-materials decomposition Equation 2.1 can also be written as a linear com-
bination of energy-dependent basis functions of two materials with energy-independent
coefficients. The basis functions fi(E) can either be the energy-dependent mass atten-
uation coefficients or the linear attenuation coefficients of the i-th material and, the
coefficients, the mass density or the fraction of each material i of the basis, respectively.
The two-materials decomposition method is also called Basis Material Decomposition
(BMD) and the linear attenuation coefficient is given by:

µ(E,x) = %1(x)

(
µ

ρ

)
1

(E) + %2(x)

(
µ

ρ

)
2

(E) (2.7)

where (µ/ρ) represents the mass attenuation coefficient of the i-th material, and %i the
corresponding mass fraction per volume.

The projection of the mass density %1 and %2 can be expressed as follows:

A1(u, θ) =

∫
L(u,θ)

%1(`) d` (2.8)

A2(u, θ) =

∫
L(u,θ)

%2(`) d`. (2.9)

The choice of the material basis is very important. Typically, to represent most of
the biological tissues in the human body, a combination of water and bone mineral, or
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soft tissue and cortical bone, or water and iodine in presence of iodine-based contrast
agents, are chosen [Heismann et al., 2012].

Once the set of line integrals A1 and A2 are known for all projection angles θ, it is
possible to reconstruct the mass density images using, for example, a filtered backpro-
jection (FBP) reconstruction algorithm.

Li et al [Li et al., 2012] decomposed scatter-corrected CBCT projections into material
selective images of water and bone, water and PMMA or water and iodine to synthesize
virtual monochromatic CBCT projections, which were then used to reconstruct virtual
monochromatic CBCT images. The resulting CBCT images showed a substantial metal
artifact reduction and improved image contrast compared to a single-energy scan of
equivalent dose.

2.4.2.2 Inversion

When performing a dual-energy acquisition, two sinograms of the same object at two
different energy spectra are available. The logarithmic transmission or attenuation of
an X-ray beam after traversing an object is expressed as:

mLE = − ln (I/I0)LE = − ln

∫
E
SLE(E) exp (−A1 f1(E)−A2 f2(E)) dE (2.10)

mHE = − ln (I/I0)HE = − ln

∫
E
SHE(E) exp (−A1 f1(E)−A2 f2(E)) dE (2.11)

where mLE and mHE are the logarithmic transmission values at low and high energy
voltages respectively, I and I0 the measured intensities with and without object, SLE and
SHE the normalized energy spectra weighted by the detector response, A1 and A2 the
line integrals that we want to solve and f1 and f2 the energy-dependent basis functions.

The unknowns A1 and A2 can be determined numerically by solving the system of
equations 2.10-2.11, e.g., using the simplex method of Nelder and Mead [Nelder and
Mead, 1965] following [Schlomka et al., 2008], assuming that the energy spectra and
the detector response are well known (model-based). The performance of this approach
relies on the accuracy of the model describing the scanner.

An alternative approach is to express the system of equations 2.10-2.11 as a poly-
nomial expansion of two variables. From one side, Alvarez and Macovski [Alvarez and
Macovski, 1976] proposed the following expansion:

mLE = b0 + b1 A1 + b2 A2 + b3 A
2
1 + b4 A

2
2 + b5 A1 A2 + b6 A

3
1 + b7 A

3
2 (2.12)

mHE = c0 + c1 A1 + c2 A2 + c3 A
2
1 + c4 A

2
2 + c5 A1 A2 + c6 A

3
1 + c7 A

3
2 (2.13)

where the unknown coefficients bi and ci can be determined experimentally through a
calibration procedure. Once the coefficients are determined, the system of equations 2.12-
2.13 can be numerically solved for A1 and A2 (using e.g. Newton-Raphson iteration
method). On the other hand, the areal density values or thicknesses can be expressed
as a polynomial function of the logarithmic transmission values at low and high energy
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voltages [Lehmann et al., 1981; Chuang and Huang, 1988]:

A1 = b̂0 + b̂1 mLE + b̂2 mHE + b̂3 mLE mHE + b̂4 m
2
LE + b̂5 m

2
HE +

b̂6 m
3
LE + b̂7 m

3
HE

(2.14)

A2 = ĉ0 + ĉ1 mLE + ĉ2 mHE + ĉ3 mLE ·mHE + ĉ4 m
2
LE + ĉ5 m

2
HE +

ĉ6 m
3
LE + ĉ7 m

3
HE

(2.15)

With this representation, for any given pair of attenuation measurements of an object,
one can directly determine the corresponding areal density or thickness in the basis
materials, without need of numerical solving.

In both methods, the unknown coefficients bi, ci, b̂i and ĉi can be determined ex-
perimentally through a calibration procedure in the least square sense. The calibration
is performed in the following way: attenuation measurements (mLE and mHE) are per-
formed for two different photon spectra (labeled LE and HE) and different areal density
values A1 and A2 of two well-known materials (or thicknesses if fi = µ). Slabs of plastic
(e.g. PMMA) and aluminium of variable thicknesses are commonly used for the calibra-
tion due to its ease of production and because they represent quite well the attenuation
properties of soft tissue and bone, respectively. Nevertheless, these calibration-based
approaches present also some disadvantages: sensitivity to the order of the polynomial,
to the use of crossed-terms in the polynomial, to the exact thickness of the interposed
slabs of two materials, to the number of points of the calibration curve, etc. [Cardinal
and Fenster, 1990].

A variant of the previous calibration-based method consists in dividing the range of
thicknesses of the two materials used for the calibration into a number of subregions
(e.g. 10 subregions) [Chuang and Huang, 1988]. Then, for each subregion, different
coefficients bi and ci are determined in the least square sense. The rationale for using
subregions is that beam hardening increases with the thickness of the irradiated object
and, therefore, the resulting polynomial would be more accurate. However, to avoid
artifacts, a proper treatment of the transition between adjacent subregions has to be
implemented.

2.4.3 Joint decomposition and reconstruction

Some authors are also evaluating the possibility to decompose and reconstruct spec-
tral CT data in one single step based on iterative algorithms, e.g., [Schmidt et al., 2015;
Sidky et al., 2016; Foygel Barber et al., 2016]. With this approach, the intermediate
step of decomposing the measured sinograms into material-specific sinograms, followed
by tomographic reconstruction, is not required. On the other hand, it is computationally
demanding as the spectral transmission data coming from different energy channels has
to be treated simultaneously. One of the advantages is that, unlike projection-based
approaches, registered projections are not required.
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2.5 Conclusion

Dual-energy formalism was early proposed in the 1970s, but it was not clinically
implemented until 2006 when the first commercial DECT scanner was placed on the
market. Among several industrial and clinical applications, DECT imaging has promis-
ing applications in radiotherapy. By adding an extra measurement at a different energy,
DECT imaging can provide additional tissue information, such as the effective atomic
number, to improve material discrimination, dose calculation and SPR estimation for
proton therapy applications. In recent years, more image-based than projection-based
DECT algorithms have been proposed. One explanation is that projection-based meth-
ods require to have access to dual-energy raw data, which cannot be accessible in most
commercial CT scanners. In addition, low and high energy projections need to be sam-
pled at the same angle or accurately interpolated which is not trivial for dual-source
scanners or fast-kV switching systems. However, with the advent of dual-layer systems
and photon-counting detector technology, projection-based methods are becoming more
attractive since the projections from the different energy spectra are obtained with-
out angular separation. In this thesis, special emphasis was given to projection-based
dual-energy approaches to improve proton SPR estimation in the patient.
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The DEXTER project is built around a new scanner, the Imaging Ring (IR) sys-
tem, developed by medPhoton, a spin-off company of the Paracelsus Medical University
(PMU), for image-guided radiotherapy (IGRT). The aim in this chapter is to describe:

- the Imaging Ring system;

- a parametric model for the source and the detector response;

- a procedure developed to calibrate and validate kilo-voltage cone-beam CT models
applied to three commercial systems;
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- a procedure developed for the Imaging Ring to assess the validity of the source
and the detector response models;

- a scatter-mitigation technique implemented off-line for the Imaging Ring image
data.

3.1 Description of the Imaging Ring system

The Imaging Ring (IR) system is a cone-beam CT (CBCT) scanner developed for
image-guided radiotherapy (IGRT) (see section 1.2.5.2) by medPhoton GmbH (Salzburg,
Austria), a spin-off company of the PMU. The source and the flat panel detector of
the system are fixed to a ring, which is mounted on the treatment couch, and can
translate longitudinally along the table to image all patient areas. Some features of
this system are that the source and the detector can independently rotate along circular
trajectories and that the system is equipped with dynamic X-ray collimation jaws. The
Field Of View (FOV) of the source and the detector trajectories can be off-centered with
respect to the center of rotation of the scanner and, in combination with synchronized
collimation, it allows large FOV irradiations (i.e. the IR is able to cover the full body
outline, also in thorax region including the shoulders) and off-centered acquisitions which
allow reduction of patient dose as unnecessary areas of the patient are not irradiated.
Another characteristic of this system is the possibility to adjust the tube current, the
tube voltage and the spectrum filtration at each beam pulse thanks to the fast-kilovolt
switching capabilities of the source (see section 2.2.3) and the synchronized filter wheel
which allows multi-energy imaging. The filter wheel is positioned before the collimator
jaws and contains four holes to place filters (i.e. air, copper, aluminium, copper and
silver).

The X-ray source is capable of emitting energies between 40 kV and 120 kV at two
focal spot sizes of 0.3 mm and 0.6 mm with tube currents comprised between 5 mA and
120 mA. The amorphous silicon flat panel detector has a Cesium Iodide scintillator and
an active area of 41×41 cm2. For a detailed description of the system geometry and
the CT reconstruction algorithm with off-centered FOV acquisitions refer to [Rit et al.,
2016], and for the nine-degrees of freedom flexmap with independent movable source and
detector refer to [Keuschnigg et al., 2017].

3.2 Procedure for the calibration and validation of kilo-
voltage cone-beam CT models

This work has been published in the Med. Phys. journal in a Technical Note for-
mat [Vilches-Freixas et al., 2016a] (see Appendix A).
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Figure 3.1: Imaging Ring system installed at MedAustron (Wiener Neustadt, Austria).
Photo courtesy of medPhoton GmbH.

3.2.1 Introduction

Several devices have been developed to acquire images of the patient in the treat-
ment room for image-guided radiation therapy (IGRT). Kilo-voltage (kV) cone-beam
computed tomography (CBCT) provides volumetric images of the patient to correct for
the treatment position and to assess changes in the internal anatomy. Implementation
of dual-energy capabilities in CBCT units is finding diagnostic applications to improve
material segmentation and enhance contrast. A model of the kV CBCT unit is required
to optimize the imaging device, to simulate and correct for scatter radiations [Polud-
niowski et al., 2009a], to optimize single [Ding et al., 2010] and dual-energy acquisition
protocols, to compute the patient imaging dose [Alaei and Spezi, 2015] and for material
decomposition in dual-energy CT.

Verification of CBCT models has been carried out in different manners in the lit-
erature [Alaei and Spezi, 2015]. To validate the X-ray source model, some authors
performed Half-Value Layer (HVL) measurements [Poludniowski et al., 2009a] [Spezi
et al., 2009], but only the first HVL is commonly checked. In a recent work [Randazzo
and Tambasco, 2015], the authors proposed an original experimental setup to rapidly
characterize X-ray sources by acquiring angular-dependent HVLs and fluence data. Oth-
ers compared the Monte Carlo calculations with measured depth dose distributions and
dose profiles [Downes et al., 2009; Ding et al., 2007]. A solution to validate the detector
model is the method proposed by Granton et al [Granton et al., 2012] which consists
of recording image intensities over a wide range of X-ray tube voltages and comparing
them to predicted image intensities using the source and the detector models.

Even though some works in the literature have assessed either the accuracy of the
source model or the detector model separately, we believe that it is necessary to provide
a general procedure to validate both models in a simple manner. The purpose of this
study is to propose a concise experimental approach to calibrate and validate a given
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model for the source and the detector of a CBCT scanner. If the model is pre-calibrated
or if precise manufacturer information is available, the degrees of freedom of the model
tend to zero and, then, this procedure can be used exclusively for model validation. As
example of application, the proposed method has been applied to the models of three
different CBCT scanners and the results are discussed.

3.2.2 Materials and methods

3.2.2.1 Procedure

The calibration and validation of the CT model is a two-step protocol: the source
model then the detector model. The source model at each voltage is represented by the
photon energy spectrum Φ0,k(E, θ, φ), i.e. the number of photons per energy E for the
k-th voltage and without additional filtration (index 0) in a direction (θ, φ) expressed
in spherical coordinates. The detector model is represented by the detector response
Sp(E, β) which is defined for each pixel p and is a function of the incident photon energy
E and the angle β between the normal to the detector and the incident ray.

Source The procedure to validate the source model is as follows: first, a series of dose
measurements in air is performed with varying filter thicknesses and materials in front
of the source. High-purity sheets of aluminum (Al), copper (Cu) and silver (Ag) are
used. This procedure is repeated for several tube voltages (kV), tube current (mA)
and exposure times (ms). The absorbed dose in air Dexp

j,k of the j-th setup of filters
(j = 1, ..., J) and k-th voltage is measured using a dosimeter working in the range of
energies of interest. The energy dependence of the dosimeter used for the experimental
measurements is assumed to be negligible at this range of voltages. The theoretical dose
in air is calculated using

Dtheo
j,k (θ, φ) =

∑
i

(µen/ρ)air(Ei) · Φj,k(Ei, θ, φ) · Ei (3.1)

whereDtheo
j,k is the theoretical dose in air, i is the index of energy bins of the spectrum with

Ei the corresponding energy, (µen/ρ)air is the energy-dependent mass energy absorption
coefficient of air taken from the NIST database [Hubbell and Seltzer, 2004] and Φj,k

is the polychromatic spectrum of the j-th setup computed from Φ0,k and the known
thicknesses of filters. A subset of acquired data, e.g., dose measurements without filter
in front of the source (j = 0), might be used for calibrating the source model. The last
step of the validation process consists in giving a figure of merit (e.g. the percentage
relative difference) of the comparison between experimental and calculated dose values
for each voltage, filter material and filter thickness.

The proposed method can be used to perform both a single point dose comparison
(e.g. θ = 0◦, φ = 0◦) and a two-dimensional (2-D) dose comparison (θ, φ). For the latter,
the irradiation area is discretized and the validation procedure repeated by shifting the
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dosimeter accordingly (step-and-shoot technique). Another option is to substitute the
punctual dosimeter by a 2-D dosimetric film or an array detector.

Detector The validation of the detector model assumes that the source model is cal-
ibrated and validated. A set of image acquisitions is performed with varying filter
materials and tube voltages. Like the source validation procedure, high-purity sheets
of aluminum, copper and silver are placed in the beam to modify the source spectrum
Φ0,k. For each setup j (j = 1, ..., J), more than 500 frames are acquired to reach the
plateau-regime of the lag [Starman et al., 2012]. A temporal median is then performed
over the last frames where the image intensity remains constant (i.e. the last 100 frames)
to compute the measured pixel value P expj,k (p). The predicted pixel values are determined
as follows

P theoj,k (p) =
∑
i

Φj,k(Ei, θp, φp) · Sp(Ei, βp) (3.2)

where P theoj,k (p) is the predicted pixel value for the j-th filter setup and the k-th voltage,
θp and φp are the spherical coordinates of pixel p in the coordinate system of the source,
Sp(Ei, βp) the detector response at energy Ei and βp, which is uniquely defined by the
scanner geometry and (θp, φp). Parameters of the detector model might be calibrated
against a subset of experimental data if necessary. Then, predicted and measured pixel
values for each voltage and spectrum filtration are compared using a goodness of fit
indicator, such as the percentage relative difference.

The detector response (total absorbed energy) is considered locally deposited, and
not spread like it should be if scatter in the detector was accounted for [Poludniowski
et al., 2011]. Consequently, Equation 3.2 can only be used to validate the energy response
of the detector, not its spatial response.

3.2.2.2 Application

Experimental setups The current procedure was applied to the three kV-CBCT
scanners of Table 3.1. All flat panel detectors had CsI:Tl scintillators. The filters in front
of the X-ray source were slabs of aluminum (nominal thicknesses: 0.5 mm, 1 mm and
2 mm), copper (nominal thickness: 0.1 mm) and silver (nominal thickness: 0.125 mm).
All filters were of high-purity (≥99.9%). The exact thickness t of each high-purity filter
material of known density ρ was obtained from precise measurements of the mass m
and the area A. Moreover, two dosimeters working in the range of voltages of interest,
i.e., from 50 to 130 kV, specifically the Nomex (PTW GmbH, Freiburg, Germany) and
the MagicMax (Ion Beam Applications S.A., Louvain-la-Neuve, Belgium) multimeters,
were used for the source model verification. Acquistions were performed with three filter
combinations: f1) no filter, f2) 8 mm Al, and f3) 0.3 mm Cu + 0.5 mm Ag.

A prerequisite of implementing this procedure is to have a model that needs to be
validated. The proposed method can be used with any given model of source and detec-
tor response. To illustrate its application, a model for the source and for the detector
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# System X-ray tube Flat panel

1 Elekta XVI Dunlee D604 Perkin Elmer XDR1622(Al)

2 medPhoton ImagingRing IAE RTM70HS Perkin Elmer XDR1642(Al)

3 IBA PT Gantry CBCT test bench Varian GS2075 Thales Pixium4343RF

Table 3.1: kV-CBCT units

response is proposed below. The unknown parameters of the models are determined
through calibration against experimental data. Finally, the agreement between the ex-
perimental data and the model output is measured by quantifying the relative differences
between the measures and the predictions.

Source model Proprietary information, such as the inherent filtration (stoichiomet-
ric composition and thickness) and the anode angle of the X-ray source, is either not
provided or it is given with big uncertainties. To overcome this restriction, the unknown
tube filtration of the systems under study was described as a linear combination of two
known materials. Aluminum (Al) and copper (Cu) were chosen as basis because they
are commonly employed in commercial X-ray tubes as filter materials. In this study, the
X-ray source was modeled by a photon energy spectrum parameterized by the anode an-
gle, the tube voltage and the thicknesses of the basis materials (Al, Cu) which represent
the inherent filtration. Using the program SpekCalc [Poludniowski et al., 2009b], photon
fluence spectrum were generated without any filtration for different voltages at 10 kV
step and for anode angles from 5◦ to 22◦ at 1◦ interval. Then, each spectrum was filtered
with all possible thickness combinations of Al (from 0.1 to 8.0 mm at 0.1 mm step) and
Cu (from 0.005 mm to 0.5 mm at 0.005 mm step). Finally, the experimental data was
used to calibrate the model. The optimal tuple of parameters for each imaging system
(anode angle, Al and Cu thicknesses) was determined by minimizing the following cost
function:

Fsource =
∑
j,k

(
Dexp
j,k −D

theo
j,k

Dexp
j,k

)2

(3.3)

where the indices j and k refer to the j-th filter setup and k-th voltage, respectively.
Dexp
j,k are the experimental dose values and Dtheo

j,k are the theoretically determined dose
values.

Dose measurements were carried out with a narrow beam geometry using: the filter
cassette M2 (system # 1), the dynamic collimation jaws (system # 2) and lead slabs
(system # 3). A dosimeter was attached to the flat panel detector and placed at the
central beam axis. Thus, only the spectrum along the beam central axis (θ = 0◦) was
considered. The absolute photon yield was adjusted by weighting the SpekCalc spec-
trum, filtered only with the inherent filtration, with the ratio of measured and theoretical
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dose in air without additional filtration (j=0) for the corresponding (kV,mA,ms) tuple
of source parameters.

Detector response model The detector response was modeled as the average con-
tribution to the pixel value of one incident photon as a function of its energy. It was
assumed that pixel values were proportional to the energy deposit in the scintillator.
The detector response was generated using Monte Carlo simulations. The flat panel
detector was modeled in GATE [Jan et al., 2004] v7.2 (based on Geant4 v10.1, physics
list: emlivermore) as a stack of layers of user-defined materials according to the manu-
facturer’s description (stoichiometry and thickness). The response of the detector was
obtained by measuring the energy deposited in the scintillator layer with monoenergetic
pencil beams of energies ranging from 1 to 140 keV [Roberts et al., 2008], perpendicular
to the detector. In the 20-140 keV energy range, the statistical uncertainty of the simu-
lated detector response was below 0.5% for all detectors (1010 photons). To provide an
absolute value of the deposited energy on the detector, no calibration nor corrections,
i.e. bad pixels and gain, were applied to the acquired projections, only offset correction.
Then, a parameter was used in the model to relate the detector signal to the predicted
value, i.e. a multiplicative factor δp for each pixel p of the detector determined in the
least square sense:

δp =

∑
j,k P

theo
j,k (p)∑

j,k P
exp
j,k (p)

(3.4)

P theoj,k (p) is the predicted pixel value for setup j-th and k-th voltage with p the pixel index

and P expj,k (p) is the measured pixel value for setup j-th and k-th voltage. To manage bad

pixels, P expj,k (p) was determined by taking the spatial median of the signal in a 3×3 pixels
area perpendicular to the beam central axis. Moreover, as the exact thickness of the
CsI scintillator layer was not perfectly known, the detector response was computed for
scintillator lengths ranging from 200 to 900 µm at steps of 50 µm. The experimental
data was used to determine the optimal CsI length that minimized the following cost
function:

Fdetector =
∑
j,k

(
δpP

exp
j,k − P

theo
j,k

δpP
exp
j,k

)2

(3.5)

where the index j and k refers to the setup j-th and k-th voltage, respectively.

Sensitivity analysis The term “sensitivity analysis” refers here to the study of the
variations of the model accuracy (cost function) around its optimum. In particular, once
the optimal tuple of source model values (mm Al, mm Cu, anode angle) were determined
for each system, small variations (i.e. up to ± 0.3 mm Al, ± 0.01 mm Cu, ± 3 degrees)
around the optimal values at a time were introduced for each parameter. For the detector
response model, the scintillator length was varied from 200 µm to 900 µm.
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3.2.3 Results

The source model was calibrated using dose measurements in air with increasing
thicknesses of aluminum, with the beam filtrations f1 (no filter) and f3 (0.3 mm Cu +
0.5 mm Ag). For each imaging system, the parameters of the source model were deter-
mined by minimizing the cost function described in Equation 3.3 and are summarized
in Table 3.2. In Figure 3.2, plot of two representative X-ray spectra and the detector
response in energy, obtained after calibration, for each system.

System Anode angle (◦) mm Al mm Cu CsI length (µ)

#1 18 7.2 0.01 750

#2 11 0.3 0.06 350

#3 11 3.0 0.01 450

Table 3.2: Model parameters of each imaging system (see Table 3.1) determined through
minimization.

The results of the point-by-point dose comparison between experimental and theo-
retical values are summarized in Table 3.3. This is illustrated visually in Figure 3.3.
Averaging over all setups, all imaging systems showed an agreement between theoretical
absorbed dose in the dosimeter and measurements within 1.5 %.

Source Detector

System Total f1 f3 Total f1 f2 f3

#1 1.4 ± 5.1 2.9 ± 1.7 -12 ± 5.4 1.8 ± 6.5 -2.1 ± 2.4 4.0 ± 1.3 3.6 ± 10

#2 -0.48 ± 3.5 -1.2 ± 1.6 0.78 ± 5.1 -3.7 ± 9.9 -2.3 ± 4.0 -2.8 ± 5.8 -6.9 ± 19

#3 0.45 ± 2.8 0.97 ± 2.1 -6.3 ± 1.1 -2.4 ± 5.7 -0.86 ± 1.3 0.63 ± 4.2 -7.5 ± 7.3

Table 3.3: For all systems (see Table 3.1), results of the source and the detector model
verification expressed in terms of the relative difference (in %) averaged over all voltages.
The total relative difference, averaged over all filtration, and the relative to each filtration
are shown in separate columns.

For the detector response verification, three irradiation setups were evaluated: f1 (no
filter), f2 (8 mm Al) and f3 (0.3 mm Cu + 0.5 mm Ag). For each imaging system,
the scintillator length, which was an unknown parameter of the detector model, was
determined by minimizing the cost function described in Equation 3.5. The resulting CsI
lengths are shown in Table 3.2. The results of the detector response model verification are
summarized in Table 3.3 and it is illustrated in Figure 3.4. In general, good agreement
between the theoretical and the measured energy deposited in the detector is obtained
for setup f1 and f2. For the setup f3, larger discrepancies are observed, particularly
for the imaging system #2. Nevertheless, when taking into account all the setups, the
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Figure 3.2: Source and detector response models built for the kV-CBCT unit of system
# 1 (a), # 2 (b) and # 3 (c) (see Table 3.1). Left axis: plot of the 70 kV and 120 kV
X-ray source spectra. Right axis: Monte Carlo simulated detector response in energy.
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Figure 3.3: From top to bottom: results of the source model verification for the imaging
system # 1, # 2 and # 3 (see Table 3.1). Semi-logarithmic plot of the absolute dose
per pulse as a function of the aluminum thickness interposed in the beam for several
tube voltages. Left: original beam spectrum (i.e. filtration f1); right: spectrum with
filtration f3. Markers represent the experimental dose readouts and the continuous lines
the theoretical dose values.
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theoretical total energy deposit in the detector agreed with measurements to within 4%
for all imaging systems.

The results of the sensitivity analysis for the three imaging systems are shown in
Figure 3.5. Systems # 2 and # 3 are more sensitive to variations in the anode angle,
inherent filtration and scintillator length than system # 1.

3.2.4 Discussion

In this work, an experimental procedure has been developed to calibrate and validate
any model of source and detector responses of a CBCT unit.

In the application example, the unknown parameters of the models were determined
by minimizing a defined cost-function using the procedure measurements. The results
of the source model verification showed worse agreement of the f3 filter setup for the
imaging system #1 compared to the others. Either the process of minimizing the cost
function did not provide the optimal inherent filtration thicknesses, because there were
fewer data points in f3 compared to f1, or the f3 data set points out an error in the model
for highly hardened beams. In the detector model verification, larger discrepancies were
observed for the setup f3, particularly for the imaging system #2. This could be due
to a limitation or error in the model, e.g., a wrong density or thickness estimation in
the simulated stack of layers. Nevertheless, even if the source model accuracy for the
different setups was not optimal, it seems to have little influence on the detector model
accuracy.

The main difference between our method and those found in the literature is that we
generate many data points using different filtering materials. Moreover, the measurement
and the prediction of doses in air are compared for each filter setup instead of comparing
the HVLs only. Due to the discontinuities in the spectrum range, materials such as
silver, gold and tungsten, modulate the initial spectrum in a different way compared to
aluminum. The introduction of copper and silver filtration in the verification process
seems to highlight errors or limitations in the source and in the detector model that were
not noticeable with the aluminum filtration only.

The materials required to set the experimental framework are easily accessible and
often available in hospitals, i.e., attenuation filters of different materials for both mod-
els, and a dosimeter working in the range of CT imaging voltages. This procedure is
interesting for the physicists that need a forward model benchmarked against experi-
mental data, a prerequisite in many applications, some of which have been listed in the
introduction.

The protocol has only been illustrated to a single direction for the source and the
detector of three CBCT scanners but other directions may be validated by repeating the
procedure, using 2D dose detectors or applying the method developed by Randazzo et
al [Randazzo and Tambasco, 2015] which is complementary to the current protocol. To
compute the theoretical dose values in the 2D plane and thus, to account for the heel
effect in the anode-cathode direction, analytic models of the heel effect that require few
dose points measurements in the 2D plane might be used [Braun et al., 2010].
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Figure 3.4: From top to bottom: results of the detector response verification for the
imaging system # 1, # 2 and # 3 (see Table 3.1). Semi-logarithmic plot of the theoretical
(continuous line) and measured (markers) energy deposited in the detector for increasing
X-ray tube potentials divided by the mAs. The method was repeated using different
spectra filtration: f1, f2, f3.
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Figure 3.5: Sensitivity analysis results in terms of the cost function as a function of
the parameters of the source and the detector model. Variations were centered at the
optimal values, summarized in Table 3.2, determined previously in the model calibration
stage.

According to the sensitivity analysis, very hardened beams (e.g. system # 1) are less
sensitive to variations in the source model parameters because anode angle or inherent
filtration variations do not introduce significant changes in the photon yield. The de-
tector response was sensitive to the scintillator length but it was characterized by a flat
cost function around the optimum. In other words, the scintillator lengths in the 10%
interval of the optimal CsI length would produce similar results.

The limitation of the current validation procedure is that when parametric models
with many unknowns are used, like in the application example (section II.B), the exper-
imental data are also used for the model calibration. In such cases, one needs to have
independent sets of measurements for the validation. Otherwise, this procedure is only
an indicator of the goodness of fit of our calibration. However, if the model of the CBCT
scanner is pre-calibrated, this procedure can be exclusively used for validation. Presum-
ably, the user would anyway further validate the model depending on its use, e.g. using
a beam stop array for scatter simulations. To complement our sensitivity analysis, it
would be of additional value to evaluate the impact of measurement uncertainties.

3.2.5 Conclusion

In this work, a calibration and validation procedure for any model of the source and
the detector of a CBCT unit has been described. The experimental procedure requires
instruments and equipments that are readily available in many clinical or research facil-
ities. The protocol has been successfully applied to simple models of three commercial
X-ray imaging systems.
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3.3 Assessment of the Imaging Ring model validity

In the framework of this PhD. thesis, a model for the Imaging Ring system was
required to perform image-simulations in GATE and to perform dual-energy decompo-
sition with real data. Reliable information from the manufacturer is required to built
the models of the source and the detector response of the CBCT unit. Unfortunately,
most of the time this information is not available or it is provided with big uncertainties
(e.g. CsI length from 550 µm to 800 µm). Consequently, the parametric models for
the source and the detector response described in the previous section were considered.
The model with three unknowns, i.e. anode angle, thickness of Al and thickness of Cu
(which represent the inherent tube filtration), referred to the bi-material model in the
following, was built for the X-ray source. The thickness of the scintillator layer (CsI)
was the unknown of the parametric model for the detector.

In the course of this work, the Imaging Ring unit used for dual-energy acquisitions
underwent some upgrades and modifications. For example, a flattening filter made of
aluminum with an optimized shape was installed in the last set of experiments to reduce
the heel effect (Figure 3.6). Consequently, after every major modification, it was required
to check the Imaging Ring models determined in Section 3.2.

Figure 3.6: Flattening filter to reduce the heel effect.

To that end, a simplified procedure was implemented to simultaneously assess the
source and the detector models validity.

3.3.1 Experimental setup

1. The same high-purity (≥99.9%) filters of Al, Cu and Ag of known thicknesses used
in Section 3.2 were arranged following a staircase pattern. Three different filter
arrangements were considered to have as much filter combinations as possible. X-
ray collimation jaws were adjusted to illuminate only the desired portion of filters
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and thus reduce scatter contamination (see Figures 3.7, 3.8 and 3.9).

(a)

AlAlCu setup

(b)

Figure 3.7: a) Picture showing the first filter arrangement: (Al 2 mm, Al 0.5 mm, Cu).
The blue rectangle shows the collimator aperture. b) Figure showing the ROIs placement
on transmission images.

(a)

All setup

(b)

Figure 3.8: a) Picture showing the second filter arrangement: (Al 2 mm, Al 0.5 mm,
Cu, Ag). The blue rectangle shows the collimator aperture. b) Figure showing the ROIs
placement on transmission images.

2. The source and the flat panel detector were oriented in front of each other according
to the irradiation geometry employed in dual-energy acquisitions (see Figure 3.10).

3. For each filter setup and tube voltage, between 200 and 400 transmission images
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(a)

CuAg setup

(b)

Figure 3.9: a) Picture showing the third filter arrangement: (Cu, Ag). The blue rectangle
shows the collimator aperture. b) Figure showing the ROIs placement on transmission
images.

53.2 cm49.5 cm

SDD = 102.7 cm

Figure 3.10: Irradiation setup to assess the source and the detector models validity.

were acquired with all corrections activated, i.e. lag, fluence and bad pixels.

3.3.2 Post-processing

1. A 3×3 pixels Region-Of-Interest (ROI) was placed at the center of each homo-
geneous area of the image, corresponding to one step of the step-phantom. All
transmission images (I) were normalized to the transmission value of the ROI
placed in air (I0), without filtration. The spatial mean of the signal in each ROI
and the temporal mean of the signal over all frames was computed.
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2. To reduce the degrees of freedom, the nominal anode angle of 10◦ was considered.
Non-filtered spectra at 10◦ and tube voltages ranging from 60 kV to 120 kV at
10 kV steps were retrieved from SpekCalc. These spectra were further filtered with
102.7 cm of air (source-to-detector distance of the Imaging Ring system). The bi-
material source model described in Section 3.2 was used. The unknown parameters
of this model, which were the thicknesses of Cu and Al, were determined through
a minimization process with the step-phantom transmission measurements.

3. The detector response in energy was generated in GATE for scintillator thick-
nesses of CsI ranging from 350 µm to 800 µm (unknown parameter of the detector
model) as described in Section 3.2. The CsI thickness was determined through a
minimization process with the step-phantom transmission measurements.

4. The inherent Al filtration was increased from 0.0 to 3.0 mm at steps of 0.1 mm, the
inherent Cu filtration was increased from 0.0 to 0.3 mm at steps of 0.01 mm, and
the CsI length was varied from 350 to 800 µm at steps of 50 µm. A minimization
process of the following cost function was carried out to determine the optimal
model parameters:

F =
∑
j,k

(
attexp

j,k − att
theo
j,k

attexp
j,k

)2

(3.6)

where the index j and k refers to the j-th filter setup and k-th voltage, respec-
tively. attexp

j,k are the experimentally determined attenuation values and atttheo
j,k

are the theoretically computed attenuation values making use of the source and
the detector models. The attenuation values were computed as −ln(I/I0), where I
are transmission values and I0 the transmission values of the ROIs positioned in air.

5. This procedure was implemented twice along the duration of the thesis. For the
experimental session conducted in March 2016, the inherent filtration of the bi-
material source model (Al and Cu) and the CsI length that minimize the cost
function F were 0.3 mm Al, 0.06 mm Cu and 550 µm, respectively; whereas,
for the experimental session conducted in November 2016, after the installation
of the flattening filter, the parameters of the model were 0.6 mm Al, 0.15 mm
Cu and 550 µm. These parameters differ from the ones determined in section 3.2
because the changes made to the system modified the photon yield. These new
values and the corresponding models were used to decompose dual-energy real
data.

3.4 Scatter correction

One of the well-known limitations of CBCT imaging is the scatter contamination
in the projection images due to the large X-ray illumination volume [Zhu et al., 2009].
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The physical phenomenon responsible of these image artifacts is Compton scattering
(see section 1.2.2.2) and the main consequences are: shading and streak artifacts, loss of
CNR and wrong HU quantification [Ohnesorge et al., 1999; Siewerdsen and Jaffray, 2001;
Siewerdsen et al., 2006; Sossin et al., 2014]. Scatter contamination can either come from
the object being imaged or from the flat-panel detector. In the CT diagnostic energy
range, scatter within the flat-panel detector and housing cause a low-spatial frequency
signal superimposed to the primary signal, known as scatter-glare, visible in the acquired
images [Poludniowski et al., 2011]. In the high energy range, typically used in industrial
NDT, the contribution of the detector scatter becomes more substantial and cannot be
neglected [Bhatia et al., 2016].

On the detector side, scatter mitigation techniques include the use of anti-scatter
grids, which prevent a certain fraction of scattered photons to reach the detector at the
cost of attenuating the flux of primary radiation and increasing patient dose [Kyriakou
and Kalender, 2007], and the air-gap method which consists in increasing the distance
between the object and the detector at the cost of reducing the size of the FOV and
increasing the source intensity for divergent beams. On the source side, scatter can be
reduced by proper collimation and employing bow-tie filters [Rührnschopf et al., 2011;
Ruhrnschopf and and Klingenbeck, 2011].

Scatter correction procedures consist of two steps: scatter estimation and scatter
compensation through data post-processing [Rührnschopf et al., 2011; Ruhrnschopf and
and Klingenbeck, 2011]. Scatter can be estimated by measurement or by mathematical
modeling. Beam-blockers or collimator-shadow techniques are used to estimate the scat-
ter empirically. Mathematical modeling techniques include scatter deconvolution and
scatter modeling (i.e. either analytically or based on MC simulations).

Scatter deconvolution methods, also referred to as Scatter Kernel Superposition
(SKS), model the X-ray cone beam as an array of pencil beams that interact with the ob-
ject and each one has its own Point-Spread Function (PSF) or scatter kernel [Ohnesorge
et al., 1999; Bertram et al., 2006; Star-Lack et al., 2009; Sun and Star-Lack, 2010]. The
PSFs can be determined either experimentally or through MC simulations. Typically,
these kernels are assumed to be symmetric and invariant all along the image. However,
as the magnitude and spatial distribution of scatter is object dependent, some authors
showed that this assumption can lead to important scatter estimation errors and, thus,
adaptive asymmetric kernels are preferred to improve the scatter transport modeling
[Star-Lack et al., 2009; Sun and Star-Lack, 2010].

The IR has a scatter deconvolution method implemented in the image reconstruction
pipeline. Its scatter kernels are estimated through transmission measurements (field size
of 5×5 cm2) interposing several slabs of solid water to the X-ray beam and recording
the scatter-to-primary ratio. Transmission signal is described as the sum of the primary
signal and the scatter contribution. Due to the geometry and the position of the colli-
mation jaws, there is more head scatter in the u-direction than in the v-direction. This
effect is partially solved by collimating the jaw in the u-direction. The scatter signal
is fitted by two Gaussian distributions and substracted to the transmission signal by
deconvolution in a pixel-by-pixel basis.
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Thanks to the dynamic collimator jaws, the IR system offers the possibility to perform
dual-energy CBCT acquisitions with a slit of 2 cm or 3 cm at the isocenter simulating a
fan beam acquisition. Technically, it would be possible to collimate much tighter but then
a correction model for the penumbra of the jaws would be required. In this thesis, to take
advantage of the signal behind the jaws, which the scatter correction implementation in
the IR pipeline does not use, the collimator-shadow technique proposed by Siewerdsen
et al [Siewerdsen et al., 2006] has been implemented off-line to correct for the remaining
scatter when performing CBCT acquisitions using the dynamic collimator jaws. Some
comparative studies have concluded that the collimator-shadow approach was one of the
most accurate empirical techniques available [Akbarzadeh et al., 2010].

The method proposed by Siewerdsen et al [Siewerdsen et al., 2006] consists in mea-
suring the scatter fluence in the shadow of the collimation. It assumes that the signal
behind the collimator jaws is exclusively due to X-ray scatter and that the transmission
through the collimator leaves is negligible. We define v as the rotation axis (second
coordinate of each projection) and u as its orthogonal direction (first coordinate of each
projection). The 2D scatter fluence S(u, v) is determined by fitting a polynomial be-
tween pixel values measured along the top and the bottom edges of the detector behind
the collimator jaws (Stop and Sbot in Figure 3.11). A longitudinal fit (in the v direction)
is performed for each row in the u direction. The same operation is repeated for each
projection m in order to get a 3D scatter fluence S(u, v,m). As transmission values
are equal to the sum of primary signal and scatter contribution, the scatter fluence is
substracted from each measured projection M(u, v,m) to estimate the primary radiation
contribution P (u, v,m) to the detector signal:

P (u, v,m) = M(u, v,m)− S(u, v,m). (3.7)

The position of the collimation jaws is provided by the IR system for each projection.
Using Siewerdsen’s notation, the scatter signal was measured behind the top and the
bottom jaws in a Stop = Sbot=15 mm region with a z0=3 mm margin to account for
the jaws penumbra and uncertainties in the jaws positions. The other parameters of
the algorithm were: vfit=2 order of the polynomial fit, θfit=1 no projection-to-projection
smoothing and ufit=7 pixels of lateral smooting with a Gaussian filter.

To illustrate the implementation of the method, a set of 610 projection images of
the CIRS Dynamic Thorax Phantom Model 008A (Norfolk, VA, Norfolk, VA, United
States of America) acquired at 120 kV filtered with Cu and Ag with a slit of 3 cm at the
isocenter was selected. This set of acquisitions was chosen among others due to the larger
scatter contamination. Images of the linear attenuation coefficient were reconstructed
using the Filtered-Back Projection (FBP) algorithm implemented in RTK. The phantom
was segmented into the four main materials (plastic water, lung, trabecular bone and
cortical bone) and the reference image at 120 kV/CuAg was computed at the effective
monochromatic energy of the spectrum (calculated accounting for the detector response
and the polychromatic energy spectrum of the IR) using the chemical composition and
mass density values of each material provided by the manufacturer.

Figure 3.12a shows the second order polynomial fits along v for different u values for
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Figure 3.11: a) Schematic illustration of a cone-beam CT irradiation. Collimator jaws
limit the FOV in the longitudinal direction (v) and shadow the top (Stop) and bottom
(Sbot) edges of the detector. b) Top view of the detector in which the detector regions
shadowed by the collimator blades are visible. c) Signal between top and bottom col-
limator shadows columnwise interpolated in the v direction (Sj(v)) to estimate the 2D
scatter fluence S(u, v) across the FOV. Figure extracted from [Siewerdsen et al., 2006].

a projection image, whereas Figure 3.12b shows the line profiles for a given u relative to
the transmission signal (primary + scatter), the primary signal and the scatter signal.
The scatter contribution is about 20% of the primary signal.

Figure 3.13 shows the reconstructed images of the linear attenuation coefficient with-
out scatter correction (left), with Siewerdsen’s scatter correction (middle) and with the
current scatter correction version implemented in the IR reconstruction pipeline (right).
It is worth to mention that the IR scatter correction at the time of the experimental
session was insufficiently configured, especially regarding the integrated scatter distance
correction –which is required for accounting for the varying object to detector distance
in non-isocentric datasets. Figure 3.14 shows two line profiles across the reference image,
the uncorrected image and the two scatter corrected images. As reported in the litera-
ture [Akbarzadeh et al., 2010], due to scattered radiation, a reduction of the attenuation
coefficient is observed for most tissues.
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Figure 3.12: Example of implementation of the collimator-shadow scatter correction
method. Projections relative to the CIRS Thorax phantom acquisitions at 120 kV filtered
with Cu and Ag. The scatter contribution within the object (blue area) is about 20% of
the primary signal.

no correction Siewerdsen's correction IR correction

Figure 3.13: Comparison of reconstructed CT images without scatter correction (left),
scatter corrected using Siewerdsen’s method (middle) and with the IR scatter correction
implemented at the time of the experiment (right). Colorbar from [0, 0.3] cm−1.

When testing Siewerdsen’s method to projections of the CIRS Electron Density Phan-
tom Model 062M (Norfolk, VA, United States of America) acquired with a slit of 3 cm
at the isocenter, no improvement was observed. The CIRS phantom is only 5 cm in
the v direction and, therefore, there is a sharp edge in the Stop and Sbot areas used
for the scatter estimation. In the part where there is no phantom, a larger amount of
scatter escapes the object and reaches the detector compared to the part between the
jaws where most of the scatter is attenuated by the object itself. The larger amount of
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(black). Middle plot corresponds to the cyan line profile and bottom plot to the magenta
line profile. Colorbar from [0, 0.3] cm−1.

scatter near the edges of the object than behind the object is a known phenomenon that
can be observed with MC simulations, e.g., in Fig.1 of [Thing et al., 2013]. Neverthe-
less, Siewerdsen’s approach was found adequate to correct IR CBCT acquisitions using
the dynamic collimation jaws when the object shape being imaged was slowly varying
around the jaw borders.

3.5 Conclusion

The main features of the Imaging Ring (IR) system, a scanner developed for IGRT
and at the center of this work, have been described. This CBCT unit presents additional
features such as a X-ray source with fast-kV switching capabilities synchronized with
a filter wheel which allows multi-energy imaging. In particular, the thesis is focused
on exploiting the dual-energy CBCT capabilities of this system for proton therapy ap-
plications. To that end, a parametric model for the source and the detector response
of the IR system were proposed. These models were further calibrated and validated
through an experimental procedure, tested also on other two commercial CBCT units.
A simplified experimental procedure was developed to simultaneously assess the validity
of the IR models after system upgrades. Finally, to take advantage of the signal behind
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the jaws when performing dual-energy CBCT phantom acquisitions with a 3 cm slit at
the isocenter, i.e. simulating a fan beam acquisition, the collimator-shadow technique
was implemented off-line to correct for the remaining scatter with convincing results.
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The range of protons in patients is determined from the stopping-power ratio (SPR)
of tissues relative to water along the beam path. The stoichiometric calibration proposed
by [Schneider et al., 1996] has been widely adopted in the current practice to convert
planning X-ray CT images into SPR maps based on single-energy CT (SECT). However,
a 3.5% range uncertainty has been associated with this conversion [Yang et al., 2012].
The proton SPR can be derived from dual-energy CT (DECT) data and it has been
shown that DECT imaging has the potential to improve the accuracy of the SPR esti-
mation compared to conventional single-energy CT (SECT) [Yang et al., 2010; Hansen
et al., 2015; Hünemohr et al., 2013; Zhu and Penfold, 2016]. Several algorithms based
on DECT have been proposed to predict the SPR or the intermediate variables required
to compute the SPR with the aim of improving the accuracy of proton dose calcula-
tions, e.g., the relative electron density (RED), the effective atomic number (Zeff) or
the logarithm of the mean excitation energy [Yang et al., 2010; Saito, 2012; Hünemohr
et al., 2014a,c; Landry et al., 2013b; Bourque et al., 2014; Van Abbema et al., 2015;
Ramos Garcia et al., 2016; Han et al., 2016; Möhler et al., 2016; Taasti et al., 2016].
Section 2.4 described in detail the two main approaches to perform dual-energy decom-
position, i.e. image- and projection-based decomposition domains. In projection-based
methods, material decomposition is performed prior to image reconstruction, and for
image-based methods the decomposition takes place after image reconstruction. Today,
no consensus has emerged as to what the best decomposition method and domain are
for the SPR estimation. The aim in this chapter is to:

- list the existing definitions for the effective atomic number;
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- review the existing methods to determine the SPR from DECT data;

- describe two novel approaches to determine the SPR from DECT;

- compare the existing and novel approaches in terms of SPR accuracy;

- compare the image- and the projection-based decomposition domains in terms of
SPR accuracy;

- determine the SPR from real data using the Imaging Ring system.

4.1 Effective atomic number definition

Many equations describing the radiation-matter interaction processes are dependent
on the atomic number (see sections 1.1.2 and 1.2.2). To describe these interactions for
compounds (e.g. water) or mixtures (e.g. soft tissue or bone), it is necessary to define an
effective atomic number (Zeff). For photon interactions, the effective atomic number was
first introduced by [Mayneord, 1937]. In the literature, there are mainly two definitions
for the Zeff : a power law approach (section 4.1.1) and based on the parametrization of
the electronic cross section (section 4.1.2).

4.1.1 Power law equation

To calculate the Zeff of a compound or mixture, a power law method was proposed
[Mayneord, 1937]:

Zeff =

[
N∑
i

λi · Zmi

]1/m

; λi =
ωi ·

Zi
Ai∑N

i ωi ·
Zi
Ai

(4.1)

where λi is the fractional contribution of the i-th element to the total number of electrons
in the mixture, such that

∑
i λi = 1, ωi is the mass fraction of the i-th element having

atomic number Zi and atomic mass Ai (g/mol).
This is an approximate expression and the exponent m is an empirically determined

parameter affected by the spectra of photon beams. A short literature overview was
conducted to list the different m-exponent values. In the 1930s, photon sources were
restricted to low energy X-ray units, i.e. with photon energies ranging from 30 to 80 keV
where the photoelectric effect is dominant over the Compton process. For this reason,
a m-exponent value of 2.94, that came from an empirical formula for the photoelectric
process [Khan, 2003], was recommended by Mayneord. In 1977, Brooks [Brooks, 1977]
provided an example on how to determine the m-exponent. In Fig. 1 of [Brooks, 1977],
there is a log-log plot of the atomic cross section σp (barns/atom) for photoelectric
absorption, coherent scattering and binding energy correction as a function of the energy,
for various elements. Empirical fits to the data using the equation σp = B EA resulted
in a slope of A=-2.8 (i.e. σp = B E−2.8) for a number of common elements. In Fig. 2
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of [Brooks, 1977], the log-log plot of the energy independent term of the atomic cross
section (B) as a function of the atomic number for 11 elements resulted in a slope of
4.1 (i.e. σp ∝ Z4.1). A multiplicative factor equal to 10−24ρe/Z was required to convert
from σp in barns/atom to linear attenuation coefficient µp in cm−1, which resulted in
the final m-exponent of 3.1. In 1983, Johns and Cunningham [Johns and Cunningham,
1983], using the elemental compositions of a variety of materials and the tabulated
values for the elemental electronic cross sections, computed the Zeff for air, water, fat,
muscle, bone, polystyrene, Lucite, LiF and ferrous sulfate for energies from 30 to 80 keV.
The value of m that gave the best fit ranged from 3.4 to 3.8 with most of the best fit
values around 3.5. Finally, in most dual-energy decomposition algorithms, the Zeff of a
compound or mixture is defined using the power law of Equation 4.1. However, multiple
m-exponent values are used in these publications (see Table 4.1) because, depending
on the interaction processes considered and the photon energy range, the m-exponent
differs.

Publication m-exponent

[Bazalova et al., 2008b] 3.5
[Yang et al., 2010] 3.3

[Landry et al., 2011] 3.3
[Saito, 2012] 3.5

[Hünemohr et al., 2014c] 3.1

Table 4.1: m-exponents used in some dual-energy CT publications.

4.1.2 Parametrization of the electronic cross section

To avoid the ambiguity in determining them-exponent value, Bourque et al [Bourque
et al., 2014] proposed another definition of the Zeff for mixtures and compounds based
on a parametrization of the electronic cross section σe (section 1.2.2). For polychromatic
radiations, the electronic cross section averaged over a given spectrum σe is given by:

σe(Z) ≡
∫ Emax

0
σe(Z,E) S(E) dE (4.2)

where σe(Z,E) represents the electronic cross section for a specific photon energy E and

S(E) is the normalized photon spectrum at energy E with
∫ Emax

0 S(E) = 1.
For any Z (Z ∈ R, Z ≥ 1) and for a given photon spectrum or monochromatic

energy, Bourque et al defined the parametric electronic cross section σ̂e as follows:

σ̂e(Z) ≡
M∑
m=1

am Zm−1 (4.3)

where the coefficients am were obtained using a least square fit on tabulated electronic
cross section data from the NIST database [Hubbell and Seltzer, 2004] over a range
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Z ∈ [Zmin, Zmax]. M is the order of the fit that guarantees σ̂e(Z) = σe(Z) for Z integers.
There is a one-to-one relation between the electronic cross section, either averaged over
a polychromatic spectrum or for a monochromatic energy, and the atomic number over
a range Z ∈ [Zmin, Zmax]. It means that there is an inverse function σ̂e

−1 such that

Z = σ̂e
−1(σe). (4.4)

By analogy with the mixture rule [Jackson and Hawkes, 1981], the electronic cross
section of a compound or mixture σe,med can be computed as follows:

σe,med =
∑
i

λi σe(Zi) (4.5)

In practice, if the electronic cross section of a compound or mixture is known for
a given photon spectrum, the effective atomic number of a medium Zmed is defined as
follows: the parametric electronic cross section σ̂e evaluated at Zmed equals the electronic
cross section of the medium averaged over the spectrum σe,med

σ̂e(Zmed) = σe,med (4.6)

and thus:

Zmed ≡ σ̂e−1(σe,med) (4.7)

One can note that, if σ̂e is a bijective function, this definition yields a unique Zmed. For
this reason, the fit of σ̂e(Z) has to be limited in a region where there are no discontinuities
with Z due to K-shell (or others) discontinuities. Despite the fact that this definition
depends on the photon energy spectrum, Zmed of human tissues weakly varies with the
photon spectrum in the range of CT imaging energies [Bourque et al., 2014].

4.2 State of the art

Many DECT-derived SPR prediction approaches determine the proton SPR from
Bethe’s equation without correction terms (see Equation 1.12) [Schneider et al., 1996;
Yang et al., 2010]. To calculate SPRs from this equation, the relative electron density
(RED) and the logarithm of the mean excitation energy of tissues (ln Im) and water (ln
Iw) are needed as input. Most DE algorithms decompose into RED [Saito, 2012], Zeff

[Landry et al., 2013b] or RED and Zeff [Bazalova et al., 2008b; Yang et al., 2010; Landry
et al., 2011; Hünemohr et al., 2013, 2014a,c; Bourque et al., 2014; Van Abbema et al.,
2015; Ramos Garcia et al., 2016].

Yang et al [Yang et al., 2010] proposed a linear relationship between Zeff and ln Im
based on a calibration with known human biological tissues extracted from [ICRU, 1989;
White et al., 1987]. The Zeff of human tissues was computed through equation 4.1 using
an m-exponent of 3.3 and the tabulated chemical composition. The ln Im of tissues was
calculated through the Bragg additivity rule using the tabulated chemical composition
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Figure 4.1: Linear relationship between ln Im and Zeff of 34 standard human biological
tissues extracted from [ICRU, 1989; White et al., 1987]. The value of ln Im is calculated
through the Bragg additivity rule. Two separate linear relationships are proposed: soft
tissue and bone tissue groups. Figure extracted from [Yang et al., 2010].

of tissues and the elemental I-values were taken from Table 2.8 and 2.11 in the [ICRU,
1993]. One limitation of this approach is the gap between the group of soft tissues and
the group of bone tissues (see Figure 4.1). Due to volume averaging, CT voxels of a
patient might fall within this Zeff gap [Möhler et al., 2016] and, therefore, the ln Im
would not be defined.

To overcome this limitation, Bourque et al [Bourque et al., 2014] improved the rela-
tionship between Zeff and Im by proposing a continuous empirical parametrization for
human tissues. In their implementation, the Zeff of human tissues was computed through
equation 4.7. Then, the Zeff -range was divided into three regions and three piece-wise
relations were proposed to fit the data (see Figure 4.3-1):

I(Z) =


e1Z + e2 for Z < Zmin

e3Z
5 + e4Z

4 + e5Z
3 + e6Z

2 + e7Z + e8 for Zmin ≤ Z ≤ Zmax
e9Z + e10 for Z > Zmax

(4.8)

In a pixel-by-pixel basis, Hünemohr et al [Hünemohr et al., 2014c] derived the mass
fraction of the six main constituent elements of body tissues (i.e. hydrogen, carbon, ni-
trogen, oxygen, calcium, and phosphorus) from linear fits with RED and Zeff information
obtained through dual-energy decomposition. Afterwards, the Bragg additivity rule was
used to compute the logarithm of the tissues I-value and Bethe’s equation without any
correction terms was used to compute the SPR assuming an I-value for water of 75 eV.
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Kanematsu et al [Kanematsu et al., 2012] proposed a direct conversion between the
RED and the SPR by establishing piece-wise linear relations between the RED and the
SPR over RED of human tissues. A selection of 92 ICRU46 tissues of known chemical
composition and mass density [ICRU, 1992], excluding obsolete and artificially extracted
materials, were used for the calibration. To implement this curve (Figure 4.3-2), theoret-
ical SPR values of these body tissues were computed using Bethe’s equation for protons
of 200 MeV. For proton energies in the range between 80 and 300 MeV, the variation
of SPR with proton energy is negligible (< 1%) [Arbor et al., 2015]. Consequently, this
conversion can be assumed energy-independent [Farace, 2014].

Recently, Taasti et al [Taasti et al., 2016] proposed an empirical parametrization of
the proton SPR directly based on the CT numbers of the low and the high energy DE
spectra, avoiding all intermediate variables and steps. This method was found more
robust to noise compared to other approaches [Hansen et al., 2015; Han et al., 2016]. A
brief description of this method is provided in section 4.5.2.2.

4.3 Novel approaches

In the framework of the PhD thesis, two novel calibrated relations have been proposed
to determine the proton SPR of tissues from dual-energy data. The starting point of
both approaches is the output of the BMD projection-based decomposition method (see
section 2.4.2.1), i.e. mass density images %i of the two basis materials (e.g. i=1: soft
tissue and i=2: cortical bone). Electron density images relative to water (RED) can be
derived from these mass density images for each pixel coordinate x as follows:

RED(x) =
%1(x)

[∑
iwi

Zi
Ai

]
1

+ %2(x)
[∑

iwi
Zi
Ai

]
2

ρW

[∑
iwi

Zi
Ai

]
W

(4.9)

where Zi is the atomic number, Ai is the atomic mass and wi is the elemental weight
fraction for element i of the tabulated compounds 1, 2 and water (represented with the
index W); ρW is the mass density for water. Furthermore, Virtual Monochromatic (VM)
images at any energy E can be directly derived from the parametrization of the linear
attenuation coefficient proposed by the BMD method:

µ(x, E) = %1(x)

(
µ

ρ

)
1

(E) + %2(x)

(
µ

ρ

)
2

(E). (4.10)

From the existing relation between the linear attenuation coefficient and the electronic
cross section (see Equation 1.15) [Jackson and Hawkes, 1981], an image of the electronic
cross section at any energy E σe can also be determined from the reconstructed µ(E)
image as follows:

σe(x, E) =
µ(x, E)

NA

(
%1(x)

[∑
iwi

Zi
Ai

]
1

+ %2(x)
[∑

iwi
Zi
Ai

]
2

) (4.11)
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Figure 4.2: Dual-energy outputs of the BMD projection-based decomposition. From
top to bottom and from left to right: soft tissue mass fraction image, cortical bone
mass fraction image, relative electron density (RED) image and electronic cross section
(σe,100) image reconstructed at 100 keV. Images relative to one slice of the ICRP female
computation phantom.

Figure 4.2 shows the outputs of the BMD decomposition, i.e. mass fraction images
of soft tissue and cortical bone of one slice of the International Commission on Radio-
logical Protection (ICRP) female computational phantom [ICRP, 2009], and the derived
outputs, i.e., the RED image and the electronic cross section image reconstructed at
100 keV (σe,100).

4.3.1 SPR from RED and ln(I)

This method consists in determining the proton SPR from the RED and the logarithm
of the mean excitation energy using Bethe’s equation without correction terms. The for-
mer is a direct BMD decomposition output, whereas the latter is derived through a novel
piece-wise calibrated relation between σe and ln Im for tabulated human tissues [ICRU,
1992] as illustrated in Figure 4.3-3. A 100 keV photon energy is chosen to perform the
calibration because, in the presence of heavy metal objects, this photon energy falls
within the optimal VM energy range to reduce metal artifacts [Li et al., 2012; Yu et al.,
2012]. The ln I of human tissues is derived through the Bragg additivity rule using the
tabulated chemical composition and the elemental I-values from Table 2.8 and 2.11 in
the [ICRU, 1993]. The electronic cross section of a compound or mixture is computed
through Equation 4.5 [Bourque et al., 2014].

An approach similar to this one, i.e. avoiding the derivation of the intermediate
variable Zeff and directly determining the ln Im from DECT data, has been followed
by two recently published works [Möhler et al., 2016; Han et al., 2016]. Han et al
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[Han et al., 2016] proposed two linear models to determine the RED and the ln Im as
a function of the basis material images derived from the DECT BMD decomposition
approach implemented in the image-domain [Williamson et al., 2006]. Two different
materials basis were used: water and polystyrene for soft tissues, while water and aqueous
CaCl2 solution were chosen for bone tissues. On the other hand, Möhler et al [Möhler
et al., 2016] factorized the SPR into RED and relative stopping number L̂ such that
L̂ = L(Im, β)/L(Iw, β). To derive the RED they suggested the approach of Hunemöhr
et al [Hünemohr et al., 2014a], whereas for the L̂ they proposed a calibrated relation
between the relative electron cross section σ̂e (obtained by dividing the measured relative
attenuation coefficient by the RED) and the L̂ using known tissue base components or
body tissues [Woodard and White, 1986; White et al., 1987].

4.3.2 SPR from RED and σe

The second method consists in directly determining the SPR from the RED and
the σe images at a given energy E by establishing a relationship between σe and SPR
over RED obtained through calibration with known human tissues [ICRU, 1992] (see
Figure 4.3-4). As for the other method, the calibration is performed at a photon energy
of 100 keV.

4.4 Comparison of SPR estimators

Two simulation-based studies were designed to compare, in terms of accuracy and
precision, the procedures described in the previous section to estimate the SPR from
DECT data.

The four calibrated relations that have been compared are illustrated in Figure 4.3
and they are summarized in Table 4.2. The first approach was the calibrated relation
between the logarithm of the mean excitation energy of tissues Im and Zeff (Zeff , ln Im)
proposed by Yang et al [Yang et al., 2010] and Bourque et al [Bourque et al., 2014]. The
second approach consisted in the direct conversion of RED into SPR through the (RED,
SPR/RED) relation proposed by Kanematsu et al [Kanematsu et al., 2012]. The last
two approaches were based on the reconstructed image of the electronic cross section at
100 keV, hereafter labeled σe,100, from the BMD results (see section 4.3). In particular,
in the third approach, a calibrated relation between σe,100 and ln Im values (σe,100, ln Im)
was proposed, whereas the last method involved a calibration curve between σe,100 and
SPR/RED.

4.4.1 Comparative study on a tissue characterization phantom

4.4.1.1 Materials and Methods

In this study presented at the ESTRO 35 conference [Vilches-Freixas et al., 2016b],
the image-based method of Bazalova et al [Bazalova et al., 2008b] and the projection-
based method of Alvarez and Macovski [Alvarez and Macovski, 1976], hereafter referred



4. Stopping-power estimation from dual-energy CT 82

6 8 10 12 14
Zeff

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

ln
(I

)

1

Fitted

ICRU46 tissues

Skeleton spongiosa

Thyroid

0.0 0.5 1.0 1.5 2.0

RED

0.94

0.96

0.98

1.00

1.02

1.04

S
P

R
/R

E
D

2

ICRU46 tissues

Constant

Linear fit

Linear fit

Linear fit

Skeleton spongiosa

Thyroid

0.50 0.55 0.60

σe @ 100 keV (barns/atom)

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

ln
(I

)

3

Fitted

ICRU46 tissues

Skeleton spongiosa

Thyroid

0.50 0.55 0.60

σe @ 100 keV (barns/atom)

0.94

0.96

0.98

1.00

1.02

1.04
S

P
R

/R
E

D
4

Fitted

ICRU46 tissues

Skeleton spongiosa

Thyroid

Figure 4.3: Calibrated relations using 92 tabulated human tissues [ICRU, 1992] (empty
dots) to convert dual-energy outputs into the required variables to compute the proton
SPR through Bethe’s equation or to directly determine the SPR. 1) Piece-wise relation
between the effective atomic number (Zeff) and the logarithm of the mean excitation
energy (ln I) [Bourque et al., 2014]. For Zeff <6.2 linear fit, for 6.2≤ Zeff ≤12 fifth-
degree polynomial fit and for Zeff >12 linear fit; 2) Piece-wise linear fitting to convert
from RED to SPR over RED [Kanematsu et al., 2012]. RED limits: 0.9, 1.055 and
1.4; 3) Piece-wise relation between the electronic cross section at 100 keV (σe,100) and
the logarithm of the mean excitation energy. For σe,100 <0.51 linear fit, for 0.51≤
σe,100 ≤0.575 fifth-degree polynomial fit and for σe,100 >0.575 linear fit; 4) Piece-wise
relation between the electronic cross section at 100 keV and the ratio of SPR over RED.
For σe,100 <0.51 linear fit, for 0.51≤ σe,100 ≤0.575 fifth-degree polynomial fit and for
σe,100 >0.575 linear fit.
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Method Calibration curve

1 (Zeff , ln I)
2 (RED, SPR/RED)
3 (σe,100, ln I)
4 (σe,100, SPR/RED)

Table 4.2: Method label with the corresponding calibrated relation to convert dual-
energy output into the required variables to determine the SPR.

to BMD, were investigated. For the BMD (section 2.4.2.1), two variants were considered:
water and compact bone basis (W/CB), and photoelectric and Compton basis (Ph/Co).
For the image-based method, which produces RED and Zeff images as output, photon
beam spectra were additionally filtered with 16 cm of water and a beam-hardening cor-
rection was applied for materials with Z >10, as suggested by [Bazalova et al., 2008b].
Both projection-based methods assume that the linear attenuation coefficient at any
energy can be obtained by a linear and energy-independent combination of these basis
functions. For each decomposition method, the four empirical relationships to convert
dual-energy outputs into SPR images (described in sections 4.2 and 4.3) were evaluated.
For the projection-based (W/CB) method, the Zeff -image was derived using the recon-
structed σe image at 100 keV and the definition proposed by Bourque et al [Bourque
et al., 2014] (equation 4.7 at 100 keV). For the projection-based (Ph/Co) method, the
Zeff image was derived from the reconstructed photoelectric basis image considering a Z-
exponent of 3.3 and equation 2.5. The exponent was optimized for the given dual-energy
spectra following the approach proposed by Tremblay et al [Tremblay et al., 2014].

Virtual DECT acquisitions of the Imaging Ring system (medPhoton, Salzburg, Aus-
tria) of the tissue characterization phantom Gammex 467 (Gammex, Middleton, WI)
were carried out by means of deterministic simulations in GATE with realistic detec-
tor response model [Vilches-Freixas et al., 2016a]. The dual-energy spectra used in this
study were: 80 kV for the low energy (LE) acquisition and 140 kV+Sn for the high
energy (HE) acquisition. Scatter-free fan-beam acquisitions from 360 projections were
considered. Realistic Poisson noise corresponding to a 20 mGy central dose, with an
equal dose split between the LE and the HE acquisitions, was applied to the projec-
tions (for further details see Appendix B.1). The workflow of the study is illustrated in
Figure 4.4.

4.4.1.2 Results and Discussion

Table 4.3 shows the relative SPR errors, (SPR-SPRref)/SPRref , over all Gammex
phantom inserts for each decomposition method, in terms of the mean error (µ) ± Root-
Mean Squared error (RMSE). The values in brackets are the µ ± RMSE excluding
lungs, as lung tissue inserts showed the maximum relative error due to its low density.
Those pixel values with Im, Zeff and σe outside the human range of values were excluded
from the computation. Figure 4.5 shows the SPR error maps relative to the calibrated
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Figure 4.4: Workflow of the comparative study using the Gammex 467 phantom (sec-
tion 4.4.1).

relation number 2 for the two projection-based methods and for the evaluated image-
based method.

Method BMD W/CB BMD Ph/Co Image-based

1 -0.2 ± 8.3 (-0.3 ± 7.7) -5.4 ± 13.0 (-5.3 ± 12.0) -2.7 ± 6.7 (-0.5 ± 4.5)
2 0.8 ± 5.1 (0.9 ± 3.2) -0.3 ± 5.1 (-0.2 ± 3.2) -2.3 ± 6.5 (-0.03 ± 3.8)
3 0.7 ± 5.7 (0.7 ± 4.2) -1.2 ± 5.5 (-1.2 ± 4.0) -
4 1.0 ± 5.2 (1.0 ± 3.4) -0.8 ± 5.3 (-0.7 ± 3.5) -

Table 4.3: Relative SPR errors averaged over the sixteen phantom Gammex inserts,
expressed as µ ± RMSE (µ± RMSE excluding lung inserts), for two projection-based
(BMD) and one image-based method, and for the four empirical relationships to convert
DECT data into SPR (labeled as Method 1-4, see Table 4.2).

In terms of accuracy, the observed differences within the four empirical relationships
were not statistically significant (p>0.05, Student t-test). The first method (Zeff , ln Im)
was found to be the least appropriate in terms of precision for projection-based methods,
but comparable to the second method for the image-based method. The second method,
based on the RMSE, seems to be equally robust for image-based and projection-based
methods. For all calibrated relations, no statistically significant differences were observed
between the two BMD methods used in this study (W/CB and Ph/Co basis). The worst
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Figure 4.5: Percentage difference SPR maps estimated with the second method for all
DECT approaches. Colorbar indicates the percentage error of the SPR.

result for the BMD Ph/Co method and the first approach could be due to a sub-optimal
estimation of the Zeff from the photoelectric basis image.

Even if the Gammex phantom used in this study contains sixteen inserts mimicking
the attenuation properties of human tissues, the tissue distribution and the irradiation
geometry is quite unrealistic with respect to a human body. This observation has moti-
vated the second study.

4.4.2 Comparative study on an anthropomorphic phantom

4.4.2.1 Materials and Methods

In this second study, a more realistic setup was considered to compare the four cal-
ibrated relations to convert DECT outputs into SPR images. A thorax slice of the
anthropomorphic female (AF) phantom from [ICRP, 2009] was used. Virtual DECT
acquisitions of the Imaging Ring system using the same DE spectra and system char-
acteristics as in the previous study were performed. Scatter-free fan-beam acquisitions
from 720 projections were considered. Two situations were simulated: no noise in the
projections (i.e. infinite dose) and realistic Poisson noise corresponding to a 20 mGy
central dose applied to the projections (for further details see Appendix B.1). The BMD
projection-based method, using a soft tissue and cortical bone pair as decomposition
basis, was employed in this study.

The theoretical SPR image of the thorax slice was computed from the chemical
composition and the mass density values provided in the ICRP publication [ICRP, 2009]
and Bethe’s equation at 200 MeV assuming an I-value for water of 78 eV [Sigmund et al.,
2009].

4.4.2.2 Results and Discussion

Figures 4.6, 4.7, 4.8 and 4.9 plot the dual-energy decomposition outputs required
by each empirical relation, the intermediate variables determined with the calibrated
relations and the resulting SPR image.
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Figure 4.6: From top to bottom and from left to right: the RED and Zeff images are the
DECT outputs used by the first calibrated relation to estimate the SPR from DECT
data. The I-value image is obtained from the empirical relationship between Zeff and
ln Im, and the SPR image using Bethe’s equation without correction terms. Images
relative to the situation without noise in the projections.
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Figure 4.7: From left to right: the RED image is the DECT output used by the second
calibrated relation to estimate the SPR from DECT data, and the SPR image using the
empirical relationship between RED and SPR over RED. Images relative to the situation
without noise in the projections.

In a pixel-by-pixel basis, the theoretical SPR image of the thorax slice was compared
to the resulting SPR image for each calibrated relation and for each noise level (i.e. no
noise or 20 mGy central dose). Figure 4.10 plots the histrograms of the absolute SPR
errors for each empirical relation, without noise in the projections (top) and for a 20 mGy
central dose (bottom). The Root-Mean Squared (RMS) errors and the maximum errors
are provided in the legend for each calibrated relation.
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Figure 4.8: From top to bottom and from left to right: the RED and σe,100 images
are the DECT outputs used by the third calibrated relation to estimate the SPR from
DECT data. The I-value image is obtained from the empirical relationship between
σe,100 and ln Im, and the SPR image using Bethe’s equation without correction terms.
Images relative to the situation without noise in the projections.
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Figure 4.9: From left to right: the RED and σe,100 images are the DECT outputs used by
the fourth calibrated relation to estimate the SPR from DECT data, and the SPR image
using the empirical relationship between σe,100 and SPR over RED. Images relative to
the situation without noise in the projections.
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Figure 4.10: Histogram of the absolute SPR error distribution for each calibrated relation
to convert DECT data into SPR images (see Figure 4.3). Results relative to the noiseless
projections (top) and to Poisson noise corresponding to a 20 mGy central dose value
(bottom). Root-mean square (RMS) and maximum SPR errors are provided in the
legend for each method.

In terms of RMS error, no differences were observed between the four empirical
relationships to convert DECT data into SPR. Maximum SPR differences were obtained
for method 1. The presence of noise in the images only widens the error distributions
and slightly increases the maximum differences, particularly for method 1.
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4.4.3 Conclusions

Two studies were conducted to compare, in terms of accuracy and precision, differ-
ent calibration methods to convert dual-energy data into SPR. Two existing methods
in the literature, i.e. [Bourque et al., 2014] (originally proposed by [Yang et al., 2010])
and [Kanematsu et al., 2012], were compared to two novel relationships: (σe,100, ln Im)
and (σe,100, SPR/RED). A phantom with a simple irradiation geometry was used in
the first study, whereas an anthropomorphic phantom representing an average female
subject was used in the second study to validate the previous results. According to
both studies, all methods behaved in a similar manner in terms of accuracy. Regarding
the precision, the (Zeff , ln Im) approach was the least appropriate for projection-based
methods. Kanematsu’s approach (method 2) seems to be equally robust for image-based
and projection-based methods. One advantage of this method is its simplicity as it only
requires the reconstructed RED image as input to determine the SPR image. Farace
[Farace, 2014] compared Kanematsu’s approach with Hünemohr’s and obtained compa-
rable results in terms of SPR accuracy despite not explicitly taking into account the
Zeff information. Hünemohr et al [Hünemohr et al., 2014b] objected that for tissues
having similar electron density values but different Zeff (e.g. mammary gland or urine)
the separation into electron density and atomic number would improve the accuracy in
SPR prediction because these tissues can be well differentiated using DECT. Neverthe-
less, according to our results, it also seems not necessary to compute the intermediate
variable Zeff from DECT to have a good estimate of the SPR. Other authors have also
proposed alternative DECT-derived SPR estimation approaches without reconstructing
the intermediate Zeff image [Han et al., 2016; Möhler et al., 2016]. Despite intensive
research over the past years, our comparisons did not indicate that one method is ad-
vantageous over the other. The following section further investigates the comparison
between projection- and image-based methods.

4.5 Comparison of projection- and image-based methods

Besides studying which was the most appropriate method to convert DECT output
into SPR images, we investigated which decomposition domain, i.e. in the projections
(before reconstruction) or in the CT images (after reconstruction), was more appropriate
to estimate proton SPRs. To give an answer to this question, a collaboration with Vicki
Trier Taasti, PhD. student from Aarhus University in Denmark, was carried out. This
work has been presented in two international conferences and it has been published in
the PhiRo journal in a full article format (see Appendix A).

4.5.1 Introduction

DECT methods can mainly be categorized into projection-based methods, where
material decomposition is performed prior to image reconstruction, and image-based
methods, where decomposition takes place after image reconstruction. As mentioned in
section 2.4, both projection-based and image-based approaches can be further divided
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into two main types: model-based where prior knowledge of source energy spectrum and
detector response is required to solve analytically the system of equations; calibration-
based where X-ray measurements of materials with known properties are performed to
obtain parameters that characterize the energy spectrum and the detector response.

Nearly all DECT methods are image-based [Van Elmpt et al., 2016], possibly be-
cause image-based methods have the clear advantage that they can be performed on all
DECT scanners, including conventional SECT scanners by acquiring two consecutive
images at different kVp settings. In contrast, for projection-based methods, the low
and the high energy projections need to be acquired at the same angle or be accurately
interpolated. Nevertheless, with the advent of dual-layer systems and photon-counting
detector technology, projection-based methods are becoming more attractive since the
projections from the different energy spectra are obtained without angular separation
and there cannot be any motion between the two (or more) projections per source po-
sition. Another reason is that projection-based methods require access to dual-energy
projection data, which are not accessible in most commercial CT systems without the
vendor agreement or reverse engineering. In a simulation study, Tremblay et al [Trem-
blay et al., 2014] concluded that combining the output of projection-based methods with
the image-based stoichiometric calibration proposed by Bourque et al [Bourque et al.,
2014] gave better accuracy for RED and Zeff than a projection-based method alone.

The aim of the present study was therefore to investigate the impact on the SPR
accuracy when using a projection-based method. We compared the performances of
the SPR estimation and the corresponding proton range errors of one projection-based
and two image-based DECT methods, through a simulation-based CT image acquisition
framework with the measured detector response and dual-energy spectra of a commercial
DECT scanner and realistic noise levels.

4.5.2 Materials and Methods

4.5.2.1 Virtual patient

The Adult Female (AF) reference computational phantom of the International Com-
mission on Radiological Protection (ICRP) [ICRP, 2009] was used as a virtual patient to
evaluate the performances of the SPR methods. This phantom, with voxel dimensions
of 1.775×1.775×4.84 mm3, represented an average female subject structured with 140
organs made of 53 standard human tissues. The mass density and elemental weights
of each tissue were provided in the ICRP Publication 110 [ICRP, 2009]. To evaluate a
large number of tissue densities and compositions, four anatomical regions were selected:
head, sternum, breast and pelvis (Fig. 4.11).

4.5.2.2 SPR estimation methods

Three DECT-based methods for SPR estimation were investigated, including one
projection-based and two image-based approaches. The projection-based method relied
on the two-material decomposition proposed by Alvarez and Macovski [Alvarez and
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Figure 4.11: Reference SPR for the four slices used in the comparison. Placement of
ROIs are shown by blue circles, three to four ROIs are placed in each slice.

Macovski, 1976] to estimate the RED and the conversion from RED to SPR proposed
by Kanematsu et al [Kanematsu et al., 2012]. We will refer to this method as Alvarez and
Macovski, and Kanematsu (AMK). The first image-based method used a parametrization
for the SPR proposed by Taasti et al [Taasti et al., 2016]. This image-based method
will be referred to as Stopping Power Parametrization (SPP). The second image-based
approach was a combination of the methods proposed by Saito [Saito, 2012] to compute
the RED and by Kanematsu et al [Kanematsu et al., 2012] to derive the SPR. We will
refer to this method as Saito and Kanematsu (SK). The three SPR estimation methods
are described in the following subsections.

Projection-based method (AMK) The method used to compute the SPR from
dual-energy projection data is an adaptation of the two-step procedure proposed by
Farace [Farace, 2014] in the image-domain. First, RED was derived from the recon-
structed mass density images of soft tissue (ST) and cortical bone (CB) [Linstrom and
Mallard, (retrieved December 6, 2016)], issued from the implementation of the two-
material decomposition method in the projection domain [Alvarez and Macovski, 1976]
(see section 2.4.2.1 for further details). Second, RED was converted into SPR using
the poly-line relations proposed by Kanematsu et al [Kanematsu et al., 2012] (see sec-
tion 4.2 for further details). This method was chosen for its simplicity and because it
produced comparable results with respect to Hünemohr’s approach [Farace, 2014]. Fur-
thermore, in section 4.4, we concluded that this method was robust both for image- and
projection-based methods.
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The projection of the mass fractions %ST and %CB was expressed as follows:

AST(u, θ) =

∫
L(u,θ)

%ST(`) d` (4.12)

ACB(u, θ) =

∫
L(u,θ)

%CB(`) d` (4.13)

where ` ∈ L(u, θ) was the line-segment between the source and a detector pixel located
at position u for a given projection angle θ.

When performing a dual-energy acquisition, two sinograms of the same object at two
different energy spectra were available:

ILE(AST, ACB) =

∫ Emax

Emin

SLE(E) e
−AST

(
µ
ρ

)
ST

(E)−ACB

(
µ
ρ

)
CB

(E)
dE (4.14)

IHE(AST, ACB) =

∫ Emax

Emin

SHE(E) e
−AST

(
µ
ρ

)
ST

(E)−ACB

(
µ
ρ

)
CB

(E)
dE (4.15)

where ILE and IHE were the measured intensities for the low energy (LE) and the high
energy (HE) spectrum, respectively, for a given projection angle; SLE and SHE were the
normalized energy spectra weighted by the detector response.

The unknowns AST and ACB were determined following [Schlomka et al., 2008] by
solving the system of equations (4.14, 4.15) using the implementation of Nelder and
Mead [Nelder and Mead, 1965] in RTK [Rit et al., 2014], assuming that the energy
spectrum and the detector response were known (model-based decomposition).

Then, the mass fraction per volume of soft tissue (%ST) and cortical bone (%CB)
was determined by reconstruction of AST and ACB (see Section 4.5.2.4). The RED was
derived for each pixel using equation 4.9 and the SPR using the piece-wise linear relations
suggested by Kanematsu et al [Kanematsu et al., 2012] (see Figure 4.3-2).

Image-based method - SPR parametrization (SPP) The details of the image-
based SPP method were described by Taasti et al [Taasti et al., 2016] (section 4.2), but
the main principles are described here.

CT scans of a calibration phantom were required for the characterization of the X-
ray energy spectrum (calibration-based decomposition). This calibration process was
performed on simulated CT images of the Gammex 467 electron density calibration
phantom (Gammex, Middleton, WI). Average CT numbers over ROIs inside the inserts
in the reconstructed CT images were used.

Based on the known density and elemental composition of the inserts of the Gammex
phantom, the effective energies of the used energy spectra were found using the CT
numbers (Hj) for the phantom inserts. The effective energy was defined as the energy
which maximized the coefficient of determination, R2, for the linear fit:

µ(Eeff,j)

µW(Eeff,j)
=
Hj
Atj

+Bt
j (4.16)
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Here, subscript j refers to the energy spectrum (j = LE,HE), and A and B are
fitting parameters. The linear attenuation coefficients, µ(E), for the Gammex inserts
were calculated based on XCOM data [Berger et al., 2010]. From the effective energies,
the Gammex inserts were divided into two categories, soft and bone tissues based on their
CT numbers in the LE CT image. Then equation 4.16 was refitted for each tissue group,
to find two sets of fitting parameters, Atj and Bt

j , where superscript t ∈ {soft,bone}
indicates the tissue group, using the effective energies Eeff,j for each energy spectrum j.
In this study, we used a separation point between the tissue groups of HLE = 150 HU.

The attenuation ratios, u, for the 92 reference human tissues [ICRU, 1992] were
calculated at the effective energies based on their density and elemental composition:

u ≡ µ(Eeff)

µW (Eeff)
= ρ

∑
iwi

(
µ
ρ

)
i
(Eeff)[∑

iwi

(
µ
ρ

)
i
(Eeff)

]
W

(4.17)

These attenuation ratios were fitted to the SPR for the tissues based on the following
equations:

SPRest
soft = (1 + x1)uHE − x1uLE + x2u

2
LE

+ x3u
2
HE

+ x4

(
u3

LE
+ u3

HE

)
(4.18)

SPRest
bone = (1 + x5)uHE − x5uLE + x6

uLE

uHE

+ x7

(
u2

LE
− u2

HE

)
(4.19)

+x8

(
u3

LE
+ u3

HE

)
where the xi’s are fitting parameters. The fitting parameters used in this study can
be found in Table 4.4. When these expressions were used to estimate the SPR for the
AF phantom, the attenuation ratios were calculated using the fitting parameters found
together with the effective energies, utj = Hj/Atj+Bt

j . The same separation between soft
and bone tissue was used for the SPR estimation as for the calculation of the attenuation
ratios.

Energy spectra characterization SPR fitting parameters
LE (64 keV) HE (96 keV) Soft tissues Bone tissues

Asoft 988.8 991.3 x1 3.161 x5 0.8251
Abone 971.8 984.8 x2 1.176 x6 0.03853
Bsoft 1.006 1.007 x3 −1.136 x7 0.1150
Bbone 0.9803 1.004 x4 −0.01883 x8 −0.008910

Table 4.4: Calibration parameters used in the SPR parametrization; for the energy
spectra characterization (equation 4.16), and for the SPR estimation (equations 4.18–
4.19). The effective energies of the LE and HE spectra are given in parentheses.

Image-based method - Saito and Kanematsu’s (SK) method This image-based
DECT method is a combination of two methods originally presented by [Saito, 2012]
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(calculation of the relative electron density, RED), and by [Kanematsu et al., 2012]
(conversion from RED to SPR).

In Saito’s method the RED was estimated as

RED = a
(1 + α)HHE − αHLE

1000
+ b (4.20)

The constants a, b and α were found by making calibration fits to the theoretical
RED values for the 92 reference human tissues and their CT numbers calculated from
equations 4.16 and 4.17. To take the low RED values for lung tissue into account, the
constants were found by minimizing the relative deviations:

REDtheo − REDest

REDtheo
(4.21)

The parameters used in this study can be found in Table 4.5. The CT numbers for
the 92 reference human tissues used in the calibration were calculated from equation 4.17
and the effective energies given in Table 4.4.

a b α

1.0085 1.0091 0.5202

Table 4.5: Calibration parameters for Saito’s method, found by minimization of equa-
tion 4.20. These parameters were used to compute the RED in the SK method.

As for the method presented in section 4.5.2.2, RED estimates were converted into
SPR using the piece-wise linear relations suggested by Kanematsu et al [Kanematsu
et al., 2012] (see Figure 4.3-2).

4.5.2.3 Calculation of reference SPR

Reference SPR values of the ICRP phantom were computed from the chemical com-
position and the density in a pixel-by-pixel basis using the Bethe equation without cor-
rection terms, as described by Schneider et al [Schneider et al., 1996]. A proton beam
of 200 MeV kinetic energy was considered and the mean ionization energy of water was
set to 78 eV [Sigmund et al., 2009]. The mean ionization energies of the tissues were
calculated using the Bragg additivity rule [Schneider et al., 1996] and the I-values given
in Table 2.8 and 2.11 in the ICRU49 report [ICRU, 1993].

4.5.2.4 CT imaging and CT reconstruction

Virtual CT projections of the Gammex and the ICRP phantom were generated in
GATE [Jan et al., 2004] v7.2 (based on Geant4 v10.1, physics-list: emlivermore) using
the Fixed Forced Detection Actor. This module deterministically computes digitally
reconstructed radiographs using the reconstruction toolkit (RTK) v1.3.0 [Rit et al., 2014]
and the Geant4 database of X-rays cross sections. Fan-beam projections with 600 views
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of 2052 pixels subsequently re-binned to 1026 pixels of 1 mm2 were acquired. The
thickness of the detector row was 1 mm for the Gammex acquisitions and 2 mm for the
ICRP phantom. The source-to-isocenter distance was 626 mm and the source-to-detector
distance was 1026 mm. For the simulations of the CT projections, the measured dual-
energy spectra (LE: 100 kVp, HE: 150 kVp + 0.6 mm Sn) and the measured detector
response for the SOMATOM Force dual-source CT scanner were used, kindly provided
by Siemens Healthcare (Forchheim, Germany). To represent a realistic scenario, Poisson
distributed noise was applied to the projections. For each slice, a total central dose
of 20 mGy was delivered with the dual-energy acquisition, with an equal dose split
between the two energy spectra, i.e., a central dose of 10 mGy per energy spectrum; the
calculation of the number of photons required to deliver a given dose is computed with
Equation B.1. No bowtie filter was simulated.

CT images of the Gammex phantom and the AF slices were reconstructed using
the LE and the HE sinograms, for the image-based method; and soft tissue and cor-
tical bone density images of the AF slices, for the projection-based method. All re-
constructions were performed using the filtered backprojection (FBP) reconstruction of
RTK; for the reconstructions of the AF slices preserving the initial pixel dimension of
1.775×1.775 mm2 and for the Gammex the pixel dimension of 1×1 mm2.

Beam-hardening correction Prior to CT reconstruction, the LE and the HE sino-
grams of the Gammex and the AF phantom were corrected for beam hardening using the
method described in [Brooks and Di Chiro, 1976], since it was found to be mandatory
for the image-based methods. A look-up table linearizing the input projection values
for water was created using the energy spectrum and the detector response of the CT
scanner system and increasing water thicknesses.

4.5.2.5 SPR comparison

The performances of the SPR estimation with respect to the reference values were
evaluated based on different criteria: relative SPR differences over defined ROIs, each
covering a single tissue, and relative range errors computed over a whole slice. The
placement of the ROIs can be seen in Fig. 4.11, and their reference SPRs are listed in
Table 4.6. For each ROI, the mean error was calculated and its precision was assessed
using the Standard Error of the Mean (SEM). To have a direct comparison of the three
methods, the root-mean-square error (RMSE) over the mean relative SPR difference for
the thirteen ROIs was taken; this gives a combined error measure for the thirteen defined
ROIs.

To estimate the influence of the SPR deviations on the range calculation, we cal-
culated the range errors along the proton beam path through the entire slice using the
Radon transform implemented in MATLAB (The MathWorks Inc., Natick, MA). The
Radon transform was computed on the absolute SPR difference images, for each angle in
the interval from 0− 179◦ in steps of 1◦. The SPR difference for pixels outside the body
outline was set to zero. The Radon transform was also computed on the reference SPR
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ROI name AF Material-ID Tissue type SPRref N

Head 1a 49 Adipose tissue 0.972 75
1b 32 Brain 1.051 111
1c 8 Cranium, spongiosa 1.203 27

Sternum 2a 3 Humeri, upper half, spongiosa 1.157 195
2b 29 Muscle tissue 1.046 147
2c 29 Muscle tissue 1.046 75

Breast 3a 50 Lung tissue (compressed lungs) 0.384 195
3b 28 Blood 1.055 195
3c 48 Breast (mammary gland) 1.040 47

Pelvis 4a 29 Muscle tissue 1.046 111
4b 49 Adipose tissue 0.972 147
4c 14 Pelvis, spongiosa 1.100 47
4d 9 Femora, upper half, spongiosa 1.053 75

Table 4.6: Reference data for the thirteen defined ROIs used for comparison of the
relative SPR differences. N is the number of pixels in the ROI.

maps to calculate the water-equivalent path length (WEPL). To exclude beam paths en-
tirely outside the body, an exclusion penalty was applied to pixels in the reference SPR
sinogram with a WEPL of zero. The results for the range errors were given relative to
reference WEPL maps, to take into account that the beam paths in different directions
and slices were not of equal length.

4.5.3 Results

The RMSE over the mean relative error for each of the thirteen ROIs, placed in
homogeneous tissue regions, was 0.54% for the AMK method, 0.68% for the SPP method
and 0.61% for the SK method (Fig. 4.12). The bias (given by the signed mean error) for
the head, sternum and breast slices was larger for the AMK method, however, for the
pelvis slice (ROI4a-d) this method gave the smallest errors (Table 4.7). Considering all
slices, the AMK method had the smallest bias. For all methods, the relative errors for
ROIs in the pelvis slice (ROIs 4a-d) were larger than for the other slices.

The AMK method gave the lowest RMSEs for the relative range errors. For the
AMK and SPP methods, the positive and negative range errors were nearly averaged
out over the slice, such that the mean relative range errors were close to 0%; only for
the head slice estimated by the SPP method, the 0% range error was not within the
interquartile range (IQ), as shown by the blue boxes in Fig. 4.13. In contrast, for the
image-based SK method, the range error distribution had a negative bias for all slices.
Even though the mean relative range errors for the SPP method were fairly low, this
method produced the widest error distributions (Fig. 4.13 and Table 4.8).



4. Stopping-power estimation from dual-energy CT 97

1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b 4c 4d

ROI name

-2.0%

-1.5%

-1.0%

-0.5%

 0.0%

 0.5%

 1.0%

R
e
la

ti
v
e
 S

P
R

 e
rr

o
r 

(%
)

Comparison of projection-based and image-based methods

Projection-based (AMK),  RMSE = 0.54%

Image-based (SPP),        RMSE = 0.68%

Image-based (SK),           RMSE = 0.61%

Figure 4.12: Relative SPR errors for each of the thirteen ROIs (for the placement see
Fig. 4.11). The center squares show the mean of the relative SPR error over the ROI,
and the error-bars show the standard error of the mean (SEM).

PB (AMK) IB (SPP) IB (SK)
µ± σ µ± σ µ± σ

Head 0.28% ± 0.04% -0.06% ± 0.69% -0.17% ± 0.20%
Sternum 0.32% ± 0.28% 0.03% ± 0.39% -0.06% ± 0.26%
Breast 0.29% ± 0.71% 0.17% ± 0.31% -0.09% ± 0.57%
Pelvis -0.45% ± 0.60% -0.99% ± 0.45% -0.85% ± 0.57%

RMSE µ σ

PB (AMK) 0.54% 0.07% 0.56%
IB (SPP) 0.68% -0.27% 0.65%
IB (SK) 0.61% -0.33% 0.53%

Table 4.7: Comparison of relative SPR deviations over the defined ROIs. The upper
part of the table gives the results averaged over the individual slices (signed mean ±
standard deviation, µ ± σ, over the ROIs in each slice), while the lower part gives the
results averaged over all four slices together (RMSE, mean (µ), and standard deviation
(σ) over all thirteen ROIs). (PB: Projection-based, IB: Image-based).

4.5.4 Discussion

In this study, we have compared a projection-based and two image-based meth-
ods for computing SPR maps and deriving range error distributions. The image-based
SPP method gave mean range errors comparable to the results for the projection-based
method, but larger standard deviations. In contrast, the image-based SK method re-
sulted in slightly biased results. Nevertheless, the differences between the three methods
were not found significant (p > 0.1).
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Head
(122.8 mm)

Sternum
(162.5 mm)

Breast
(162.1 mm)

Pelvis
(181.7 mm)

Method
µ± σ
(%)

RMSE
(%)

µ± σ
(%)

RMSE
(%)

µ± σ
(%)

RMSE
(%)

µ± σ
(%)

RMSE
(%)

PB (AMK) -0.24±0.81 0.84 -0.01±0.64 0.64 -0.04±0.58 0.58 -0.14±0.80 0.82

IB (SPP) -0.41±0.86 0.95 0.01±0.81 0.81 0.04±0.72 0.72 0.03±1.10 1.10

IB (SK) -0.51±0.80 0.95 -0.28±0.63 0.69 -0.33±0.57 0.66 -0.44±0.80 0.91

Table 4.8: Comparison of the relative range errors over each image slice. The results
are given as the signed mean errors (µ±σ) and the root-mean-square errors (RMSE) in
percentage. The range errors are taken relative to the reference water equivalent path
length (WEPL); the mean reference WEPL for each slice is given in parentheses beneath
the slice name. (PB: Projection-based, IB: Image-based).

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Relative range errors (%)

Pelvis - IB (SK)

Pelvis - IB (SPP)

Pelvis - PB (AMK)

Breast - IB (SK)

Breast - IB (SPP)

Breast - PB (AMK)

Sternum - IB (SK)

Sternum - IB (SPP)

Sternum - PB (AMK)

Head - IB (SK)

Head - IB (SPP)

Head - PB (AMK)

Figure 4.13: Box-plot of relative range error distribution, as calculated by the Radon
transform for each anatomical slice using each of the three SPR estimation methods (PB:
Projection-based, IB: Image-based). The blue boxes show the interquartile (IQ) range,
i.e. from the 25%-percentile (Q1) to the 75%-percentile (Q3), and the red horizontal
line represents the median. The whiskers go from Q1−2.5×IQ up to Q3+2.5×IQ. The
outliers are not shown in the figure, but at most 8.8% of the data points (excluding the
sinogram entries corresponding to a WEPL of zero) were outside the whiskers.

In our simulations, clinical polychromatic energy spectra, a realistic detector response
and noise levels corresponding to a 20 mGy central dose were used. However, no bowtie
filter was simulated. The material basis for the selected projection-based approach was
optimized to give the best results (see section 5.2). To have a direct comparison between
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projection-based and image-based calculations, we used an image-based method (the SK
method) where the conversion from RED to SPR were performed in the same way as
for the projection-based method, using the polyline fit proposed by [Kanematsu et al.,
2012]. Further, we also used one of the latest image-based methods [Taasti et al., 2016],
as this method was proven to give smaller SPR errors and to be more robust to noise
than two other existing DECT methods [Han et al., 2016; Hansen et al., 2015]. For these
reasons, we consider that the comparison was carried out under fair conditions.

The image-based SK method showed a net negative bias on the range accuracy
that was not observed for the image-based SPP method. It has earlier been shown
that the SPR accuracy using Saito’s method in combination with an estimation of the
effective atomic number is dependent on the calibration and evaluation materials and
on the phantom size used for the calibration [Hansen et al., 2015]. Range errors seem
to correlate well with SPR errors obtained for some tissues, such as breast tissue (ROI
3c), adipose tissue (ROI 4d) or pelvis spongiosa (ROI 4c), which were found in large
proportions in the selected slices and, therefore, could also explain the observed bias
in the SK range results. This suggests that accuracy errors add up along the proton
beam path. The SPP method resulted in noisier SPR images and, thus, wider error
distributions. In terms of RMSE, the projection-based approach produced better results
for the SPR and the range with respect to the two image-based methods. Therefore,
based on these results, we recommend increasing the consideration of projection-based
approaches for proton SPR determination. However, the inherent limitation of each of
the methods should be taken into consideration and, therefore, the most well-suited SPR
estimation method for each facility might depend on the DECT technology available.

Beam hardening artifacts occur because the energy dependency of the linear atten-
uation coefficients is neglected. To overcome this approximation, image-based methods
require a beam-hardening correction. In contrast, material decomposition in projection-
based approaches is performed prior to reconstruction, and as the energy dependency
is factored out in this decomposition process (equation 2.7) the basis-images should not
be affected by beam-hardening. But this is not true unless a good choice of the basis-
material decomposition is performed, such that the assumption that µ can be separated
into an energy-dependent and an energy-independent part holds true. In the energy
range of clinical CT scanners (i.e. from 40 to 150 keV) and for materials with Z < 15
this assumption is acceptable [Jackson and Hawkes, 1981]. In this study, the imple-
mented strategy to correct for beam-hardening in the image-based method works well
for water-equivalent tissues but might not be accurate enough for low- and high-density
tissues. A more sophisticated beam-hardening correction might therefore improve the
results for the image-based methods, but it would most likely require an iterative ap-
proach. Furthermore, if a better beam-hardening correction was applied, a LE spectrum
with a lower mean energy might be more relevant than the 100 kVp spectrum used in
this study.

The two image-based methods used in this study were calibration-based, and a cal-
ibration was needed to find the effective energies for the LE and HE spectrum. This
calibration procedure is sensitive to the calibration phantom being comparable to the
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object for which the SPR is to be estimated; i.e. the calibration phantom should be of
a similar size and consist of materials with a composition comparable to human tissues,
such that the phantom hardens the x-ray energy spectrum in the same way as the investi-
gated anatomical site. For this study, only a single calibration phantom with a diameter
of 16.5 cm was used for all four anatomical slices. This may be one cause for the larger
relative SPR deviations in the pelvis slice for the image-based methods (Table 4.7).

For model-based image-based methods, the energy spectrum must also be properly
hardened to reproduce the beam hardening of the scanned object. This issue is taken
into account by additionally filtering the x-ray source for instance by water [Yang et al.,
2010; Bazalova et al., 2008b]. Here, the amount of water may also be dependent on
the anatomical region being investigated, since the performance of these methods will
depend on the accuracy of this prior knowledge on the energy spectrum and the detector
response [Yang, 2011]. Therefore, the input parameters must be tuned with care for
both types of image-based methods. However, for calibration-based methods, this is
more straight-forward since it only requires using a well-suited calibration phantom of
the proper size.

For the projection-based method applied in this study, the system of equations (4.14,
4.15) was solved numerically assuming that the energy spectrum and the detector re-
sponse were well-known. The same was assumed for the beam hardening correction of
image-based methods. It was shown that projection-based methods are sensitive to alter-
ations of the energy spectrum [Tremblay et al., 2014] and to the amount of noise [Brendel
et al., 2016]. Tremblay et al [Tremblay et al., 2014] found that the accuracy of the RED
was more degraded when the spectrum was altered for projection-based methods than for
image-based. The projection-based results in the present work are therefore dependent
on accurate knowledge of the energy spectrum and detector response. An alternative
would be to approximate the system of equations (4.14, 4.15) by a polynomial expansion
of two variables [Alvarez and Macovski, 1976; Chuang and Huang, 1988]. The unknown
coefficients could be determined experimentally through a calibration procedure with in-
creasing thicknesses of two well-known materials (see section 2.4.2.2 for further details).
However, there would also be disadvantages with this approach, including sensitivity to
the order of the polynomial, to the use of cross-terms in the polynomial, to the exact
thicknesses of the interposed slabs of two materials and to the number of points of the
calibration curve. It should also be noted that model-based approaches always rely on
a pre-calibration of the model, e.g., the one presented in [Vilches-Freixas et al., 2016b].

Another ongoing discussion within the community is how to determine the reference
SPR values. In this study, a 200 MeV proton energy was used to determine the SPR
reference values as for proton energies in the range between 80 and 300 MeV, the vari-
ation of SPR with proton energy is negligible (<1%) [Arbor et al., 2015]. In addition,
Yang [Yang, 2011] conducted a study with a 175 MeV initial kinetic energy beam and
concluded that neglecting the SPR dependence with energy introduced a 0.5% range
error.
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4.5.5 Conclusion

In this simulation-based study, the dual-energy decomposition domains – the
projection-domain (decomposition prior to image reconstruction) and the image-domain
(decomposition after image reconstruction) – were compared in terms of the performance
of extracting the SPR from DECT and the resulting WEPL. In terms of SPR accuracy
and range errors, the observed differences obtained with projection- and image- based
methods were not found statistically significant. With the advent of technological devel-
opments, projection-based methods are becoming more attractive. Most of the existing
methods to compute the SPR are image-based but, based on these results, projection-
based approaches should also be considered for proton SPR determination.

4.6 SPR estimation using the Imaging Ring system

The aim of this study was to determine the ability of the Imaging Ring (IR) system
(medPhoton, Salzburg, Austria) (Chapter 3) to estimate the SPR of two tissue character-
ization phantoms and one anthropomorphic thorax phantom by performing dual-energy
material decomposition. Sequential single-energy CBCT scans at different voltages and
filtration and dual-energy CBCT FKVS acquisitions of these phantoms were acquired
in Salzburg using the IR. Two experimental sessions were carried out: in March 2016
and in November 2016. Reconstructed SPR images of these phantoms were compared to
the reference values, which were determined at the Heidelberg Ion-beam Therapy center
(HIT, Germany) using a PeakFinder water column (PTW, Freiburg, Germany) and a
carbon ion beam of 310.6 MeV/u initial kinetic energy in another experimental session
(Appendix C).

4.6.1 Materials and Methods

4.6.1.1 Phantoms

Twelve inserts of the Gammex RMI 467 (Gammex, Middleton, United States of
America) phantom (see Table C.2) and eighteen inserts of the CIRS 062 (CIRS, Norfolk,
United States of America) phantom (see Table C.1) were positioned in the inner and
outer disk of the CIRS 062 phantom. These inserts mimic human tissue attenuation
properties and the chemical composition was provided by the manufacturer. Seventeen
inserts at a time can be placed in the inner and outer disks of the CIRS phantom.
Two phantom configurations were considered: 1) twelve Gammex phantom inserts and
five CIRS phantom inserts were positioned as shown in Figure 4.14 a. Hereafter, this
phantom will be referred to as CIRS-Gammex ; 2) seventeen CIRS phantom inserts
positioned as shown in Figure 4.14 b. We will refer to this phantom as CIRS-CIRS.
The CIRS Dynamic Thorax phantom with a lung tumor insert (Figure 4.14 c), with
known chemical composition and mass density, was also used to simulate a human body
irradiation.
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(a) CIRS-Gammex phantom

  

(b) CIRS-CIRS phantom

(c) CIRS dynamic thorax phantom (left) with
lung tumor (right)

Figure 4.14: Phantoms used in this study.

4.6.1.2 Dual-energy CBCT sequential acquisitions

Single-energy CBCT scans at different voltages and filtration of these phantoms were
sequentially acquired in Salzburg using the IR. CBCT scans were performed with a 2 cm
or 3 cm slit aperture at the isocenter, using the dynamic collimation jaws to reduce scat-
ter contamination, clock-wise rotation, acquisition time of about 60 s with ∆θ=0.6◦,
projection size of 1024×1024 pixels with pixel size of 0.4×0.4 mm2 and fluence correc-
tions activated. Single-energy CBCT acquisitions were grouped in order to reproduce
dual-energy CBCT sequential acquisitions. Table 4.9 shows the acquisition parameters
for the CIRS-CIRS phantom and the CIRS-Gammex phantom dual-energy acquisitions
and Table 4.10 shows the acquisition parameters for the CIRS Thorax phantom dual-
energy acquisitions. The acquisitions where a filter material of the wheel was used are
indicated with an asterisk, whereas the acquisitions in which a high purity silver filter
was placed after the collimator to additionally filter the spectrum are marked with a
triangle. Fluence correction was not available for those projections acquired with a high
purity silver filter.

The scatter correction proposed by [Siewerdsen et al., 2006] implemented off-line (see
section 3.4) was applied to the projections of the CIRS Thorax phantom. As discussed in
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section 3.4, the collimator-shadow scatter correction was not applied to the CIRS-CIRS
and CIRS-Gammex acquisitions as it was found to be not suitable for these phantoms.

4.6.1.3 Dual-energy CBCT FKVS acquisitions

Dual-energy FKVS CBCT scans synchronized with the filter wheel of the CIRS-
Gammex and the CIRS-CIRS phantoms were carried out. Figure 4.15 shows one re-
sulting sinogram of the CIRS-CIRS phantom, with interleaved LE and HE projections,
when performing a dual-energy FKVS acquisition. As for the single-energy acquisitions,
to reduce scatter contamination, CBCT scans with a 3 cm slit aperture at the isocenter
were considered. Table 4.9 shows additional acquisition parameters for each phantom
acquisition. One (current) restriction of FKVS acquisitions is that the pulse length of
the LE and the HE energy spectra has to be the same.
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Figure 4.15: CIRS-CIRS phantom sinogram corresponding to the 80 kV/Air +
120 kV/Air FKVS acquisition. Interleaved LE and HE projections are visible.
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Phantom LE
spectra

LE
settings

HE
spectra

HE
settings

Frame
number

Acq.
type

Slit
(cm)

RMS (%)
all inserts

RMS (%)
w/o lungs

03-2016 Cirs-Gammex 60 kV Al (*) 60 mA, 25 ms 120 kV Air 10 mA, 13 ms 600 sequential 2 4.6 4
03-2016 Cirs-Gammex 60 kV Al (*) 60 mA, 25 ms 120 kV Ag (4) 25 mA, 13 ms 600 sequential 2 9.3 9.6
03-2016 Cirs-Gammex 90 kV Air 20 mA, 15 ms 120 kV Air 10 mA, 13 ms 600 sequential 2 12.3 12.2
03-2016 Cirs-Gammex 90 kV Air 20 mA, 15 ms 120 kV Ag (4) 25 mA, 13 ms 600 sequential 2 17.4 18.2
03-2016 Cirs-Gammex 90 kV Al (*) 20 mA, 17 ms 120 kV Air 10 mA, 13 ms 600 sequential 2 6 3.6
03-2016 Cirs-Gammex 90 kV Al (*) 20 mA, 17 ms 120 kV Ag (4) 25 mA, 13 ms 600 sequential 2 13.7 14.2
03-2016 Cirs-Gammex 90 kV Ag (4) 60 mA, 16 ms 120 kV Air 10 mA, 13 ms 600 sequential 2 10.1 9.3
03-2016 Cirs-Gammex 90 kV Ag (4) 60 mA, 16 ms 120 kV Ag (4) 25 mA, 13 ms 600 sequential 2 15 15.7

03-2016 Cirs-Cirs 90 kV Air 20 mA, 15 ms 120 kV Air 10 mA, 13 ms 600 sequential 2 10.2 8.8
03-2016 Cirs-Cirs 90 kV Air 20 mA, 15 ms 120 kV Ag (4) 25 mA, 13 ms 600 sequential 2 16.1 17.5
03-2016 Cirs-Cirs 90 kV Al (*) 20 mA, 17 ms 120 kV Air 10 mA, 13 ms 600 sequential 2 7.7 4.7
03-2016 Cirs-Cirs 90 kV Al (*) 20 mA, 17 ms 120 kV Ag (4) 25 mA, 13 ms 600 sequential 2 12.1 13
03-2016 Cirs-Cirs 90 kV Ag (4) 60 mA, 16 ms 120 kV Air 10 mA, 13 ms 600 sequential 2 17.8 19.9
03-2016 Cirs-Cirs 90 kV Ag (4) 60 mA, 16 ms 120 kV Ag (4) 25 mA, 13 ms 600 sequential 2 12.8 13.8

11-2016 Cirs-Gammex 80 kV Cu (*) 25 mA, 20 ms 120 kV Cu+Ag (*) 25 mA, 20 ms 610 sequential 3 29.8 31.2
11-2016 Cirs-Gammex 80 kV Cu (*) 25 mA, 20 ms 120 kV Air 20 mA, 20 ms 610 sequential 3 18.2 18.2
11-2016 Cirs-Gammex 80 kV Air 25 mA, 20 ms 120 kV Cu+Ag (*) 25 mA, 20 ms 610 sequential 3 27.8 29.2
11-2016 Cirs-Gammex 80 kV Air 25 mA, 20 ms 120 kV Air 20 mA, 20 ms 610 sequential 3 13.1 12.9

11-2016 Cirs-Cirs 80 kV Cu (*) 25 mA, 20 ms 120 kV Cu+Ag (*) 25 mA, 20 ms 610 sequential 3 29.1 32.2
11-2016 Cirs-Cirs 80 kV Cu (*) 25 mA, 20 ms 120 kV Air 20 mA, 20 ms 610 sequential 3 15.6 15.5
11-2016 Cirs-Cirs 80 kV Air 10 mA, 20 ms 120 kV Cu+Ag (*) 25 mA, 20 ms 610 sequential 3 27.2 29.9
11-2016 Cirs-Cirs 80 kV Air 10 mA, 20 ms 120 kV Air 20 mA, 20 ms 610 sequential 3 13.5 10.5

11-2016 Cirs-Gammex 80 kV Air 25 mA, 20 ms 120 kV Air 20 mA, 20 ms 990 FKVS 3 8.4 6.7

11-2016 Cirs-Cirs 80 kV Air 10 mA, 20 ms 120 kV Cu+Ag (*) 25 mA, 20 ms 990 FKVS 3 17.3 10.9
11-2016 Cirs-Cirs 80 kV Air 20 mA, 10 ms 120 kV Air 15 mA, 10 ms 990 FKVS 3 11.3 7.6

Table 4.9: Parameters of the dual-energy sequential and FKVS CBCT acquisitions for the CIRS-Gammex and the CIRS-
CIRS phantoms: LE and HE spectra (tube voltage and additional filtration), LE and HE settings (tube current and pulse
length), number of frames and slit aperture at the isocenter. The acquisitions marked with an asterisk indicate that a filter
material of the wheel was used, whereas the acquisitions in which a high purity silver sheet was placed after the collimator to
additionally filter the spectrum are marked with a triangle. Last two columns show the relative SPR RMS errors accounting
for all phantom inserts and excluding lung inserts, respectively.
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max
diff.

11-2016 Cirs Thorax 80 kV Cu (*) 25 mA, 20 ms 120 kV Cu+Ag (*) 25 mA, 20 ms 610 sequential 3 0.17 1.20
11-2016 Cirs Thorax 80 kV Cu (*) 25 mA, 20 ms 120 kV Air 10 mA, 20 ms 610 sequential 3 0.35 2.1
11-2016 Cirs Thorax 80 kV Air 10 mA, 20 ms 120 kV Cu+Ag (*) 25 mA, 20 ms 610 sequential 3 0.16 1.14
11-2016 Cirs Thorax 80 kV Air 10 mA, 20 ms 120 kV Air 10 mA, 20 ms 610 sequential 3 0.24 1.69

Table 4.10 Parameters of the dual-energy sequential acquisitions for the CIRS Thorax phantom: LE and HE spectra (tube
voltage and additional filtration), LE and HE settings (tube current and pulse length), number of frames and slit aperture at
the isocenter. The acquisitions where a filter material of the wheel was used to additionally filter the spectrum are indicated
with an asterisk. Last two columns show the RMS error computed over the SPR difference image and the maximum SPR
difference, respectively.
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4.6.1.4 Sinogram interpolation

One assumption of projection-based dual-energy decomposition methods is that the
same information per tube voltage has to be available at each projection angle (see
section 2.4.2). To that end, LE and HE projections have to be properly interpolated to
have the LE and the HE projections sampled at the same angle.

In this study, for the dual-energy CBCT sequential acquisitions, we decided to in-
terpolate the HE projections with respect to the LE projections. The interpolation was
performed with respect to the source angle value of each projection. As the source and
the detector can rotate independently along circular trajectories [Rit et al., 2016], for
each projection, there is a unique pair of source angle and detector angle values. This
was checked by plotting the difference of the source angle and the detector angle with
respect to the source angle position for a set of independent single-energy acquisitions
performed in March 2016 and in November 2016. Acquisitions performed in Novem-
ber 2016 were perfectly consistent, whereas acquisitions performed in March 2016 were
found to be less reproducible. In the light of these results, we concluded that a simple
linear sinogram interpolation with respect to the source angle position was sufficient for
the CBCT acquisitions performed in November 2016. For the acquisitions carried out
in March 2016, a linear interpolation was performed as illustrated in Figure 4.16.

SS1 S2

P

P1

P2

I

Figure 4.16: The projection at source position S is linearly interpolated from the backpro-
jection onto the detector of the projections at source positions S1 and S2. For example,
the value at point P is obtained from the linear combination of the values at P1 and P2.

For the dual-energy CBCT FKVS acquisitions, first, the LE and the HE projections
were separated from the combined dual-energy sinogram of Figure 4.15 (2N projections).
Second, the LE and the HE sinograms (with N projections each) were linearly inter-
polated with respect to the 2N source angles, without resampling, in order to have a
2N -projections LE sinogram and a 2N -projections HE sinogram sampled at the same
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angle.

4.6.1.5 SPR determination

We followed the procedure described in section 4.5.2.2 to reconstruct the SPR phan-
tom images. Mass density images of two basis materials were reconstructed using the
BMD projection-based dual-energy decomposition method proposed by [Alvarez and
Macovski, 1976]. On a pixel-by-pixel basis, the RED image was derived from the re-
constructed mass density images. Then, the SPR image was determined through a
functional relation between the RED and the ratio of SPR and RED proposed by [Kane-
matsu et al., 2012]. Acrylic (PMMA) and aluminum (Al) were chosen as basis materials
for all phantom acquisitions.

Reference SPR values of the phantom inserts used in this study were experimentally
determined in a measurement session carried out at the Heidelberg Ion-beam Therapy
center (HIT, Germany) in March 2016 (see Appendix C for further details). Recon-
structed SPR images of the CIRS Thorax were compared to the reference SPR values in
a pixel-by-pixel basis, whereas ROIs covering the inserts in a central slice of the CIRS-
Gammex and the CIRS-CIRS phantoms were considered to compare reconstructed SPR
images with experimentally determined SPR values.

4.6.1.6 SECT-derived SPR images

In order to investigate if DECT outperforms SECT, the CIRS-CIRS phantom image
corrected for beam-hardening and reconstructed from the CBCT projections acquired at
120 kV/Air was used to generate a look-up table to convert HU into SPR (Figure 4.17).
A ROI of 10 pixels radius was used to extract the HU value inside each phantom insert
and the corresponding SPR was the experimentally determined value (see Appendix C).

To compare SECT- and DECT-derived SPR images, the HU-SPR curve was used
to generate the SPR map of the scatter-corrected image of the CIRS Thorax phantom
acquired at 120 kV/Air.

4.6.2 Results

4.6.2.1 Dual-energy CBCT sequential acquisitions

CIRS Thorax phantom In a pixel-by-pixel basis, the resulting SPR images for each
dual-energy sequential acquisition were compared to the experimentally determined val-
ues. Table 4.10 shows the RMS error and the maximum SPR deviations computed over
the SPR difference image of each dual-energy CBCT acquisition. Worse RMS errors
and larger maximum errors were obtained for the dual-energy combinations with a HE
spectrum of 120 kV/Air than with 120 kV/Cu+Ag. It might be explained by the in-
creased energy gap between the incident dual-energy spectra when using a HE spectrum
of 120 kV/Cu+Ag which results in a less noisy reconstructed SPR image. Figure 4.18
shows the reconstructed mass density images of PMMA and Al, the RED image and
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Figure 4.17: HU to SPR calibration curve computed from the CIRS-CIRS phantom
image reconstructed from the CBCT projections acquired at 120 kV/Air. A piece-wise
linear interpolation between HU and SPR values was used, divided in three segments:
lung tissue (HU<-230), soft tissue (-230≤HU<120) and bone tissue (HU≥120).

the corresponding SPR image obtained from the scatter-corrected dual-energy CBCT
sequential acquisition at 80 kV/Air + 120 kV/CuAg of the CIRS Thorax phantom.
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Figure 4.18: From top to bottom and from left to right: PMMA and Al mass density
images, RED image and SPR image corresponding to the dual-energy CBCT sequential
acquisition at 80 kV/Air + 120 kV/CuAg of the CIRS Thorax phantom.
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Figure 4.19 plots a line profile comparing the reconstructed SPR image with the ex-
perimentally determined SPR values (a), and the histogram of the SPR difference image
for the 80 kV/Air + 120 kV/CuAg CBCT acquisition (b). The SPR error histogram
(Figure 4.19-b) is centered around zero, but it exhibits a peak around 0.3 which corre-
sponds to the trabecular and cortical bone pixels. Unlike lung and plastic water inserts,
for which the experimentally determined SPR values were considered (Appendix C), the
theoretically determined SPR values (Equation 1.12) of bone inserts were used because
they are mold in the phantom and they cannot be separated from other materials to
estimate their SPR experimentally. A water I-value of 78 eV and a proton beam energy
of 200 MeV were considered. Theoretical SPR values were found to be systematically
higher than experimental values.

CIRS and Gammex phantoms For each phantom insert, the mean value and the
standard deviation of the SPR were calculated in ROIs covering the inserts in a central
slice of the phantom, and they were compared to the experimental values (Appendix C).
Table 4.9 shows the relative RMS errors averaged over all phantom inserts and exclud-
ing lung inserts of each dual-energy sequential CBCT acquisition. For the dual-energy
sequential acquisitions acquired in March 2016, the RMS errors averaged over all inserts
(excluding lungs) ranged from 4.6% (3.6%) to 17.4% (18.2%) for the CIRS-Gammex
phantom, whereas it varied from 7.7% (4.7%) to 17.8% (19.9%) for the CIRS-CIRS
phantom. For the acquisitions performed in November 2016, the RMS errors varied
from 13.1% (12.9%) to 29.8% (31.2%) for the CIRS-Gammex phantom, whereas they
ranged from 13.5% (10.5%) to 29.1% (32.2%) for the CIRS-CIRS phantom.

Figure 4.20 shows the reconstructed mass density images of PMMA and Al, the
RED image and the corresponding SPR image obtained from the dual-energy CBCT
sequential acquisitions at 60 kV/Al + 120 kV/Air (a) and at 90 kV/Al + 120 kV/Air
(b) performed in March 2016 (see Table 4.9) of the CIRS-Gammex phantom. Some
Beam Hardening (BH)-like artifacts and streaks are visible in the reconstructed mass
density images, specially for the 60 kV/Al + 120 kV/Air acquisition, which are less
predominant in the reconstructed RED and SPR images.

Figure 4.21 plots the DECT-derived SPR values versus reference values for two dual-
energy spectra (top) and the SPR residuals (bottom) for the CIRS-Gammex phantom
inserts sorted by increasing SPR value. Lung inserts were excluded from the residual plot
due to the large relative errors, i.e. up to 36% for the 60 kV/Al + 120 kV/Air dataset
and up to -66% for the 90 kV/Al + 120 kV/Air dataset. RMS errors of 4.9% (all
inserts) and 4.4% (excluding lung inserts) were obtained for the 60 kV/Al + 120 kV/Air
acquisition, and RMS errors of 6.1% (all inserts) and 3.7% (excluding lung inserts) were
obtained for the 90 kV/Al + 120 kV/Air acquisition. The SPR image derived from
the 90 kV/Al + 120 kV/Air acquisition was noisier with respect to the 60 kV/Al +
120 kV/Air acquisition, i.e., the latter presents a larger incident energy gap. Chapter 5
studies in detail the influence of the incident energy gap, i.e., between the LE and the
HE acquisitions, on the reconstructed images noise.
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Figure 4.19: Results relative to the dual-energy CBCT sequential acquisition at
80 kV/Air + 120 kV/CuAg of the CIRS Thorax phantom. a) SPR profile compar-
ing the reconstructed SPR image (blue) with the experimentally determined SPR values
(red); b) histogram of the SPR difference image. The corresponding RMS and maximum
errors are indicated in the figure legend.
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(a) 60 kV/Al + 120 kV/Air - CIRS-Gammex
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(b) 90 kV/Al + 120 kV/Air - CIRS-Gammex

Figure 4.20: Results corresponding to the dual-energy sequential acquisition at 60 kV/Al
+ 120 kV/Air (a) and at 90 kV/Al + 120 kV/Air (b) of the CIRS-Gammex phantom
performed in March 2016. From top to bottom and from left to right: PMMA and Al
mass density images, RED image and SPR image.
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Figure 4.21: DECT-derived SPR values versus reference values for two dual-energy
spectra (top) and SPR residuals (bottom) for the CIRS-Gammex phantom inserts sorted
by increasing SPR value. Lung inserts were excluded from the residual plot.
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4.6.2.2 Dual-energy CBCT FKVS acquisitions

CIRS and Gammex phantoms For each phantom insert, the mean value and the
standard deviation of the SPR were calculated in ROIs covering the inserts in a central
slice of each phantom. Table 4.9 shows the relative RMS errors averaged over all phantom
inserts and excluding lung inserts of each dual-energy FKVS CBCT acquisition. For the
CIRS-Gammex phantom, RMS errors of 8.4% (all inserts) and 6.7% (excluding lung
inserts) were obtained. For the CIRS-CIRS phantom, RMS errors of 17.3% (all inserts)
and 10.9% (excluding lung inserts) were computed for the 80 kV/Air + 120 kV/CuAg
acquisition, whereas errors of 11.3% (all inserts) and 7.6% (excluding lung inserts) were
obtained for the 80 kV/Air + 120 kV/Air acquisition.

Figure 4.22 shows the reconstructed mass density images of PMMA and Al, the
RED image and the corresponding SPR image obtained from the dual-energy CBCT
FKVS acquisition at 80 kV/Air + 120 kV/Air of the CIRS-Gammex phantom (a),
and at 80 kV/Air + 120 kV/CuAg of the CIRS-CIRS phantom (b). There are some
artifacts at the center of the mass density images compatible with scatter contamina-
tion. In addition, some BH-like artifacts are visible, specially for the 80 kV/Air +
120 kV/CuAg acquisition. Moreover, a moderate cupping is visible in the reconstructed
images, i.e. enhanced phantom edges with respect to the central portion, particularly for
the CIRS-CIRS phantom acquisition.

Figure 4.23 plots the DECT-derived SPR values versus reference values and the SPR
residuals for both phantom inserts sorted by increasing SPR value. Lung inserts were
excluded from the residual plot due to the large relative errors, i.e. up to -87% for the
CIRS-Gammex phantom and up to -130% for the CIRS-CIRS phantom.
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Figure 4.22: Results corresponding to the dual-energy CBCT FKVS acquisition at
80 kV/Air + 120 kV/Air of the CIRS-Gammex phantom (a) and to the dual-energy
CBCT FKVS acquisition at 80 kV/Air + 120 kV/CuAg of the CIRS-CIRS phantom
(b). From top to bottom and from left to right: PMMA and Al mass density images,
RED image and SPR image.
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Figure 4.23: DECT-derived SPR values of the CIRS-Gammex (blue) and the CIRS-CIRS
(red) phantom inserts for two dual-energy CBCT FKVS acquisitions versus reference
values (top) and SPR residuals (bottom) for both phantom inserts sorted by increasing
SPR value. Lung inserts were excluded from the residual plot.
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4.6.2.3 SECT-derived SPR images

Figure 4.24 plots a line profile comparing the SPR image obtained through the HU-
SPR curve of Figure 4.17 at 120 kV/Air with the experimentally determined SPR values
(a), and the histogram of the SPR difference image (b). The SECT-derived image is less
noisy with respect to the DECT-derived SPR image (Figure 4.19). This occurs because
noise is propagated in DECT –and presumably enhanced– through the whole decom-
position process and, afterwards, in the reconstruction step. In terms of RMS error,
the SECT-image is comparable to the DECT-image. However, the SPR error histogram
presents two peaks and none of them centered at zero (Figure 4.24-b). Moreover, SECT
falls below lung tissue SPR accuracy as observed in the line profile or in the second wide
peak centered at 0.4 on the SPR error histogram (Figure 4.24).

4.6.3 Discussion

Table 4.9 shows the percentage RMS errors obtained for several DE combinations
when comparing DECT-derived SPR values with experimentally determined values. The
SPR accuracy of these preliminary DE-CBCT acquisitions is far worst than the accuracy
reported with diagnostic DECT systems, i.e. with RMS errors up to 1.2% [Hünemohr
et al., 2014a; Hudobivnik et al., 2016]. Nevertheless, when looking at Table 4.9, a trend
in the results has been observed which might explain these results.

Systematically, for the CIRS-CIRS and CIRS-Gammex phantoms, those DE combi-
nations with high filtration –using the filters of the wheel or placing high purity filters
after the collimator (see Table 4.9)– produced the worst results. The projection-based
method used in this study relies on the exact knowledge of the source spectrum and
the detector response (section 2.4). In addition, projection-based decomposition meth-
ods are known to be sensitive to spectrum alterations [Tremblay et al., 2014]. As the
exact thicknesses of the wheel filters were not known, the nominal thicknesses were
used instead. Moreover, the nominal filter composition was considered. Regarding the
high purity filters taped to the collimator, placement errors (i.e. lack of orthogonality
with respect to the beam axis) and source rotation might also modify the photon yield
with respect to the estimated photon distribution. In addition, fluence corrections were
not available for the acquisitions performed with a silver filter placed after the collima-
tor (marked with a triangle in Table 4.9). Consequently, the uncertainty on the filter
thicknesses and on the filter placement, might vary the photon yield due to their high
attenuation properties and, thus, introduce some error in the decomposition scheme.

Another plausible explanation is that the source model used in this study is not
optimal for high energies or for highly hardened beams, which was already pointed out
in the discussion of [Vilches-Freixas et al., 2016a] (section 3.2). Moreover, the parametric
source model was only calibrated close to the primary beam axis, it assumes a uniform
2D photon yield distribution, which might be incorrect in the presence of a filter. Indeed,
specially on the phantom border of Figure 4.22 there is an overestimation of the phantom
SPR compatible with a wrong estimation of the spectra 2D distribution due to the
presence of the flattening filter (Figure 3.6), added before the experimental session that
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Figure 4.24: Results relative to the single-energy CBCT sequential acquisition at
120 kV/Air of the CIRS Thorax phantom. a) SPR profile comparing the reconstructed
SPR image (blue) with the experimentally determined SPR values (red); b) histogram
of the absolute SPR error. The corresponding RMS and maximum errors are indicated
in the figure legend.

took place in November 2016. Furthermore, the source and the detector models should
be validated against the different filter materials of the wheel.

In order to confirm these hypotheses, the next step would be to test the SPR accu-
racy with a calibration-based dual-energy decomposition method. Even if the current
decomposition method actually relies on a calibration for both the source and the detec-
tor models, these models may need to be improved. The advantage of the polynomial
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approach is that the source and the detector characteristics can be indirectly determined
through a calibration procedure (section 2.4.2.2). One drawback of this approach is that
a calibration per energy spectrum and tube settings, such as intensity and exposure time,
should be performed and it might be tedious and time-consuming. Furthermore, it would
also be worth investigating the performance of image-based decomposition approaches.

Except for the CIRS Thorax phantom, for which the collimator-shadow scatter cor-
rection was applied to, the other DE-CBCT acquisitions were not corrected for scatter.
It is foreseen that results would improve with a proper scatter correction.

A double ring artifact around each phantom rod was visible in the reconstructed
mass density images of Figure 4.20 –also visible in the SPR images– which might be due
to the interpolation of projection images. This artifact might be less predominant if the
projection to be interpolated had been backprojected at the isocenter instead of onto
the detector (Figure 4.16).

BH-like artifacts are visible in the mass density images of Figures 4.20-4.22 but they
are less present in the reconstructed SPR images. As already discussed in section 4.5,
the base materials images, i.e. PMMA and Al, should not be affected by beam-hardening
as the energy dependency is factored out in this decomposition process (equation 2.7).
However, the choice of the basis material decomposition might have an influence on this
assumption and the hypothesis that the linear attenuation coefficient of the object can
be separated into an energy-dependent and an energy-independent part is not always
valid. Equation 2.7 has to be verified for the entire range of the dual-energy spectra and
it might not be true for too broad spectra. In addition, reconstruction artifacts such as
streaks are present both in the mass density images and in the SPR images which might
come from scatter. Improved SPR results are expected when these issues will be solved.

We observed for the same dual-energy spectra that FKVS results were slightly better
than sequential results (Table 4.9). The main difference between both acquisitions is
the number of frames of the LE and the HE projections after sinogram interpolation,
i.e. 610 and 990 frames for the sequential and FKVS acquisitions, respectively. For the
FKVS acquisitions, reconstructed mass density images exhibited less noise thanks to the
increased number of projections which might influence the RED accuracy and, therefore,
the SPR accuracy.

When comparing the SPR accuracy of the CIRS-Gammex phantom and the CIRS-
CIRS phantom, for the same dual-energy CBCT FKVS acquisition, the CIRS-Gammex
phantom provided better results. If we look at Table 4.9, the product of the tube
current by the pulse length gives higher mAs values for the CIRS-Gammex phantom than
for the CIRS-CIRS phantom. The smaller beam intensity of the CIRS-CIRS phantom
acquisition causes more noise in the projections and it might impact the quality of the
numerical solution (section 2.4.2.2).

4.6.4 Conclusions

The performance of the IR system on estimating the SPR of two tissue characteriza-
tion phantoms and one anthropomorphic phantom has been evaluated. Preliminary re-
sults obtained on dual-energy CBCT sequential acquisitions and on dual-energy CBCT
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FKVS acquisitions synchronized with the filter wheel of the IR are not optimal yet.
Although the level of accuracy required to perform clinical treatment planning dose cal-
culations with the reconstructed SPR images is not yet achieved, improvement paths
have been identified. First, even if a 3 cm slit at the isocenter is used to reduce scat-
ter, a remaining fraction of scatter contamination might still be present in the acquired
projections of the CIRS-CIRS and CIRS-Gammex phantoms. Consequently, improved
results are expected when applying the scatter correction implemented in the recon-
struction pipeline of the IR. Second, the dual-energy material decomposition approach
implemented in the projection domain is known to be sensitive to the correctness of the
incident spectra, which is a required input to solve the non-linear system of equations
(section 4.5.2.2). Inaccuracies on the chemical composition and the purity level of the
additional filtration applied to the LE or the HE projections, wrong filter thickness es-
timation or suboptimal fluence correction, might alter the incident spectrum estimation
and induce errors in the SPR estimation. The source and the detector models need
also to be improved to better estimate the incident spectra. Moreover, the presence of
noise in the projections, and a low SNR, might also influence the output of the material
decomposition. Nevertheless, when comparing SECT- and DECT-derived SPR images
of the CIRS Thorax phantom, DECT outperformed with respect to SECT, specially in
the lung tissue region.

4.7 Conclusion

A literature overview on the existing methods to estimate the SPR from DECT ac-
quisitions has been conducted. Two novel calibrated relations to estimate the SPR from
dual-energy decomposition outputs have been proposed. Similar results in terms of ac-
curacy were obtained when comparing the existing methods with the novel approaches.
Most of the existing dual-energy decomposition methods for radiotherapy applications
were found to be image-based. In order to determine whether projection-based ap-
proaches would be also suitable for proton therapy applications, a simulation-based
comparative study between two image-based methods and one projection-based method
has been conducted. Thanks to the development of new systems to perform dual-energy,
such as dual-layer or photon-counting detectors (section 2.2), projection-based methods
are becoming more attractive and, in the light of these results, should also be considered
for proton SPR determination. Finally, the ability of the IR system to determine the
SPR of real phantoms from dual-energy CBCT sequential and FKVS acquisitions using a
projection-based dual-energy decomposition approach has been evaluated. Preliminary
SPR images did not achieve the level of accuracy required to perform clinical treatment
planning dose calculations. Some weak points have been individuated on the followed
methodology and several ways for improving these results have been outlined to reach
the ultimate goal of performing proton dose calculations on reconstructed SPR images
using the IR system.
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In the previous chapter, we compared several decomposition bases to estimate the
proton SPR and the two main decomposition domains (image- or projection-based) in
terms of SPR accuracy. The two-material decomposition approach implemented in the
projection-domain was found to be a good choice: the results were comparable or slightly
better than other methods implemented in the image-domain, and there is no need to
implement a beam-hardening correction. In this chapter, the goal is to investigate the
factors that would have an impact on the outcome of the dual-energy decomposition
process, from the acquisition parameters to the post-processing, focusing entirely on
projection-based approaches. To achieve this task, we tried to investigate which is the
optimal dual-energy spectra, dose balance between energy levels, material decomposi-
tion pair of basis, and way of solving the inverse problem of material decomposition
(section 2.4.2.2).

This chapter is organized in three parts. In the first part, based on simulations of X-
ray images, we investigated the effect of various voltages and tin filtration combinations,
and the influence of the dose allocation between the low energy (LE) and the high
energy (HE) acquisitions on the SPR map accuracy and precision. This work has been
published in the Med. Phys. journal in a full article format (see Appendix A). In the
second part, we fixed the dual-energy spectra, the dose balance between energy channels
and the method of solving the system of equations and we varied the decomposition basis:
acrylic (PMMA) and aluminum, soft tissue and cortical bone, and water and compact
bone. In the third part, keeping all the other parameters fixed, the inverse problem was
solved using a polynomial approximation and an iterative convex optimization, and we
compared the results.

5.1 Dual-energy spectra and dose balance

5.1.1 Introduction

Nowadays, there is a growing concern about the imparted doses in medical imaging
applications, particularly for diagnostic procedures. By balancing the dose between the
low (LE) and the high energy (HE) acquisitions, radiation dose levels of DECT imaging
are not necessarily higher than those of SECT imaging [Henzler et al., 2012]. Due to the
additional information contained in DECT data compared to SECT, it seems also feasible
to further reduce radiation doses with dual-energy imaging. For that, the optimization
of DECT acquisition protocols focusing on the figure of merit specific for each task,
e.g. diagnostic or radiotherapy treatment planning, is mandatory. In addition, a careful
study of the influence of the various acquisition parameters on the accuracy of the
extracted data is of importance. Spectral optimization of dual-energy imaging has been
conducted for cardiac, chest and mammography imaging applications [Xu et al., 2006;
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Saito, 2007; Shkumat et al., 2007]. Additional spectral filtration has been optimized
to improve the dual-energy performance in material discrimination tasks based on the
dual-energy ratio [Granton et al., 2008; Primak et al., 2009]. In most of these works,
the optimization of DECT acquisition settings, i.e. dose distribution between low and
high energy acquisitions, tube voltage pair, filter material and thickness, is based on the
contrast-to-noise ratio (CNR) or the signal-to-noise ratio (SNR) criterion. In a recent
work [Rigie and La Rivière, 2016], a framework for optimizing spectral CT imaging
parameters and hardware design with respect to material classification tasks has been
proposed.
In this work, we have focused on investigating the effect of two factors, namely the dual-
energy spectra and the dose balance between energy levels, to maximize the accuracy and
the precision of SPR maps, which are figures of merit essential for proton therapy dose
calculations. First, we have investigated the effect of various voltages and tin filtration
combinations on the SPR. Second, holding the dose to the patient constant, we have
studied the influence of the distribution of dose between the low and the high energy
acquisitions on the reconstructed SPR images, using four representative dual-energy
spectra. The SPR images of three slices of the Adult Female (AF) ICRP computational
phantom (i.e. head, thorax and pelvis) have been reconstructed for the same four pairs
of spectra. Then, the ranges of 70 MeV, 90 MeV and 100 MeV proton beams –which
corresponded to a range in water of 40.8 mm, 64.0 mm and 77.2 mm, respectively–
have been computed from the reconstructed SPR maps at different incident angles. The
proton range accuracy of each setup has been estimated by calculating the mean range
deviation over all irradiation angles and the root-mean-square (RMS) error. The gain
in range accuracy, based on this dual-energy approach, has also been compared to a
single-energy CT acquisition of the AF ICRP phantom at 120 kVp.

5.1.2 Materials and Methods

5.1.2.1 Image simulation

The 33-cm diameter Gammex RMI 467 (Gammex, Middleton, WI) tissue charac-
terization phantom, which represents a medium-size body, was used to investigate the
optimal dual-energy spectra and the optimal dose balance between energy levels. Six-
teen inserts mimicking human tissue attenuation properties positioned as described in
Figure 5.1 with mass densities ranging from 0.3 to 1.82 g·cm−3 and known chemical
compositions were considered. The index-to-material mapping and the reference SPR
values are provided in Figure 5.1.

The AF reference computational phantom of the International Commission on Radi-
ological Protection (ICRP) [ICRP, 2009] was used as a virtual patient to investigate the
influence of the previous results on the proton range estimation. This phantom repre-
sents an average female and it contains 140 organs made of 53 standard human tissues,
whose mass density and chemical composition are provided in the same ICRP Publica-
tion 110 [ICRP, 2009]. Each voxel has a dimension of 1.774×1.775×4.84 mm3. Three
axial slices of different anatomical regions were selected to evaluate different human
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ID Materials SPR

0 Water 1.004
1 CB2-50% CaCO3 1.439
2 BR12 Breast 0.972
3 SB3 Cortical Bone 1.634

4, 15 AP6 Adipose 0.939
5, 14 LV1 Liver 1.072

6 BRN-SR2 Brain 1.071
7, 12 Solid Water 1.002
8, 9 LN300 Lungs 0.284
10 LN450 Lungs 0.431
11 CB2-30% CaCO3 1.271
13 IB3 Inner Bone 1.089
16 B200 Bone Mineral 1.098

Figure 5.1: Left: Gammex 467 phantom. Right: Insert ID, material name and reference
SPR values.

tissues and irradiation geometries: head, thorax and pelvis (Figure 5.2).
For both phantoms, the electron density relative to water of each insert material or

tissue m was estimated using:

REDm =

ρm

[∑
i

wi
Zi
Ai

]
m

ρw

[∑
i

wi
Zi
Ai

]
w

(5.1)

where the label w refers to water, ρ is the mass density, Zi is the atomic number, Ai the
atomic mass and ωi the fraction by weight of the ith chemical element that composes
the material m.

The reference stopping power values relative to water of the phantom inserts were
computed using Bethe’s equation without correction terms [Schneider et al., 1996; Yang
et al., 2010]. A 200 MeV initial kinetic energy was used, and an ionization potential
value of water of 78 eV was considered. Both the RED and the SPR reference values
were computed with respect to G4-Water, i.e. water material from the Geant4 mate-
rials database, which slightly differs from Gammex Water material. Consequently, the
reference SPR value of Gammex Water is 1.004 instead of 1 (Figure 5.1).

To make the study as realistic as possible, the irradiation geometry and the char-
acteristics of a particular device, the Imaging Ring (IR) X-ray system (medPhoton,
Salzburg, Austria), described by Rit et al [Rit et al., 2016], were employed in this study
(see chapter 3 for further details). Nevertheless, the results of this study could be ex-
trapolated for any other dual-spectrum device. Virtual CT acquisitions of the IR were
carried out by means of deterministic simulations in GATE [Jan et al., 2004] v7.2 using
the Fixed Forced Detection (FFD) actor. This deterministic module computes digitally
reconstructed radiographs (DRR) using the reconstruction toolkit (RTK) [Rit et al.,
2014] and the Geant4 database of X-ray cross sections. Fan-beam projections where
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Figure 5.2: Reference SPR images for the head, thorax and pelvis slices of the AF ICRP
phantom.

360 views of 807 pixels of 1 mm without scatter were considered for the Gammex phan-
tom, whereas 600 projections of 1026 pixels of 1 mm without scatter were considered
for the ICRP phantom. The source-to-isocenter distance was 626 mm and the source-
to-detector distance was 1026 mm. For the realistic scenario, Poisson noise was applied
to the projections to deliver a central dose Dc with each spectrum while delivering a
total central dose of 20 mGy with the dual-energy acquisition. The level of Poisson noise
depends on the number of primary photons per simulation, Nprim, required to deliver a
central dose of primary radiation, Dc, which was determined analytically assuming an
homogeneous water medium:

Nprim =
Dc Abeam∫

E
S(E) e−µw(E) r µen,w(E)

ρw
E dE

(5.2)

where Abeam is the area covered by the beam at the isocenter considering a constant
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flat field, S is the energy-dependent incident spectrum with unity area:
∫
E S(E) ·

dE = 1, µen,w(E)/ρw and µw are respectively the energy-dependent mass energy-
absorption coefficient and the linear attenuation coefficient of water taken from the
NIST database [Hubbell and Seltzer, 2004], and r is the radius of the phantom. The
central dose of Dc of 10 mGy per energy spectrum (20 mGy in total) was calculated at
the center of a 33 cm diameter water phantom for the Gammex, the ICRP thorax slice
and the ICRP pelvis slice, whereas a 20 cm diameter water phantom was considered for
the ICRP head slice. The energy-dependent detector response used in this study was
previously validated by Vilches-Freixas et al [Vilches-Freixas et al., 2016a].

For each projection angle, a low energy (LE) and a high energy (HE) intensity value
were obtained:

ILE =

∫ Emax

Emin

SLE(E) D(E) exp

(
−
∫
L
µ(`, E)d`

)
dE (5.3)

IHE =

∫ Emax

Emin

SHE(E) D(E) exp

(
−
∫
L
µ(`, E)d`

)
dE (5.4)

where L is the line segment between the source and a detector pixel, ILE and IHE are the
measured intensities, SLE and SHE are the weights of the polychromatic photon spectra,
and D(E) the detector response.

For each pair of X-ray spectra, the incident energy gap, ∆E, was calculated as the
separation between the average energies of the incident spectra:

∆E =

∫ E2

0
SHE(E) E dE −

∫ E1

0
SLE(E) E dE (5.5)

where E1 and E2 are the maximum energies of the LE and the HE spectra, respectively.

5.1.2.2 Dual-energy spectra optimization

SpekCalc [Poludniowski, 2007; Poludniowski and Evans, 2007; Poludniowski et al.,
2009b] was used to generate the X-ray spectra from 60 kV to 140 kV with 2 kV steps, 10◦

anode angle, 2.5 mm Al total filtration (required minimum filtration according to the
NCRPM (1989) [National Council on Radiation Protection and Measurements., 1989])
and 1000 mm air filtration. Each spectrum was filtered with pure tin (Sn), as suggested
by Primak et al (2009) [Primak et al., 2009], with thicknesses ranging from 0 to 2.5 mm
in 0.1 mm increments. For the LE acquisitions, the tube voltage was varied from 60 kV
to 100 kV, whereas for the HE acquisitions it was varied from 80 kV to 140 kV. No tin
filtration was considered for the LE acquisitions to maximize the energy gap, only the
2.5 mm Al inherent filtration. In total, 16926 tuples (21 LE voltages, 31 HE voltages
and 26 Sn thicknesses) were evaluated.

In this spectra optimization study, the same dose at the center was considered for
the low and the high energy acquisitions. In particular, a central dose Dc of 10 mGy
with each voltage and filtration combination was used, and thus a total central dose of
20 mGy with the dual-energy acquisition.
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For each (LE, HE, mm Sn) tuple, the reconstructed SPR image of the Gammex
phantom was compared to the reference values (Figure 5.1). The relative accuracy and
precision were calculated in a circular ROI centered at the center of the insert with a
radius of 3/4 the size of the insert (i.e. 10 pixels radius). The relative accuracy (RA)
and precision (RP) of the SPR averaged over all inserts were computed as follows:

RA =
1

N

N∑
m=1

(
vref
m − vm
vref
m

)
(5.6)

RP =

√√√√ 1

N

N∑
m=1

(
σm
vref
m

)2

(5.7)

where vref
m , vm and σm are respectively the reference SPR value (listed in Figure 5.1),

the mean SPR value inside the ROI and the standard deviation inside the ROI for the
mth insert, with N equal to 16.

5.1.2.3 Fractional dose allocation optimization

The same irradiation setup as described above was used to estimate the optimal dose
balance between voltages that minimizes the uncertainty and the precision of the SPR.
Table 5.1 shows the four dual-energy spectra selected for this study, with incident energy
gaps comprised between 30 keV and 49 keV. The first pair of dual-energy spectra corre-
sponds to the Siemens Flash spectra [Primak et al., 2010]; the second one to a possible
pair of dual-energy spectra generated with the medPhoton Imaging Ring; whereas the
others correspond, respectively, to the optimal dual-energy spectra for solid water and
bone tissue obtained from the results of Section B. The dose of the LE and the HE
acquisitions are herein named DLE and DHE, respectively. For each pair of dual-energy
spectra, the proportion of DLE (DHE) with respect to the total dose was varied from
10% (90%) to 90% (10%) by steps of 20% while keeping the phantom dose at the center
to a constant value of 20 mGy. For each dose level, the corresponding Poisson noise
was computed using Equation 5.2 and it was applied to the projections through the
FFD actor of GATE. In total, considering the 4 pairs of dual-energy spectra and the
5 dose levels evaluated per spectra, 20 noise levels were computed with Equation 5.2.
For each noise level, i.e. for each pair of dual-energy spectra and dose proportion, 25
realizations of noise in the projection images were generated to estimate the accuracy
and the precision. Then, the SPR value inside a 10 pixels radius ROI inside each insert
was computed for each set and compared to the reference values. The overall accuracy
and precision of the SPR averaged over all inserts were also computed (Equations 5.6
and 5.7).



5. DECT optimization for proton therapy 127

# LE spectrum HE spectrum ∆E (keV) Description

1 80 kVp 140 kVp + 0.4 mm Sn 43 Siemens Flash spectra
2 60 kVp 120 kVp + 0.6 mm Sn 48 medPhoton Imaging Ring spectra
3 90 kVp 110 kVp + 0.5 mm Sn 30 solid water optimal DE spectra
4 80 kVp 106 kVp + 2.2 mm Sn 49 bone tissue optimal DE spectra

Table 5.1: Dual-energy spectra selected for the dose allocation study and the assessment
of the proton range accuracy. From left to right: low-energy spectrum, high-energy
spectrum with additional tin filtration and the corresponding energy gap.

5.1.2.4 SPR determination

The proposed method to compute the SPR from dual-energy data in the projection
domain is an adaptation of the two-steps procedure proposed by Farace [Farace, 2014]
in the image domain. It consists of two steps: first, determination of the RED image
through the two-material decomposition method proposed by Alvarez and Macovski [Al-
varez and Macovski, 1976] implemented in the projection domain; second, determination
of the SPR image using the poly-lines relations proposed by Kanematsu et al [Kanematsu
et al., 2012].

The key idea of the two-materials method is that the linear attenuation coefficient
of the scanned object at any spatial position x and energy E, µ(x, E), can be expressed
as a linear combination of two energy-dependent basis functions of two materials with
energy-independent coefficients. Choosing water (w) and compact bone (b) as basis
materials, it is assumed that

µ(x, E) = ρw(x)

(
µ

ρ

)
w

(E) + ρb(x)

(
µ

ρ

)
b

(E) (5.8)

where µ/ρ denotes the energy-dependent mass attenuation coefficients and ρ the mass
fraction per volume.

By performing an acquisition with LE and HE spectra, two sinograms of the same
object are available. For every angle θ and pixel location u, we have

ÎLE(θ,u) = − ln

[
ILE(θ,u)

I0
LE(θ,u)

]
(5.9)

ÎHE(θ,u) = − ln

[
IHE(θ,u)

I0
HE(θ,u)

]
(5.10)

where ILE and IHE are the intensities measured in the presence of the object, while I0
LE

and I0
HE are the intensities measured in the absence of the object. The projection of the

mass densities are given by

aw(θ,u) =

∫
L(θ,u)

ρw(`)d` (5.11)

ab(θ,u) =

∫
L(θ,u)

ρb(`)d` (5.12)
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where L(θ,u) is the line segment between the source and a detector pixel located at
position u for the view angle θ. The projected mass densities {aw, ab} can be expressed
as a polynomial function of the logarithmic transmission values {ÎLE, ÎHE} [Lehmann
et al., 1981; Chuang and Huang, 1988] at every angle θ and pixel location u, i.e.,

aw = Pw(ÎLE, ÎHE) (5.13)

ab = Pb(ÎLE, ÎHE) (5.14)

The coefficients of the polynomial Pw and Pb can be obtained through a calibration
procedure in the least square sense. Attenuation measurements were performed for
two different photon spectra (labeled LE and HE) interposing slabs of two well-known
materials with variable thicknesses. It is important that the calibration phantom covers
all possible path length variations through each basis material, and combinations of path
lengths through both materials [Stenner et al., 2007]. In this study, water thicknesses
ranging from 0 to 38 cm with 1 mm steps and compact bone thicknesses comprised
between 0 and 15 cm in 1 mm increments were used for the calibration. A fourth degree
polynomial with fifteen terms was initially considered. A stability study to noise, similar
to that conducted by Létang et al [Létang et al., 2004], was performed to determine
which terms of the polynomial were more unstable and, thus, eliminated. Finally, a
fourth degree polynomial with twelve terms was found to be adequate to solve this
system of equations (see section 5.3.3.1 for further details).

Then, image reconstruction of water and compact bone mass densities were per-
formed using the filtered backprojection (FBP) reconstruction of RTK on a 380×380
pixel grid with 1×1 mm2 pixels size for the Gammex images, and on a 299×137 pixel
grid with 1.775×1.775 mm2 pixels size for the ICRP images.

Finally, on a pixel-by-pixel basis, the RED image was derived from the reconstructed
mass density images, ρw(x) and ρb(x), the number of electrons per molecular weight
of each basis material and the tabulated electron density of water (i.e. G4-water for
consistency with reference RED and SPR values), ρe,w, divided by the Avogradro’s
number, NA:

RED(x) =
ρw(x)

[∑
iwi

Zi
Ai

]
w

+ ρb(x)
[∑

iwi
Zi
Ai

]
b(

ρe,w
NA

) (5.15)

The reconstructed RED values were directly converted into SPR through the piece-
wise linear relations of the RED and the ratio between SPR and RED of human tissues
as suggested by Kanematsu [Kanematsu et al., 2012]. To reproduce Figure 1a of Kane-
matsu et al [Kanematsu et al., 2012], a selection of 92 ICRU 46 [Bethesda, 1992] body
tissues, excluding obsolete or artificially extracted materials, were used to perform the
calibration. The SPR values of these body tissues were calculated using Bethe’s equa-
tion without correction terms at 200 MeV, as done for the Gammex and the ICRP SPR
reference values.
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5.1.2.5 Proton range prediction

To estimate the accuracy of the proton range prediction, three slices of the ICRP
phantom were selected: head, thorax and pelvis. Three proton energies were considered:
70 MeV (head), 90 MeV (thorax) and 100 MeV (pelvis). The corresponding ranges in
water Rwater, according to the continuous slowing down approximation [Berger et al.,
2011], were 40.8 mm, 64.0 mm and 77.2 mm, respectively. These beam energies have no
clinical relevance, they have been chosen to avoid irradiating twice the same phantom
area with coplanar beams. The proton range in the phantom computed at each angle
θ, where θ ranges from 0 to 360◦ in 5◦ step around the center of the phantom, was
determined as the phantom depth Rθ where the water equivalent thickness, defined as
the integral of the phantom SPR along the proton beam path, matched the proton range
in water:

Rwater =

∫ Rθ

0
SPRθ(l) dl (5.16)

where SPRθ is the 1D profile of the SPR image along the proton beam path for the
incident angle θ. The SPR was computed for the dual-energy spectra shown in Table 5.1.
To quantify the gain with respect to single-energy imaging, scanner simulations of the
Gammex phantom performed at 120 kVp filtered with 0.2 mm Sn were used to generate
a CT number to SPR calibration curve (Figure 5.3). A CT acquisition of the AF ICRP
phantom at 120 kVp/Sn was used to derive the corresponding SPR map through this
SECT calibration curve. Both for single-energy and dual-energy, two dose levels were
considered: SPR images computed without imaging noise (infinite dose or ideal case) and
SPR images computed with a 20 mGy central dose. For the latter, for each anatomical
region and spectra, the range was assessed on 25 SPR images reconstructed from different
noise realizations.

The proton range estimated from DECT and SECT SPR maps were compared to
the range calculated from the reference SPR map (Figure 5.2).

For each imaging situation and noise setup, the histogram of the proton range dif-
ferences over all irradiation angles was fitted with a Gaussian distribution (µ ± σ). In
addition, the RMS error and the maximum error were also computed.

5.1.3 Results

5.1.3.1 Dual-energy spectra optimization

In this spectra optimization study, a total of 16926 tuples were considered by com-
bining 21 LE voltages, 31 HE voltages and 26 Sn-thicknesses. For the realistic scenario
(images with a 20 mGy central dose and equal dose weight per energy channel), the
overall SPR accuracy and precision were plotted against the incident energy gap (Figure
5.4). The overall accuracy (Equation 5.6) was not strongly dependent on the spectra
separation, with a minimum in the 25-35 keV range of energy gaps where the maxi-
mum separation is about 80 keV. In addition, dual-energy spectra combinations with
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Figure 5.3: HU to SPR calibration curve for SECT scanner simulations of the Gammex
phantom at 120 kVp/Sn. A piece-wise linear interpolation between HU and SPR values
was used, divided in four segments: lung tissue, adipose tissue, soft tissue and bone
tissue.

an energy gap above 30 keV resulted in an overall accuracy within ±0.6%. The overall
precision (Equation 5.7) asymptotically approached a 4.7% level with increasing energy
gap. This level of precision was achieved for energy gaps greater than 60 keV.

A zero precision was expected for the simulations without noise. However, images
reconstructed from noiseless discrete projections always display residual noise caused by
discrete filtering and image interpolation during backprojection. A constant value of
2.6 % was observed for all SPR images without noise. In other words, the horizontal
line in Figure 5.4b would be shifted to 2.6% in the case of noiseless simulations. This
residual noise level is also present in the noisy simulations of Figure 5.4 but combined
with the photon noise.

To understand why the energy gap is not a good metric to determine the dual-
energy spectra that minimizes the overall SPR accuracy, one representative insert per
tissue group was selected: LN-300(8) for the low (RED<0.5), Solid Water(7) for the
medium (0.5<RED<1.2) and CB2-50(1) for the high (RED>1.2) density. One optimal
dual-energy spectra per tissue group was determined looking at the accuracy inside
the corresponding ROI for all spectra combinations. Around this (LE, HE, Sn) tuple,
orthogonal slices were plotted to study the dependence of the insert accuracy with the
low voltage, the high voltage and the additional filtration. The plots relative to the ideal
situation are shown in Figure 5.5. Different optimal points were found for different tissue
types, which suggests tissue variability with respect to the optimal energy spectra.

To investigate why there are some energy windows that produce better accuracy
results than others, the ratio between the theoretical linear attenuation coefficient (re-
trieved from NIST [Hubbell and Seltzer, 2004]) and the estimated value (obtained
through Equation 5.8) as a function of the monochromatic energy was computed for
the same Gammex inserts as in Figure 5.5: CB2-50, Solid Water and LN-300. For each
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Figure 5.4: Overall SPR accuracy and precision as a function of the incident energy gap
for the realistic acquisition scenario (20 mGy central dose) and the same dose weight
per voltage. Each of the 16926 data points corresponds to a (LE, HE, mm Sn) combina-
tion. Horizontal dashed red lines indicate the ±0.6% accuracy level (left) and the 4.7%
precision level (right).

insert, two pairs of dual-energy spectra were considered: one pair that maximizes the
SPR accuracy and one that does not provide a good accuracy. Plot of the ratio between
theoretical and estimated µ values for the three Gammex inserts is shown in Figure 5.6.
The µ ratio being close to one for the entire range of the dual-energy spectra seems to
correlate well with better SPR accuracy results. Solid water seems to be less dependent
on the dual-energy spectra, as also shown in Figure 5.5, where most of the spectra pro-
vide a good level of accuracy. On the other hand, bone tissue and lung tissue present
well-defined energy windows where the level of accuracy is optimal and areas where it is
not.

5.1.3.2 Fractional dose allocation optimization

The impact of the dose balance between the low and the high energy projections
was studied using 25 SPR images for each pair of dual-energy spectra of Table 5.1 and
dose ratio (i.e. from 10% to 90%), obtained after decomposition and reconstruction of
different noise realizations.

The boxplots of the overall precision (Equation 5.7) and accuracy (Equation 5.6) as
a function of the dose distribution between the LE and the HE acquisitions are shown
in Figure 5.7. The overall precision presented a minimum around 30% DLE (70% DHE)
for all spectra. As shown in Figure 5.4, Figure 5.7 confirms that the precision improves
when the energy separation between the incident energy spectra increases. In terms of
accuracy, the overall accuracy is almost flat in the range 30%-70% DLE (70%-30% DHE).
Around 90% DLE (10% DHE) the overall accuracy seems to be improved (Figure 5.7,
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Figure 5.5: From top to bottom, SPR accuracy results as a function of the LE, HE
and tin filtration for the insert: CB2-50, Solid Water and LN-300. From left to right:
LE-HE plot at the optimal Sn thickness, LE-mm Sn plot at the optimal HE, HE-mm Sn
plot at the optimal LE. The greyscale indicates the percentage error for the accuracy in
absolute value. Note the different scale for the CB2-50 and the Solid Water with respect
to the LN-300 insert. Data corresponding to the ideal situation, without noise.

right). However, the precision is two times larger than the 70% DLE (30% DHE) pro-
portion (Figure 5.7, left) and noise therefore masks the validity of the accuracy at this
point.
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Figure 5.6: Ratio between the theoretical µ and the estimated µ value derived from
Equation 5.8 as a function of the energy for three Gammex inserts. From left to right
and top to bottom: CB2-50, Solid Water and LN-300. Legend shows the SPR accuracy
corresponding to one optimal dual-energy spectra (black) and to one sub optimal dual-
energy spectra (blue).

5.1.3.3 Proton range prediction

Proton beam irradiations were simulated from 360 directions in 5◦ step around the
center of the ICRP phantom slices. The proton ranges for a 70 MeV, 90 MeV and
100 MeV were computed from the DECT-derived SPR images, the SECT-derived SPR
images and from the reference SPR maps. Signed mean errors, maximum deviations
and RMS errors on the proton range estimation over 360 directions at 70 MeV (head),
90 MeV (thorax) and 100 MeV (pelvis) are shown in Table 5.2 for the ideal situation
(without noise) and the realistic scenario (at a central dose of 20 mGy).
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Figure 5.7: Overall precision (left) expressed in terms of the root-mean-squared (RMS)
error, and overall accuracy (right) determined as the mean signed deviation, averaged
over all inserts, as a function of the dose allocation between the LE and the HE acqui-
sitions. The dual-energy spectra are described in Table 5.1.

Without noise 20 mGy

Spectra µ± σ
(mm)

max
(mm)

RMS
(mm)

µ± σ
(mm)

max
(mm)

H
ea

d

1 -0.04 ± 0.50 1.9 0.51 -0.05 ± 0.55 2.1 0.55
2 -0.13 ± 0.55 1.9 0.56 -0.12 ± 0.56 2.1 0.57
3 0.07 ± 0.49 1.9 0.50 0.07 ± 0.51 2.0 0.51
4 -0.04 ± 0.51 1.9 0.51 -0.05 ± 0.53 2.1 0.54

SECT 0.46 ± 0.67 1.9 0.81 0.47 ± 0.67 2.0 0.82

T
h

or
ax

1 -0.10 ± 0.70 2.7 0.71 -0.10 ± 0.73 3.8 0.74
2 -0.14 ± 0.71 2.8 0.72 -0.15 ± 0.76 3.7 0.77
3 0.00 ± 0.69 2.5 0.69 -0.00 ± 0.77 3.8 0.76
4 -0.13 ± 0.68 2.6 0.69 -0.09 ± 0.74 3.8 0.75

SECT 0.28 ± 0.81 3.2 0.86 0.29 ± 0.82 3.5 0.87

P
el

v
is

1 -0.15 ± 0.52 1.9 0.55 -0.23 ± 0.64 3.0 0.70
2 -0.18 ± 0.56 1.8 0.59 -0.24 ± 0.61 2.0 0.66
3 -0.13 ± 0.50 1.9 0.51 -0.20 ± 0.71 2.9 0.74
4 -0.15 ± 0.52 1.8 0.55 -0.23 ± 0.61 2.0 0.65

SECT 0.09 ± 0.58 1.8 0.59 0.11 ± 0.64 2.0 0.65

Table 5.2: Signed mean errors (µ ± σ), maximum deviations on the proton range esti-
mation (max) and root-mean square (RMS) errors over 360 directions at 5◦ steps for the
ideal situation (without noise) and the realistic scenario (at 20 mGy).
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5.1.4 Discussion

This simulations-based study comparing many pairs of dual-energy spectra demon-
strates that the energy separation between the incident spectra had a strong influence
on the SPR precision. It was observed that above an energy gap of 60 keV the preci-
sion asymptotically tends to a 4.7 % level. This result is in agreement with Primak et al
(2009) [Primak et al., 2009], in which they established a relation between the dual-energy
ratio of two materials and the image quality. They found that a small difference between
the dual-energy spectra resulted in a significant increase of the noise. To improve image
quality, they optimized the additional filtration to increase the energy gap.

Our study indicates that the energy gap is not a good metric to determine the opti-
mal spectra when looking at the SPR accuracy averaged over all tissues. The reason is
that a large variability of the optimal spectra was observed when studying each phan-
tom material separately (Figure 5.5). Therefore, the optimization of the dual-energy
spectra must be based on the materials present in the anatomical region traversed by
the proton beams. This result confirms that the optimal spectra in dual-energy imaging
is task [Richard and Siewerdsen, 2007], site and patient dependent.

The choice of the material basis (water and compact bone), the choice of the order
of the polynomial, the presence of crossed terms in the polynomial and the choice of the
dual-energy spectra are factors that determine the correctness of Equation 5.8, which
is the main hypothesis of the employed decomposition method. In addition, to obtain
acceptable results in terms of accuracy, the validity of Equation 5.8 has to be verified
within the spectral energy range of the incident spectra (Figure 5.6).

With respect to the dose allocation study, it was found that the dose balance between
energy levels was not critical for the SPR estimation. In fact, the overall accuracy
was almost flat in the 30-70% DLE range (Figure 5.7, right). This result agrees with a
previous study [Vilches-Freixas et al., 2015] conducted for an image-based decomposition
method and a different figure of merit: the accuracy on the extracted Zeff . A plausible
explanation is that even if the high energy spectrum is more penetrating than the low
energy spectrum, this effect is compensated with the poorer efficiency of the detector
response at high energy (Figure 1 of [Vilches-Freixas et al., 2016a]). On the other hand,
the precision presents a minimum slightly shifted in favor of lower dose for the lower
voltage spectrum (i.e. 30% LE-dose). Shkumat et al (2007) [Shkumat et al., 2007] came
to the same conclusion; the optimal image quality, in terms of SNR, was achieved when
one third of the total dose was imparted with the LE acquisition.

Two scenarios were evaluated to determine the accuracy of the proton range pre-
diction: an ideal case with an infinite dose, i.e. X-ray simulations without noise, and a
realistic situation with a 20 mGy central dose. The SPR images of the ICRP phantom
were reconstructed using four representative dual-energy spectra (see Table 5.1). The
differences between the four pairs of spectra in Table 5.2 were small (|µ| < 0.2 mm) and
not significant (two-tailed paired t-test, p > 0.1) due to the variability between beams
(standard deviation σ > 0.49 mm). In practice, precision could therefore drive the choice
of spectra, i.e., the energy gap (Figure 5.4, right). When comparing DECT range errors
with SECT range errors, all dual-energy spectra provided a range improvement for the
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head and for the thorax slices. Although this was not the case for the pelvis slice, this
confirms the limitations of SECT, with variations from site-to-site and the results would
have been different if another calibration curve had been used than the one in Figure 3,
as observed by [Arbor et al., 2015]. All pairs of DECT spectra seemed robuster on
average over all sites. Based on these results, the gain in SPR accuracy obtained when
optimizing the dual-energy spectra based on the materials traversed by the proton path
is not translated into improved proton range estimation, as comparable range differences
were obtained with the four dual-energy spectra.

For radiotherapy applications, based on the As Low As Reasonably Achievable
(ALARA) principle, a trade-off between dose and image noise should be found. On
the one side, an imaging dose lower than 20 mGy might not be appropriate as it would
trigger excessive image noise. On the other side, increasing the dose or implementing
a regularized reconstruction algorithm instead of using filtered-back-projection could be
valid alternatives to reduce image noise. Signed mean errors and RMS errors for the
realistic scenario were found to be comparable to those of the noiseless situation (infinite
dose), particularly for the head and the thorax slices, despite a rather small increase in
the maximum error values (Table 5.2). For the pelvis slice a higher impact of noise on
the range results was observed. Nevertheless, according to these results, the presence of
noise in the SPR image seems to have a rather low impact on the range estimation as
noise is averaged along the voxels of the beam path.

Uncertainties in the beam direction, such as changes in density and tissue inhome-
geneites caused by movement, patient misalignment or anatomical changes, or uncer-
tainties in determining the SPR of tissues, have a severe impact on the proton range and
can cause severe damages to the patient, such as target miss or accidental exposure of
organs-at-risk. Benefits of using dual-energy imaging for treatment planning to improve
the estimation of the SPR of tissues, as an alternative to single-energy CT calibration,
assuming a non-moving target have been evaluated in this work. However, it should
be noted that a 3.5% range uncertainty is commonly associated to the single-energy
calibration curve between CT numbers and SPR values using a real CT scanner system
but range errors obtained in Table 5.2 are much lower than 3.5%. The reason is that in
this simulation-based study, we only focused on the range uncertainty associated to the
conversion of CT numbers into SPR values. We have considered an idealized irradia-
tion setup, neglecting real CT scanner issues such as X-ray scatter, motion artifacts and
time stability. Moreover, besides the uncertainties in the longitudinal direction, other
sources of uncertainty exist in proton therapy such as density changes perpendicular
to the beam direction, the effect of lateral beam penumbra or incorrect proton scatter
modeling in analytical treatment planning systems [Paganetti, 2012], which might have
a severe dosimetric impact in proton therapy dose calculations.

In this work, we propose a full projection-based decomposition method framework for
the treatment planning of proton therapy. Despite the fact that no consensus has been
reached within the community to prefer one method over the others, nor a decomposi-
tion domain (projection– or image– domain) for the SPR estimation, projection-based
methods present the advantage to be intrinsically less affected by beam-hardening than
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image-based approaches. One assumption of projection-based methods is that the same
information per tube voltage is available at each projection angle. This prerequisite can
be seen as a disadvantage when using dual-source scanners as independent rotations
around the patient are performed, however, with the advent of technological develop-
ments, this requirement can be fulfilled by using dual-layer detectors or photon counting
detectors systems, for which it is possible to acquire low and high energy projections
at the same angle. Fast-kV switching imaging systems equipped with a synchronized
filter wheel, such as the Imaging Ring, approach this requirement on the condition that
interpolation of consecutive projections is performed. Besides, the proposed method to
estimate the SPR images from dual-energy data in the projection-domain is an adap-
tation of the two-steps procedure proposed by Farace et al in the image-domain, which
produced comparable results with respect to Hünemohr’s approach [Hünemohr et al.,
2014a].

One limitation of this study is that the investigated acquisition parameters (i.e. spec-
tral separation and dose allocation) are only meaningful for dual-spectrum scanners but
not for dual-detector systems. In addition, we have used a projection-based decompo-
sition algorithm to evaluate the acquisition parameters and it would be interesting to
repeat the same study using an image-based decomposition algorithm. However, image-
based methods require the implementation of a beam-hardening correction for each X-ray
spectra.

Another limitation of this study is the fact that the LE spectrum is not filtered. This
definitely bias the results in terms of optimal spectra. This would have required to use
an additional parameter (width of the LE filter).

For each dual-energy spectra evaluated, a virtual image-simulation calibration curve,
interposing slabs of two materials of known thickness and composition, was performed to
solve the system of equations 5.3 and 5.4. In this case, the dual-energy spectra were an
input of this virtual simulation and we assumed that the spectra were perfectly known.
A realistic detector response model has been used and a Poisson noise proportional to a
certain dose value has been applied to the projections, but we have neglected scattered
photons. We might expect a significant effect of scatter on the material decomposition,
and scatter-compensation techniques prior to the decomposition should be implemented
for large X-ray beams [Sossin et al., 2014], such as cone-beam irradiations.

5.1.5 Conclusion

This study evaluated the impact of the dual-energy spectra and the dose allocation
between energy levels on the proton stopping power ratio accuracy and precision based
on a projection-based dual-energy decomposition approach, which can guide the choice
of spectra for dual-energy CT for protontherapy. The effect of the SPR accuracy and
precision on the proton range estimation was also investigated. An ideal situation with-
out noise and a realistic acquisition with a total central dose of 20 mGy were considered.
The precision was improved increasing the energy separation between the incident spec-
tra, whereas the accuracy showed little dependence to the energy gap. The dose balance
between energy levels was not found to be sensitive for the SPR estimation. In terms of
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SPR accuracy, the optimal pair of dual-energy spectra was material dependent but, on
a heterogeneous anthropomorphic phantom, there was no significant difference in range
accuracy and, therefore, the choice of spectra could be driven by the precision, i.e., the
energy gap.

5.2 Material decomposition basis

5.2.1 Introduction

One of the assumptions of projection-based decomposition methods (see section 2.4.2)
is that the linear attenuation coefficient of the scanned object at any energy can be
expressed as a linear combination of two energy-dependent basis functions with two
energy-independent coefficients. These energy-dependent bases can either be the two
main interaction processes of photons with matter at the energy range of diagnostic CT
(photoelectric effect and Compton scattering) or the energy-dependent mass attenuation
coefficients of two basis materials (see section 2.4.2.1). For the latter, another assumption
is that human tissues can be expressed as a combination of two materials. Typically, soft
tissue and cortical bone, water and compact bone or acrylic (PMMA) and aluminum
are chosen as pairs of basis materials [Heismann et al., 2012; Chuang and Huang, 1988].
This simulation-based study aimed at comparing the SPR accuracy when decomposing
the dual-energy sinograms into these three sets of basis.

5.2.2 Materials and Methods

The same dual-energy spectra and irradiation setup employed in section 4.5 were
used to perform the basis material comparison. Four slices of the ICRP phantom were
used to simulate a human body irradiation and thirteen ROIs placed in homogeneous
material areas (see Figure 4.11) were considered. The LE and HE sinograms of the ICRP
phantom were decomposed into the tabulated materials of the NIST database [Linstrom
and Mallard, (retrieved December 6, 2016)]: acrylic (PMMA) and aluminum, soft tissue
and cortical bone, and water and compact bone. The corresponding mass density images
and the corresponding SPR images were derived following the procedure described in
section 4.5.2.2. Relative SPR differences over the thirteen ROIs were computed by
comparing the SPR image reconstructed with each material basis to the reference SPR
values listed in Table 4.6, computed from the chemical composition of human tissues
provided in the ICRP publication [ICRP, 2009] and Bethe’s equation.

5.2.3 Results and Discussion

Figure 5.8 plots the relative SPR errors for each ROI and decomposition basis. The
RMS SPR error over the thirteen ROIs was 0.55% for the PMMA and Al basis, 0.54%
for the soft tissue and cortical bone basis, and 0.71% for the water and compact bone
basis. The water and compact bone decomposition basis produced worst results for the
pelvis slice (ROIs 4a-4d) than for the other anatomical regions. The soft tissue and
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cortical bone basis and the PMMA and Al basis behaved in a similar manner over all
anatomical regions.

Figure 5.8: Relative SPR errors for each of the thirteen ROIs (see Figure 4.11 for the
placement of the ROIs on the four ICRP slices) obtained with each decomposition basis:
PMMA and aluminum, soft tissue and cortical bone, and water and compact bone.

5.2.4 Conclusion

Three material decomposition bases, typically used to represent human tissues, were
compared in terms of proton SPR accuracy: PMMA and aluminum, soft tissue and
cortical bone, and water and compact bone. Comparable results were obtained with the
three basis which suggests that the assumption that the linear attenuation coefficient
of the scanned object can be expressed as a linear combination of two basis materials
is valid in the diagnostic CT energy range for human tissues if a proper pair of basis
materials is chosen.

5.3 System inversion

5.3.1 Introduction

When performing a dual-energy acquisition, two-energy projection datasets of the
same object are acquired (see equations 2.10-2.11). To decompose into the two sino-
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grams of the decomposition basis (see section 2.4.2.1), one needs to solve the system
of equations for the line integrals Ai (i = 1, 2). Section 2.4.2.2 illustrated in detail the
two main approaches to solve this system of equations. On the one hand, when scanner
specific information is known a priori, such as the source energy spectra and the detector
response, the non-linear equations can be directly solved using the simplex method of
Nelder and Mead [Nelder and Mead, 1965], following [Schlomka et al., 2008], i.e., ac-
counting for the statistics of the measurements by estimating the most likelihood. On
the other hand, the unknowns Ai can be expressed as a polynomial expansion of the
logarithmic transmission values at LE (mLE) and HE (mHE) and the coefficients of these
polynomials can be determined by performing a calibration using two materials with
known properties and increasing thicknesses [Lehmann et al., 1981; Chuang and Huang,
1988].

The aim of this study was to compare the dual-energy decomposition output when
solving the system of equations using the polynomial approximation or when using it-
erative convex optimization. The other variables, such as the dual-energy spectra, the
material basis and the dose balance between energy levels, were kept constant. For the
polynomial approach, the sub-optimal terms of the polynomial were discarded based on
a mathematical criterion. Two variants were considered for the iterative convex opti-
mization: first, the system unknowns Ai were initialized to zero; second, the output of
the polynomial approach was used as a priori information to initialize Ai.

5.3.2 Materials and Methods

The tissue characterization 467 Gammex phantom (Gammex, Middleton, WI) was
used in this study (see Figure 5.1). Water and compact bone were selected as pair of
basis materials for the decomposition process. The optimization of the polynomial was
carried out for one dual-energy photon spectra: LE: 80 kV and HE: 140 kV + 2.5 mm Sn.
The same dual-energy spectra was used to compare the reconstructed RED images with
both approaches and a Poisson noise level corresponding to 20 mGy at the center of the
Gammex phantom with an equal dose split between the LE and the HE spectra was
considered.

5.3.2.1 Polynomial optimization

Based on a mathematical criterion, a stability study to noise, similar to that con-
ducted by Létang et al [Létang et al., 2004], was performed to determine which terms
of the polynomial were more unstable and, therefore, eliminated.

In the calibration stage, to study the stability of polynomial terms to noise, a Pois-
son sampling was done to the incident photon spectra, N0,LE and N0,HE, to simulate
acquisitions with noise:

N0,LE(E) = Poisson (Npix,LE SLE(E)) (5.17)

N0,HE(E) = Poisson (Npix,HE SHE(E)) (5.18)
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where Npix,LE and Npix,HE are the expected number of photons in each pixel of the
detector of the LE and HE spectra (see equation B.2), respectively, and SLE and SLE

the incident LE and HE spectra. Then, the logarithm of the transmission values at LE
and HE were computed as follows:

mLE = − ln

∫
E

N0,LE(E) D(E) exp (−A1 f1(E)−A2 f2(E))

N0,LE D(E)
dE (5.19)

mHE = − ln

∫
E

N0,HE(E) D(E) exp (−A1 f1(E)−A2 f2(E))

N0,HE D(E)
dE (5.20)

where D(E) is the energy-dependent detector response of the flat panel detector, and
A1 and A2 are the areal density values of water and compact bone basis materials,
respectively.

A1 and A2 were expressed as a polynomial expansion of mLE and mHE with polyno-
mial coefficients {bi} and {ci}, as in equations 2.14 and 2.15. To simplify the notation,
x ≡ mLE and y ≡ mHE. Létang et al [Létang et al., 2004] concluded that a third order
polynomial was more convenient rather than a second order polynomial. We decided to
start the optimization procedure with a fourth degree polynomial with fifteen terms:

{1, x, y, x · y, x2, y2, x3, y3, y · x2, x · y2, y · x3, x · y3, x2 · y2, x4, y4} (5.21)

The calibration procedure was repeated for 30 noise realizations and the coefficients {bi}
and {ci} were determined at each run. Then, the coefficient of variation (CV) of each
coefficient, defined as the ratio of the standard deviation to the mean, was computed
and the coefficient presenting the highest variation was excluded. The procedure was
repeated excluding one coefficient at a time, until all coefficients showed a CV below 1 %.

5.3.2.2 RED comparison

In both situations, i.e. calibration approach and iterative convex optimization, image
reconstructions of water and compact bone mass densities ρ were obtained using filtered
backprojection on a 380×380×1 grid with 1×1×1 mm3 voxels size, i.e., in the central
slice only. On a pixel-by-pixel basis, the RED image was derived from equation 5.15.
The estimated RED images of the Gammex phantom obtained by the numerical solution
method and by the calibration approach were compared to the ground-truth values. The
relative accuracy and precision were calculated in a ROI of 3/4 the size of the insert. The
absolute accuracy and the precision of the RED averaged over all inserts and excluding
the lung tissue inserts were also computed (see equations 5.6 and 5.7).

5.3.3 Results and Discussion

5.3.3.1 Polynomial optimization

The optimal polynomial was found to be a fourth degree polynomial with twelve
terms:

{1, x, y, x · y, x2, y2, x3, y · x2, y · x3, x · y3, x2 · y2, x4} (5.22)
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To test the goodness of the polynomial approach and the eventual dependence on
the energy spectra, the optimized polynomial (equation 5.22) was used to reconstruct
the mass density images of the basis materials and to reconstruct the linear attenu-
ation coefficient image (µ-image) at 100 keV, according to equation 4.10, using two
different DE spectra: 80 kV/140 kV+2.5 mm Sn (71 keV incident energy gap) and
78 kV/94 kV+0.1 mm Sn (12 keV incident energy gap). The two reconstructed µ-
images were compared with the reference µ-values at 100 keV. Line profile compar-
isons and percentage difference images are shown in Figures 5.9 and 5.10, respectively.
Higher percentage errors were observed at the border of the reconstructed µ-image us-
ing the DE spectra 78 kV/94 kV+0.1 mm Sn and the optimized polynomial for the
80 kV/140 kV+2.5 mm Sn spectra (equation 5.22). To understand why the highest
error was obtained at the image border, i.e. for small traversed phantom thicknesses,
the nominal areal density values used in the calibration stage were plotted against the
reconstructed areal density values using the polynomial of equation 5.22 (Figure 5.11).
For low areal density values, the agreement between nominal and reconstructed data
points was found to be sub-optimal for the 78 kV/94 kV+0.1 mm Sn spectra. This
result suggests that a spectra-specific polynomial optimization is preferable. Indeed, the
polynomial optimization was repeated for the 78 kV/94 kV+0.1 mm Sn spectra and the
optimal polynomial resulted to be the initial fourth degree polynomial with fifteen terms
(equation 5.21).

5.3.3.2 RED comparison

RED images of the Gammex phantom were obtained following the calibration ap-
proach and by numerical solution. For the latter, two variants were considered: first,
areal density values A1 and A2 were initialized to zero; second, the results of the calibra-
tion approach were used as a priori. For the iterative convex optimization, the maximum
number of iterations was set to 104.

Table 5.3 shows the results of the RED estimation in terms of the percentage ac-
curacy averaged over all inserts and the precision expressed as the RMS error. The
computation time required for both approaches using one single processor is also indi-
cated. Comparable results were obtained for the calibration approach and for the two
variants of the iterative convex optimization.

5.3.4 Conclusions

A mathematical criterion to exclude the unnecessary terms of the polynomial was
established. A fourth degree polynomial with twelve terms resulted to be a good candi-
date for the dual-energy spectra investigated. Nevertheless, this optimized polynomial
was found to be invalid when using a very different dual-energy spectra, which suggests
that a spectra-specific polynomial optimization should be carried out instead.

No significant differences were observed in terms of accuracy and precision when
comparing the relative electron density images reconstructed by solving the system of
equations numerically or when using the polynomial approach. Both approaches con-



5. DECT optimization for proton therapy 143

0 200 400 600 800 1000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

µ
 @

 1
0

0
 k

e
V

78 kV - 94 kV + 0.1 mm Sn

80 kV - 140 kV + 2.5 mm Sn

reference @ 100 keV

0 200 400 600 800 1000
0.10

0.12

0.14

0.16

0.18

0.20

78 kV - 94 kV + 0.1 mm Sn

80 kV - 140 kV + 2.5 mm Sn

reference @ 100 keV

Figure 5.9: Top: reference linear attenuation maps at 100 keV showing the position of
horizontal and vertical line profiles (red). Bottom: horizontal (left) and vertical (right)
line profiles comparing two reconstructed images at different dual-energy spectra with
the reference µ-image at 100 keV.

verged to comparable RED images. On the one hand, the numerical approach was found
to be more demanding in terms of computation time. On the other hand, the calibra-
tion approach would require a polynomial optimization for the given dual-energy spectra
prior to decomposition.

5.4 Conclusion

Several factors that could impact the outcome of the dual-energy decomposition
process were investigated, namely: the dual-energy spectra, the dose balance between
energy levels, the material decomposition bases and the way of solving the non-linear
system of equations inherent to the dual-energy decomposition. For all of these studies,
dual-energy decomposition was performed in the projection domain. Different figures
of merit were employed in these comparisons: from the goodness of the reconstructed
linear attenuation coefficient to the proton range accuracy in the patient.

Increasing the incident energy gap between the dual-energy spectra reduced the noise
in the reconstructed images. The optimal pair of dual-energy spectra in terms of SPR
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Figure 5.10: Percentage different images when comparing the reconstructed µ-images
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error.

0 1 2 3 4 5

A1  (g/cm2 )

0

2

4

6

8

10

A
2
 (

g
/c

m
2

)

80 kV - 140 kV + 2.5 mm Sn

0 1 2 3 4 5

A1  (g/cm2 )

0

2

4

6

8

10

A
2
 (

g
/c

m
2

)

78 kV - 94 kV + 0.1 mm Sn

nominal reconstructed

Figure 5.11: Nominal areal density values Ai (i = 1, 2) in g/cm2 (red dots) and recon-
structed areal density values (black crosses) through the optimized polynomial (equa-
tion 5.22) using two different dual-energy spectra.

accuracy was found to be material dependent, however, when computing the range on
an anthropomorphic phantom, there was no significant difference in range accuracy.
Therefore, for proton treatment planning, the choice of the spectra should be guided by
the precision, i.e. the energy gap. In addition, the presence of noise in the SPR images
seems to have a rather low impact on the range estimation as noise is averaged along
the voxels of the beam path. Regarding the dose balance between the low-energy and
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Method x±RMS x±RMS (no lungs) CPU time

Polynomial 0.7 ± 5.2 0.7 ± 3.3 14 sec
Numerical initialized to 0 0.7 ± 5.2 0.7 ± 3.4 2 h 30 min
Numerical with a priori 0.7 ± 5.2 0.7 ± 3.3 1 h 20 min

Table 5.3: RED results in terms of accuracy and precision for the different approaches
considered: polynomial solution and iterative convex optimization with and without
a priori (i.e. initialized with the polynomial output). The last column indicates the
computational time using one single processor.

the high-energy acquisition, the optimal image quality is achieved when one third of
the dose is imparted with the low-energy acquisition. A comparison of three pairs of
decomposition basis (i.e. PMMA and aluminum, soft tissue and cortical bone, water and
compact bone) was carried out to decompose human tissue materials and no significant
differences were observed. Depending on whether scanner information, such as the source
spectrum and the detector response, is available, the non-linear system of equations can
either be solved with an iterative optimization or based on a calibration to indirectly
estimate the scanner characteristics. Comparable results were obtained in terms of
accuracy. The numerical approach was found to be computationally demanding, but
the calibration approach required a spectra-specific polynomial optimization to ensure
a correct decomposition.

In view of these results, as the Imaging Ring (IR) system has been previously char-
acterized (see chapter 3), the direct inversion of the non-linear system of equations using
the approach proposed by Schlomka et al [Schlomka et al., 2008] seems a good approach
to estimate the SPR of real phantoms from DE-CBCT acquisitions using the IR system.
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The mean excitation energy, sometimes referred to as the average ionization potential
or I-value, is a controversial issue as there is no consensus on how to establish reference
values for different media. In this chapter, the goal was two-fold. On the one hand, to
review some of the works that have investigated the influence of the mean excitation
energy of human tissues on the proton range. On the other hand, to evaluate the
feasibility of an experimental setup designed to extract volumetric distributions of the
I-value of patients combining two tomographic imaging modalities: proton CT and dual-
energy CT. Possible fields of application of these 3D-maps have also been identified.

6.1 Impact of the I-value on the proton range

In proton therapy, the range of protons in patients is determined from the stopping
power ratio (SPR) of tissues relative to water along the beam path. One of the parame-
ters required to compute the SPR is the mean excitation energy of the medium and that

146
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of water (Equation 1.12), which is a measure of the ability of a target system to absorb
kinetic energy from a projectile [Sabin et al., 2013]. Consequently, the uncertainty as-
sociated to the I-value of different media influences the SPR calculation and, thus, the
proton range. A 10% variation of the mean excitation energy modifies the SPR by about
1.1-1.3% [Schneider et al., 1996]. Yang et al [Yang et al., 2012] came to a similar result: a
10% variation in the elemental I-values introduces a 1% variation of the stopping power
of water and human tissues and less than 1.4% when computing the SPRs. Although
the I-value of a material is a well-defined quantity and only depends on the properties of
the medium [ICRU, 1993], there are large uncertainties associated to its determination.
It may be obtained either theoretically or experimentally (section 1.1.3.5).

Due to the limited knowledge of I-values, the sub-millimeter precision claimed to
be achievable in proton and ion therapy has been questioned by Andreo [Andreo, 2009]
who concluded that talking about a sub-centimeter precision was more appropriate. The
reasons are manifold. To start with, even if water is a reference material commonly used
in treatment planning, a generally accepted mean excitation energy for liquid water
has not been established yet [Besemer et al., 2013]. Values obtained by theoretical or
experimental means are found to vary as much as 20%. Moreover, values deduced from
experiments are generally higher [Sabin et al., 2013]. An overview of some of the values
found in the literature for liquid water, either measured or calculated, are shown in
Table 6.1.

I (eV) Reference

75 [Ritchie et al., 1978], Dielectric response function
79.7 ± 2 [Bichsel and Hiraoka, 1992], Ionization curves, 70 MeV protons

81.8 [Dingfelder et al., 1999], Dielectric response function
80 [Bichsel et al., 2000], C-ions, 290 MeV/u
77 [Krämer et al., 2000], Depth dose curves, C-ions

75 ± 3 Recommended value in ICRU Reports 37 [ICRU, 1984] and 49 [ICRU, 1993]
67.2 Recommended value in ICRU Report 73 [ICRU, 2005]

78 ± 2 Recommended value in Errata ICRU Report 73 [Sigmund et al., 2009]

Table 6.1: I-values for liquid water found in the literature.

The I-value of 75 ± 3 eV for water, suggested by the publications ICRU Reports 37
[ICRU, 1984] and 49 [ICRU, 1993], has long been accepted. The latest suggested value
by the ICRU, which replaces the value of 67.2 eV in ICRU Report 73 [ICRU, 2005], is
78 ± 2 eV [Sigmund et al., 2009]. When varying the I-value for water between 75 eV
and 80 eV, it results in a SPR variation between 0.8% and 1.2% in the therapeutic
energy range [Paganetti, 2012]. Soltani-Nabipour et al [Soltani-Nabipour et al., 2009]
obtained a variation of about 1.5 mm in range when varying the I-value for water from
72 eV to 78 eV, i.e. considering the accepted value of 75 eV ± 3 eV of experimental
uncertainty [ICRU, 1984, 1993]. Andreo [Andreo, 2009] studied the differences in the
energy-deposition distributions in water irradiated by protons and carbon ions of differ-
ent energies. He observed a substantial spread of the Bragg Peak (BP) position of proton
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and carbon ion beams up to 6 mm when using the triplet of recommended I-values for
water in ICRU Reports 37 [ICRU, 1984, 1993; Sigmund et al., 2009] (Table 6.1). In
addition, the spread in the BP position was found to be energy dependent, increasing
with energy, and similar for protons and carbons having analogous ranges in water.

Elemental I-values are generally derived from experimental data [ICRU, 1993], but,
for compounds and mixtures, there is limited experimental data. When the value of a
medium is not known neither experimentally nor based on the theory, it is computed by
Bragg’s additivity rule (see Equation 1.10) based on its tabulated chemical composition
and mass density. Reference human tissue compositions [Woodard and White, 1986;
White et al., 1987; ICRU, 1992; ICRP, 2009] are average values obtained under different
conditions and, thus, are expected to be approximated [Andreo, 2009]. As a consequence,
the available I-values for human tissues are average estimates. Moreover, because this
rule is an approximation and it ignores the effects of chemical bonds, the I-value esti-
mates of human tissues have large uncertainties, up to 10-15% [ICRU, 1984; Andreo,
2009]. The uncertainty in the I-value for tissues might result in a range uncertainty of
1.5% [Paganetti, 2012].

There is a large variability on the I-values for similar organs or human tissues re-
ported in ICRU Publications [ICRU, 1984, 1989, 1992]. [Andreo, 2009] observed a spread
of the BP position with range differences up to 0.3 g/cm2 when considering four differ-
ent types of soft tissue (considered almost identical in clinical practice [Besemer et al.,
2013]), with I-values ranging from 70.8 eV to 74.9 eV. When varying the I-value of
skeletal muscle and female soft tissue by ±10% with respect to its tabulated value, he
observed a range variation up to 0.7 g/cm2.

Finally, as stated in ICRU Report 44 [ICRU, 1989], instead of assuming common
body-tissue compositions for all individuals, the variations in the composition of similar
organs or human tissues should not be neglected [Andreo, 2009; España and Paganetti,
2010]. For this reason, instead of using a conversion between patient CT numbers and
SPRs, some authors suggest that it would be more appropriate to determine the tissue
composition along the proton beam path for each patient individually [Andreo, 2009;
Besemer et al., 2013].

Unlike analytical pencil-beam dose calculation algorithms, where dose to water or
water-equivalent dose is typically reported [Paganetti, 2012], MC dose calculations report
dose to medium and a conversion from patient CT numbers to material composition and
mass densities is required [Schneider et al., 2000; Paganetti, 2009]. At present, the most
widely used approach to assign material type and mass density at each voxel of the CT
scan is the one proposed by [Schneider et al., 2000]. [Landry et al., 2013a] improved tissue
quantification by identifying the carbon, oxygen, calcium and phosphor contents using
DECT information, i.e. (Zeff , RED). MC algorithms compute the I-value of each CT
voxel through the Bragg additivity rule based on its chemical composition and, therefore,
neglects chemical bonds introducing the above-mentioned uncertainty up to 10-15% for
human tissues [Andreo, 2009]. Alternatively, for a proton treatment plan based on MC,
the SPR maps reconstructed from X-ray or proton CT images can be converted voxel-by-
voxel into water equivalent materials. Then, the mass density in each voxel is adjusted
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to reach the reconstructed SPR value of the voxel [Arbor et al., 2015]. However, it has
been mentioned that reporting dose to medium provides more accurate dosimetric results
than reporting dose to water or water-equivalent dose [Paganetti, 2009]. One drawback
of this approach is that by setting all CT voxels to water, and by just adjusting the mass
density to match the SPR value, we lose information on the chemical composition, i.e. on
the atomic number and on the I-value, therefore, on the lateral scattering, which might
result in wrong lateral dose calculation. According to the study conducted by [Arbor
et al., 2015] in the liver region of the ICRP phantom, range uncertainties introduced
by this wrong material compositions were below 0.05 mm, which corresponded to the
statistical range uncertainty accepted in their study. However, that might not be the
case for tissue materials that significantly differ from water. To answer this question,
a simulation-based experiment to quantify the error in the longitudinal and transverse
direction of the beam path associated to this approximation was performed, the results
of which are presented in Appendix D.

[Besemer et al., 2013] were the first to quantify the clinical impact of I-value un-
certainties on proton dose distributions within patient geometries. They observed that
uncertainties in the I-value (i.e. tissue I-values were varied by ±10% of the nominal
values) introduced a range uncertainty up to 1.9% of the beam range and variations in
the mean dose to the target volume and to the OARs up to 3.5%, these differences being
more significant for deep seated tumors. Consequently, to reduce clinical margins and
to improve the outcome of proton therapy treatments, it is fundamental to reduce the
uncertainty in the I-value of human tissues.

6.2 Estimation of the I-value from DECT and pCT

Previous studies, listed in section 6.1, provided valuable insights on the impact of the
I-value uncertainties on the proton range estimation. Motivated by these statements,
this work investigated the feasibility of extracting the volumetric distribution of the
ionization potential of an object by combining two tomographic imaging modalities:
proton CT and dual-energy CT. The former provided the patient distribution of the
stopping power relative to water and the latter the distribution of the relative electron
density. As a result, 3D I-value maps of the imaged object were obtained.

6.2.1 Materials and Methods

6.2.1.1 Phantoms

The 33-cm diameter Gammex RMI 467 (Gammex, Middleton, WI) tissue character-
ization phantom (Figure 5.1) was used in this simulation-based study. This phantom
has been described in detail in section 5.1.2.1.
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6.2.1.2 RED determination

Virtual CT acquisitions of the Gammex phantom were obtained by means of deter-
ministic simulations in GATE [Jan et al., 2004] v7.2 using the Fixed-Forced Detection
(FFD) actor. The irradiation geometry and the detector response model of the Imaging
Ring (IR) system were considered. The dual-energy spectra were 60 kV and 124 kV/Sn.
Poisson noise was applied to the projections to deliver a central dose of 20 mGy with
the dual-energy acquisition while keeping a dose balance between the low and the high
energy acquisitions (equation 5.2).

The basis material decomposition method proposed by Alvarez and Macovski [Al-
varez and Macovski, 1976] was implemented in the projection domain to extract the
RED map from the Compton cross section of tissues (section 2.4.2.1). The RED image
was reconstructed using filtered backprojection with 380×380×1 voxels of 1×1×1 mm3.

6.2.1.3 SPR determinaton

The conceptual design of the proton CT scanner used in this study is illustrated
in Figure 6.1. The simulated proton CT scanner corresponded to an ideal detector
composed of two planes: one at the entrance and one at the exit of the phantom. An
incident proton beam of 300 MeV was used. Like in the dual-energy acquisition, a
20 mGy central dose was considered. Due to MCS, protons are deflected many times
along their path and, as a consequence, protons do not travel following a straight line
but a curved path. An estimate of the position, energy and direction of each proton
in a list mode manner before and after the phantom enables the computation of a
maximum likelihood estimate of the proton trajectory known as the Most Likely Path
(MLP) [Schulte et al., 2008]. By measuring the energy loss after the phantom, the
stopping power relative to water (SPR) of the object was reconstructed based on a
filtered backprojection algorithm developed by [Rit et al., 2013] to include the MLP
formalism. SPR reconstructed images had dimensions of 380×380×1 mm3. As a fraction
of the incident protons undergoes nuclear interactions while traversing the medium,
the exit detector tracks both primary and secondary protons. These events bias the
SPR reconstruction as the small angle MCS Gaussian approximation is no longer valid
(section 1.1.2). Consequently, to filter out these events, a 3σ cut on the exit energy and
on the exit angular distribution was applied prior to image reconstruction. For further
details on the proton CT scanner implementation and on the SPR reconstruction, the
reader is referred to [Quiñones, 2016].

6.2.1.4 I-value determination

The ionization potential image was estimated through Bethe’s equation without cor-
rection terms (Equation 1.12). The RED image of the phantom under study was de-
termined from dual-energy CT acquisitions, whereas the corresponding SPR map was
directly obtained through proton CT simulations. Assuming an I-value for water equal
to 78 eV (Table 6.1), the mean excitation energy value of the object can be estimated
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Figure 6.1: Schematic top view of the proton CT scanner used in this study. u and v
define the orientation of the detectors, whereas ω defines the source-to-isocenter direc-
tion. Γi(ω

in), Γi(ω
out) and Γi represent the entrance position, the exit position and the

most likely path, respectively. Figure extracted from [Quiñones, 2016].

in a pixel-by-pixel basis solving equation 1.12 for I as follows:

Im(x) =
2mec

2β2

(1− β2)
exp

(
− SPR(x)

RED(x)

[
ln

2mec
2β2

Iw(1− β2)
− β2

]
− β2

)
(6.1)

Reference SPR values of the Gammex phantom inserts, with known chemical com-
position and mass density, were determined through the weighted sum of mass stopping
powers for the atomic constituents (Equation 1.11). Theoretical RED values were de-
termined from the chemical composition and equation 1.13. Reference I-values for the
phantom inserts were calculated using Bragg additivity rule and the elemental I-values
given in Tables 2.8 and 2.11 of the ICRU49 report [ICRU, 1993]. The I-value in a re-
gion of interest (ROI) inside each phantom insert was taken and it was compared to the
theoretical value. Instead of taking the mean value inside each ROI, we took the median
value for robustness to outliers.

6.2.2 Results

The top row of Figure 6.2 displays the reconstructed SPR image obtained through
proton CT, the RED map obtained through dual-energy CT and the reconstructed
ionization potential map determined combining both imaging modalities. The row below
shows the corresponding percentage difference maps when comparing the reconstructed
values with the reference values. RED and I-maps were much noisier compared to the
SPR map.
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Figure 6.2: From left to right, top row: reconstructed SPR image obtained through pro-
ton CT, reconstructed RED image obtained through dual-energy CT and reconstructed
I-value image determined by solving the Bethe’s equation for I; below, percentage differ-
ence maps when comparing reconstructed SPR, RED and I-value images with reference
values, respectively.

To quantify the accuracy and the precision of the proposed method, we took the
median value in a ROI inside each phantom insert. Figure 6.3 plots the relative error
with the corresponding error bars for all inserts sorted by increasing mass density. The
error in extracting the I-value was within± 3% for all inserts except for 3: the lung inhale
(LN-300) and the lung exhale (LN-450) with errors around 8% and 4%, respectively, and
the high density insert cortical bone (SB3) with an error around 4%. The signed mean
of the errors and the root-mean-square error averaging over all inserts were -0.09%±5%
for the RED, 0.07% ± 1.1% for the SPR and 1.5% ± 54% (0.9% ± 29% excluding lung
inserts) for the I-values. Lung inserts presented the largest error bars, so the worst
precision. We observed that the accuracy of the I-values was extremely dependent on
the RED accuracy. To understand that, we performed an error propagation analysis of
the I-value as a function of the uncertainties associated to SPR and RED.

Error propagation analysis To simplify the notation, mec
2 and

ln
[
2mec

2β2/Iw(1− β2)− β2
]

are herein named A and B, respectively. Equation 6.1
can be rewritten as:

Im(x) =
2Aβ2

(1− β2)
exp

(
− SPR(x)

RED(x)
B − β2

)
(6.2)
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Assuming that RED and SPR are independent variables, since they are measured by
two different means, the variance formula to calculate the error propagation of Im (sI)
as a function of the uncertainties associated to SPR (s2

SPR) and RED (s2
RED) is given

by:

s2
I =

(
∂Im
∂SPR

)2

s2
SPR +

(
∂Im
∂RED

)2

s2
RED (6.3)

and
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= Im
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−1

RED
B

)
(6.4)

∂Im
∂RED

= Im

(
1

RED2 B

)
(6.5)

thus, after reverting the notation, we obtain the following expression for the I-value
variance:

s2
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)2 [
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SPR +

(
1

RED2

)
s2

RED

]
(6.6)

From Equations 6.4-6.5 we see that the contribution of the RED error is inversely
weighted by an additional RED term with respect to the SPR error.

6.2.3 Discussion

The RED map of the Gammex phantom was determined from dual-energy CT ac-
quisitions. Unlike conventional use of DECT for proton therapy, where the proton SPR
is derived from the dual-energy output (see chapter 4), the SPR map of the phantom
under study was directly obtained using proton CT. Assuming an I-value for water
equal to 78 eV, the I-map of the object was estimated in a pixel-by-pixel basis solving
equation 1.12 for I (equation 6.1).

The SPR expression used to extract the I-value of the object (equation 1.12) could
be a matter of discussion. At present, there is no clear consensus on which is the most
appropriate approach to compute theoretical SPR values [Ödén et al., 2015; Doolan
et al., 2016]. On the one hand, the approach used in this study is the one proposed
by Schneider et al [Schneider et al., 1996], later used by Yang et al [Yang et al., 2010],
which neglects shell, density, Barkas and Bloch correction terms (see section 1.1.2.1). On
the other hand, Bethe-Bloch [Bethe, 1930; Bloch, 1933] theory, which accounts for all
mentioned corrections, has been widely used in proton therapy to compute the stopping
power of human tissues. This formalism is not valid for proton energies below 1 MeV
but it was found to have a negligible clinical impact [Doolan et al., 2016]. Oden et
al [Ödén et al., 2015] compared Schneider’s approach with the SRIM software [Ziegler
et al., 2010], which incorporates all mentioned corrections, and concluded that equa-
tion 1.12 could be safely used because SPR errors below 0.1% were obtained across 72
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Figure 6.3: Plot of the relative RED, SPR and I-value errors with the corresponding
error bars for all inserts sorted by increasing mass density. The numbers in the abscissa
labels correspond to the inserts position inside the Gammex phantom (see Figure 5.1).

biological tissues. Furthermore, they concluded that elemental I-values of the ICRU
Report 37 [ICRU, 1984] provided better agreement with experimental data than Janni’s
tabulated I-values [Janni, 1982]. In a recent work, Doolan et al [Doolan et al., 2016] did
an inter-comparison of four existing SPR models for proton therapy: Bichsel’s [Bichsel,
1972], Janni’s [Janni, 1982] and ICRU’s [ICRU, 1993] formulas to compute the abso-
lute stopping power of tissues, and Schneider’s [Schneider et al., 1996] to compute the
relative stopping power. The SPR value of eleven plastic materials was experimentally
determined and it was compared against the four theoretical approaches. The first three
approaches account for different effects (i.e. shell and/or density corrections) and use
different set of elemental I-values. To determine the relative SPR, the absolute stop-
ping power of the tissue was divided by the absolute stopping power of water over the
same range of energies. They concluded that Bichsel’s approach using Bichsel’s I-values
and Schneider’s approximation using ICRU elemental I-values lead to the lowest errors.
Therefore, based on these studies, equation 1.12 can be safely used to determine the
SPR and also to derive the I-value distribution of the object under study.

One obvious limitation of this simulation-based study is the fact that the considered
proton CT scanner is assumed to be ideal in terms of detector response. In addition, no
clinical proton CT scanners are available at the moment, just prototypes, so the clinical
implementation of this technique is far from being immediate. Nevertheless, proton CT
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radiography is already possible with commercial multi-layer ionization chambers [Farace
et al., 2016] and, consequently, two-dimensional I-maps would be immediately available
with current technology.

The combination of DECT and proton CT for determining the I-value should also
be evaluated against means of calculation of the I-value from measurement of the SPR
and the range, as discussed in section 1.1.3.5.

The difficulty of experimentally extracting the mean excitation energy of compounds
or mixtures has long been stated [ICRU, 1984, 1989, 1992; Andreo, 2009; Besemer et al.,
2013]. The Bragg additivity rule, neglecting chemical bounds and assuming a constant
and general chemical composition for human tissues, is used instead [Andreo, 2009;
España and Paganetti, 2010; Besemer et al., 2013]. One immediate application of the
3-D I-value images, reconstructed by combining proton CT (proton radiography) and
DECT (dual-energy radiography) imaging, is to determine the intra-organ or intra-tissue
I-value variability by performing organ or tissue segmentation.

Furthermore, if the proposed imaging modality is applied to a large number of in-
dividuals, representative of different population groups (e.g. infants, children, female
adults, male adults, ill and healthy individuals, etc.), it would be possible to derive the
intra-group and inter-group I-value variability for a given organ or tissue. Consequently,
the proposed imaging technique could be used to extract valuable experimental reference
data of human tissue I-values, which is currently lacking.

Another possible field of application of reconstructed I-value images is to improve the
accuracy of MC dose calculations. On the one side, the scattering angle (θ0) is related
to the radiation length (X0) (see equation 1.4) which is a property of the material.
On the other side, the radiation length depends on the square of the atomic number
and, at the same time, there exists a relation between the logarithm of the I-value
and the effective atomic number. Consequently, from the I-value images, it would be
possible to derive the radiation length map of the object and, together with the SPR
map information, an improvement on the lateral dose computation is foreseen. However,
there exist some other alternatives to improve dose computations. To start with, an
alternative to the proposed approach is the combination of scattering power maps (δ-
maps), reconstructed from scattering proton CT, with the SPR-maps, reconstructed
from energy loss proton CT, which has already been investigated by Quiñones et al
[Quiñones, 2016]. Furthermore, a simple derivation of the scattering power ratio of a
tissue material to water from RED maps, e.g. obtained from dual-energy imaging, is
also possible through a conversion function [Kanematsu et al., 2012]. Moreover, the Zeff

maps reconstructed from dual-energy imaging could also be used to derive the radiation
length maps of the object being imaged. Consequently, unlike the application of I-
value maps to derive intra-organ and intra- or inter-group I-value variability which is
straightforward, the interest of using I-value maps to improve dose calculations has to
be justified and, therefore, it requires further investigation and developments.
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6.2.4 Conclusions

We have conducted a feasibility study based on simulations to extract the I-map of
an object combining dual-energy CT and proton CT acquisitions. From these prelimi-
nary results, it seems feasible to do so. We obtained estimation errors of I within 3% for
all phantom inserts, except for two lung inserts and for one bone insert which showed
higher errors, up to 8%. The observed I inaccuracies in this study were mainly due to
inaccuracies of the RED map. With optimized acquisition protocols and by choosing the
most appropriate decomposition basis, we could improve the RED estimation. More-
over, to improve the precision, it seems desirable to adjust the dose balance towards the
dual-energy CT acquisition. The proposed imaging technique could be a good candidate
to extract volumetric distributions of the mean excitation energy of objects or patients.
These maps could be used to determine the intra-organ or intra-tissue variability and,
when applied to a large number of individuals, to determine the inter-group tissue vari-
ability. Furthermore, Monte Carlo dose computations could benefit from this additional
material information and improve lateral dose distributions.

6.3 Conclusion

The determination of the proton range in the patient lacks of accuracy because of
the limited knowledge on the mean excitation energy or I-value of different media, which
is one of the components required to compute proton stopping powers. By combining
two imaging modalities, proton CT and dual-energy CT, it seems feasible to derive
volumetric I-value distributions of the imaged object. The proposed imaging technique
could be used to extract experimental reference data of human tissue I-values, which is
currently lacking and we believe it would add a valuable insight.



Chapter7
Conclusions and future works

The works presented in this thesis aimed at improving the SPR estimation using
dual-energy imaging, motivated by the need for a precise treatment plan in proton
therapy. The thesis work also included the evaluation of the performance of the Imaging
Ring system, which is a CBCT scanner equipped with a fast-kV switching X-ray source
synchronized with a filter wheel, to determine the SPR of phantoms through dual-energy
imaging.

One objective of this thesis was to propose a model for the source and the detector
response in energy of the IR system in order to perform image simulations in GATE and
dual-energy decomposition of phantom data. An experimental procedure to calibrate
and validate the source and the detector models of a CBCT unit has been proposed
and it has been evaluated on three commercial systems. For some applications, such
as the implementation of MC scatter corrections, having separate and validated models
of the source and the detector of the system under study is mandatory. However, for
other purposes, as in most dual-energy applications, the product of the source energy
spectrum by the detector response in energy is enough. Another experimental procedure
has been proposed to simultaneously assess the validity of the source and the detector
response models. One future approach that we are currently considering relies on making
use of the experimental setup designed for the before-mentioned model assessment to
implement more sophisticated procedures to determine the source and the detector model
of the system, such as [Sidky et al., 2005]. Having a model of a CBCT unit in a research
framework is extremely important because it allows to take decisions based on image
simulations. For example, image simulations are the most practical tool to decide the
most convenient composition and thickness of the filter wheel materials (Chapter 5) –
depending on the final application, i.e., diagnostics, material segmentation, SPR map
determination, etc.

The idea of extracting patient information to improve material discrimination,
namely the effective atomic number and the relative electron density, by performing
two acquisitions at different beam spectra was already proposed in the 1970s. Due to
limitations of the first DECT scanners, such as low resolution or reconstruction arti-
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facts due to movement, dual-energy was not spread clinically until 2006, when the first
commercial dual-energy scanner solved most of these limitations. It was not until 2009
that dual-energy imaging was first proposed as a valid alternative to single-energy CT
to improve proton therapy dose calculations. There are mainly two approaches to use
dual-energy data to determine the SPR image of the patient. First, to directly recon-
struct the SPR image from DECT output (sections 4.2-4.3). Alternatively, we can also
combine the dual-energy output to reconstruct monochromatic CT images at a certain
energy, and then use the lookup table HU-SPR relation to determine the SPR image.
Unlike polychromatic images, these pseudo-monochromatic images are more exempt of
beam hardening, metal artifacts and exhibit more tissue contrast (section 2.3). The
main advantage of the former is that the SPR map is patient-specific, whereas the latter
is based on a conversion between HU and SPR determined using tissue substitutes and
it does not account for intra- and inter- patient variations. The advantage of the latter
approach is that it is compatible with current TPSs which rely on a CT number to SPR
conversion. Nevertheless, this is only an algorithmic limitation of current TPSs and new
generation TPSs should move towards the incorporation of DECT-derived SPR images
of the patient into the dose calculation pipeline.

A literature overview on the existing methods to estimate the SPR from DECT data
revealed that most of the decomposition approaches for radiotherapy applications were
image-based. There are several ways of combining dual-energy outputs to get the SPR or
other relevant parameters for proton therapy dose calculations. We proposed to recon-
struct the electronic cross section at a certain energy level and the RED from the mass
density images resulting from the BMD approach. Two calibrated relations to estimate
the SPR from these dual-energy outputs have been proposed: between the electronic
cross section and the logarithm of the ionization potential, and between the electronic
cross section and the ratio between the SPR over RED. Then, when compared with the
existing methods, similar results in terms of SPR accuracy have been obtained. Further-
more, a simulation-based study has been conducted to determine whether projection-
based decomposition approaches were suitable for proton therapy applications. In the
light of these results and with the development of new imaging systems, such as dual-
layer or photon counting detectors, we concluded that projection-based methods should
also be considered for proton SPR determination.

Another objective of this PhD work was the optimization of acquisition protocols
for proton therapy purposes. To that end, parameters that could have an influence on
the decomposition output have been evaluated using a projection-based decomposition
method: from the acquisition settings to the post-processing. In particular, we have
evaluated the impact of the dual-energy spectra, the dose allocation between energy
levels, the choice of the decomposition basis, and the way of solving the non-linear system
of equations of the dual-energy problem on the SPR accuracy and precision. Then,
based on simulations, the translation of these results onto the proton range accuracy
using anthropomorphic phantoms has been evaluated. The work reported in this thesis
shows that the SPR precision improves when increasing the energy separation between
the incident spectra, whereas the accuracy shows little dependence on the energy gap.
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Moreover, the dose balance between energy levels is not sensitive for the SPR accuracy,
but the SPR precision, i.e. image noise, improves when one third of the total dose is
imparted with the LE acquisition. The optimal pair of dual-energy spectra is material
dependent, however, the gain in SPR accuracy was not translated to improved proton
range estimation when performing measurements on a heterogeneous anthropomorphic
phantom. Consequently, for proton therapy applications, the choice of the spectra may
be driven by the precision, i.e., the energy gap. Furthermore, no significant differences
have been found when comparing three decomposition bases. Depending on whether
scanner information is available, such as the source spectrum or the detector response,
the non-linear system of equations can either be solved analytically with an iterative
optimization approach, more computationally demanding, or based on a calibration to
indirectly estimate the scanner characteristics interposing slabs of known material and
thickness to the photon beam. Future steps will be to validate these simulation-based
results on real data acquisitions. In particular, it would be interesting to perform DECT
acquisitions at different imaging doses to experimentally determine the impact of the
noise on the proton range estimation.

The limited knowledge on the mean excitation energy of compounds and mixtures,
such as human body tissues, introduces some uncertainty when computing the SPR and,
thus, when determining the proton range. Bragg additivity rule is alternatively used to
determine the I-value of tissues, but it is an approximation and it is based on tabulated
data of average human tissues. We designed a simulation-based study combining two to-
mographic imaging modalities, proton CT and dual-energy CT, to investigate whether it
was possible to derive the volumetric mean excitation energy distribution of the object
being imaged. Promising results have been achieved but the proposed imaging tech-
nique is not yet technically possible because of proton CT imaging. One application
of this imaging technique is the possibility to experimentally determine reference data
of human tissue I-values, currently lacking, and to derive intra-tissue and inter-patient
I-values variability. Future steps will be to derive the mean excitation energy distri-
bution of phantom materials and/or animal tissues by performing proton radiography
and dual-energy radiography with equipment already available in most proton therapy
facilities [Farace et al., 2016].

Nowadays, there are several technological solutions to perform dual-energy. The ad-
vantages and limitations of each scanner have been reviewed. The IR system is one of
the first commercially available systems capable of performing dual-energy CBCT FKVS
acquisitions with each pulse synchronized with a filter wheel. This system gives the pos-
sibility to perform multi-energy imaging by interleaving patient projections acquired at
different voltages and with different beam filtration. In this thesis we evaluated the per-
formance of the IR system to estimate the proton SPR of real phantoms by performing
dual-energy CBCT sequential and FKVS acquisitions. To minimize the scatter contam-
ination at the projection level, we performed dual-energy CBCT acquisitions with a slit
of 3 cm at the isocenter. We have also investigated the possibility of exploiting the infor-
mation behind the collimator jaws to estimate the remaining scatter contribution on the
measured transmission signal and to perform scatter correction off-line. Comparable re-
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sults with respect to scatter deconvolution approaches have been obtained. We have also
seen that linear interpolation between consecutive projections, to implement dual-energy
decomposition in the projection domain, provides images of enough quality. Neverthe-
less, the accuracy level reached so far is not enough to clinically use the reconstructed
SPR images with the IR for proton dose calculations, but some fields of improvement
have been identified. To start with, the implemented projection-based decomposition ap-
proach relies on the perfect knowledge of the source spectrum and the detector response
whose models might not be correctly determined for very hardened beams. In addition,
inaccuracies on the filter thickness or on the chemical composition might modify the
incident spectrum and induce errors in the SPR estimation. The presence of noise in the
projections and a low SNR might also influence the output of the material decomposi-
tion. Future work would be to improve the source and the detector response models and
to validate them against the filter materials of the wheel to better estimate the incident
spectra. Even if we already do a calibration via the model, it would be interesting to
evaluate the SPR accuracy with a calibration-based dual-energy decomposition method,
for which the knowledge of the source and detector models is not required as they are
indirectly determined through a calibration. Furthermore, image-based decomposition
methods could also be evaluated.

In this thesis, we have conducted many simulation-based studies rather than exper-
imental ones. Even if a noise-dose relation has been established and Poisson noise has
been applied to the projections to deliver a given central dose value, we have performed
our studies in an ideal scenario, exempt of motion artifacts, CT number instability over
time and scatter contamination. Furthermore, what is lacking in this PhD thesis is
an exhaustive quantification of the eventual gain of dual-energy CT with respect to
single-energy CT with experimental data and to solve the noise problem encountered
when decomposing dual-energy data using a projection-based approach. The best way
to compare the performance of both imaging modalities would be to compute proton
dose distributions based on the reconstructed SPR maps with DECT and SECT.

The IR system has been developed for IGRT and, therefore, we can image the patient
at the treatment position. One interesting DE imaging application with the IR system,
or with an analogous scanner, is the possibility to perform Adaptive Proton Therapy
(APT) by re-planning the treatment on the SPR images reconstructed from DE-CBCT
acquisitions recorded at the treatment position. Nowadays, there is increasing interest
in using CBCT images for dose calculations both in photon and in proton therapy [Niu
et al., 2010; Park et al., 2015; Landry et al., 2015]. The question of whether or not we can
use DE-CBCT images for treatment planning to compute proton dose distributions has
been partially addressed in this thesis. All CBCT scans have been performed with a 2 cm
or 3 cm slit aperture at the isocenter. Future works include the evaluation of the SPR
accuracy with DE-CBCT acquisitions without slit, i.e. open field, but a better scatter
correction seems required as it has a strong influence on the material decomposition
outcome [Sossin et al., 2014]. Furthermore, in-vivo treatment plan verification techniques
based on the detection of secondary radiation, such as PET and prompt gamma imaging,
could benefit from DE imaging at the treatment position to determine the elemental
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composition of body tissues, namely the oxygen, carbon, phosphor and calcium tissue
contents, with higher accuracy with respect to SECT [Landry et al., 2013a].

Projection-based decomposition methods consists in two steps: first, decomposition
of CT datasets into basis material sinograms; second, reconstruction of these basis sino-
grams. As pointed out when reconstructing SPR maps from real data phantom acquisi-
tions (section 4.6), this two-step approach seems to be susceptible to noise. We observed
that the presence of noise in the CT projections might have an influence on the outcome
of the material decomposition as it introduces some instability at the decomposition
step. To overcome these limitations, the possibility to decompose and to reconstruct
dual-energy (or spectral) data in one step is raising interest within the community. Iter-
ative methods with regularization are current lines of investigation [Schmidt et al., 2015;
Sidky et al., 2016; Foygel Barber et al., 2016].

The energy-dependence of the linear attenuation coefficient of different tissues, which
allows for material segmentation with dual-energy imaging, could be further exploited to
extract additional tissue information by moving from DE to multi-energy imaging. There
are different approaches to perform multi-energy imaging with the current technology,
either at the source level or at the detector level. On the one hand, multi-energy imaging
at the source level can be performed by filtering the incident spectrum with different
materials at a time. The IR system with the filter wheel synchronized with the beam
pulse allows for multi-energy imaging by filtering the incident spectrum with up to four
different materials. Projections with different filtration would be sequentially acquired
and a proper sinogram interpolation would be required to sample the projections at
the same angle in order to implement projection-based decomposition schemes. On the
other hand, at the detector level, multi-energy imaging can be implemented making
use of photon-counting detectors systems which are capable of recording the incident
spectrum within different energy bins or windows. One drawback of these systems is
that the detector technology is not mature yet [Atak and Shikhaliev, 2015] and some
issues need to be solved before being clinically available, such as charge sharing, pile-
up, energy sensitivity, etc. Once both system technologies are comparable, it would
be interesting to evaluate the performance of both approaches. In addition, it would
be worth to investigate whether photon counting detectors could be used in CBCT
scanners to combine the advantage of both technologies, i.e. energy resolved volumetric
acquisitions with reduced patient dose with respect to fan-beam systems.

The main goal of this thesis work was to use DE imaging to reduce margins in proton
therapy. In clinical practice, lateral and range margins are added to the CTV for each
beam in the TPS. We have mainly focused on investigating approaches to perform DE
decomposition to reduce the uncertainty associated to the conversion of HU to SPR
values, typically performed with SECT imaging, which has a 1% error associated. When
accounting for BH artifacts only, it contributes up to 1.1% and 1.8% of the proton
range in water for soft tissue and for bone, respectively [Schaffner and Pedroni, 1998;
Paganetti, 2012]. However, there are other scanner related uncertainties, such as CT
numbers stability over time, i.e. day-to-day variations, and besides BH artifacts there
are scatter artifacts, specially with CBCT scanners, that additionally contribute to the
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range uncertainty. Despite this range error values, more conservative margins such as
3.5% +1 mm –which may vary from one institution to the other– are being used instead.
Margins are taken as a geometric concept, as in the photon world, for which these margins
are mainly used to determine lateral errors [Both, 2012]. The next step is to directly
plan proton treatments on SPR images reconstructed from DECT imaging, combined
with personalized and beam-specific margins [Park et al., 2012]. It could open a new
line of research and it should give more confidence to clinicians and medical physicists to
reduce margins in proton therapy, to reduce target volumes and, therefore, to decrease
the probability of complications and late effects.
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AppendixB
Noise - dose relation

Most of the works presented in this thesis are based on CT imaging simulations.
Poisson noise was applied to the projections to simulate a realistic scenario. To relate
the level of Poisson noise to the imaging dose, a relation between the dose value at the
center of the phantom and the number of primary photons per simulation is derived in
this chapter.

B.1 Image simulations

Most of the image simulations of the Imaging Ring (IR) system carried out in this
PhD thesis were performed using the Fixed Forced Detection (FFD) actor implemented
in GATE [Jan et al., 2004] v7.2. This deterministic module computes digitally recon-
structed radiographs (DRR) using the reconstruction toolkit (RTK) [Rit et al., 2014]
and the Geant4 database of X-ray cross sections. The source-to-isocenter distance was
626 mm and the source-to-detector distance was 1026 mm. The tissue characterization
Gammex 467 phantom (Gammex, Middleton, WI) and the anthropomorphic female (AF)
computational phantom of the ICRP [ICRP, 2009] were used in the simulations. Fan-
beam projections with 360 views of 807 pixels of 1 mm were considered for the Gammex
phantom, whereas 600 projections of 1026 pixels of 1 mm were considered for the ICRP
phantom. Scattered particles were not considered in the simulation to approximate ideal
conditions with anti-scatter grids. The energy-dependent detector response used in the
simulations was previously validated by [Vilches-Freixas et al., 2016a]. To simulate a
realistic scenario, Poisson noise was applied to the projections to deliver a central dose
Dc with each spectrum.

The level of Poisson noise depends on the number of primary photons per simulation,
Nprim, required to deliver a central dose of primary radiation, Dc, which was determined
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analytically (see equation B.7) assuming an homogeneous and cylindrical water medium:

Nprim =
Dc Abeam∫

E
S(E) e−µw(E) r

(
µen(E)

ρ

)
w

E dE

(B.1)

where Abeam is the area covered by the beam at the isocenter considering a constant flat
field, S is the energy-dependent incident spectrum with unity area:

∫
E S(E) dE = 1,

(µen(E)/ρ)w and µw are respectively the energy-dependent mass energy-absorption
coefficient and the linear attenuation coefficient of water taken from the NIST
database [Hubbell and Seltzer, 2004], and r is the radius of the phantom.

The required input of the FFD actor is the expected number of photons in each pixel
of the detector, Npix, which can be computed from the number of primary photons per
simulation, Nprim, as follows:

Npix =
Nprim

Kproj

Adet′

Abeam′

1

p
(B.2)

where Kproj is the number of projections of the simulation, Adet′ is the area of the
detector (i.e. fan beam slit) in mm2, Abeam′ is the area covered by the beam at the
detector level in mm2, and p is the number of pixels of the detector.

B.2 Dose at the center of the phantom

For a monoenergetic beam, the analytical expression for the absorbed dose in water
at the center of a cylindrical or spherical phantom is given by:

Di = Ni

(
µen
ρ

)
w,i

Ei (B.3)

with Ni the number of photons of energy Ei that reach the center of the phantom per
unit surface, (µen(E)/ρ)w,i the mass energy absorption coefficient of water at the i-th
energy and Ei the energy of the photons.

Similarly, for a polychromatic beam the total absorbed dose, DT , can be expressed
as the sum of the dose deposited by each monoenergetic energy that composes the
polychromatic spectrum:

DT =

N∑
i

Di =

N∑
i

Ni

(
µen
ρ

)
w,i

Ei (B.4)

Ni is equal to the total number of incident photons that reach the center of the phantom
per unit surface, NT , multiplied by the weight of the i-th energy, ωi, of the polychromatic
spectrum. Furthermore, NT can be expressed as the total number of incident photons
without phantom to an area of 1 mm×1 mm, N0,T , multiplied by the attenuation of half
phantom according to the Beer-Lambert law (see equation 1.22).
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DT = NT

N∑
i

ωi

(
µen
ρ

)
w,i

Ei = N0,T

N∑
i

ωi e
−µi,w r

(
µen
ρ

)
w,i

Ei (B.5)

It is possible to establish a relation between N0,T and the total primary number
Nprim.

N0,T =
Nprim

Abeam
(B.6)

Substituting Equation B.6 into Equation B.5, we obtain the final expression of the
absorbed dose at the center of a water phantom irradiated with a polychromatic beam,
over Kproj projections, and a total number of incident photons Nprim.

DT =
Nprim

Abeam

N∑
i

ωi e
−µi,w r

(
µen
ρ

)
w,i

Ei (B.7)

The analytical expression to compute the absorbed dose at the center of the water
phantom (Equation B.7) was verified using the split exponential Track Length Estimator
(seTLE) Dose Actor, which is based on a variance reduction technique [Smekens et al.,
2009, 2014]. The results of the comparison, carried out for two beam spectra and for
two dose levels per spectrum, are shown in Table B.1. It is worth mentioning that the
seTLE Dose Actor records both the primary and the secondary radiation whilst in the
analytical expression only the primary radiation is accounted for.

Nprim DT prim + sec (σDT ) DT prim Dtheo Rel. diff. (%) E

7.20 × 106 9.7 (2) ×10−7 9.18 ×10−7 9.27 ×10−7 1.0 120 kV Cu + Ag
7.06 × 107 9.58 (5) ×10−6 9.03 ×10−6 9.09 ×10−6 0.6 120 kV Cu + Ag
7.20 × 106 3.22 (8) ×10−7 2.98 ×10−7 3.08 ×10−7 3.0 60 kV
6.95 × 107 3.13 (4) ×10−6 2.89 ×10−6 2.97 ×10−6 2.6 60 kV

Table B.1: Comparison of the seTLE actor output and the analytically determined dose
values (Dtheo) for different number of primaries Nprim and beam qualities. prim stands
for primary radiation and sec for secondary radiation. The relative difference (Rel.
diff. % column) has been computed between the theoretical dose and the primary dose
recorded at the center.



AppendixC
Reference SPR values

In March 2016, a measurement session was carried out at the Heidelberg Ion-beam
Therapy center (HIT, Germany) to determine the reference SPR values of three phantom
materials: twelve inserts of the Gammex RMI 467 (Gammex, Middleton, United States of
America), eighteen inserts of the CIRS 062 (CIRS, Norfolk, United States of America)
and the CIRS Dynamic Thorax phantom with a lung tumor insert (CIRS, Norfolk,
United States of America).

As discussed in section 1.2.3.1, the SPR of a material x of known thickness a can
be determined experimentally by measuring the shift in the Bragg peak position when
interposing this material to the beam (BPx) with respect to the Bragg peak position in
water without insert (BPw/o).

SPRx =
BPw/o − BPx

a
=

∆P

a
(C.1)

where ∆P and a have to be expressed in the same units (e.g. mm), because SPR is
dimensionless.

As the diameter of the Gammex and the CIRS rods were 2.8 cm and 3 cm, re-
spectively, we decided to perform the SPR measurements with carbon beams because
they present a reduced spot size in air at the isocenter with respect to proton beams. A
310.6 MeV/u carbon beam was used which corresponds to a depth in water of 182.5 mm.
First, we measured with the Peakfinder water column (PTW, Freiburg, Germany) the
Depth Dose Distribution (DDD) of the carbon beam without any insert at a resolution
of 50 µm. Then, an insert at a time was interposed to the carbon beam and we measured
the DDD at a resolution of 100 µm. The experimental setup is illustrated in Figure C.1.

For each DDD, a fifth degree polynomial fit was done to the data at the peak region,
defined as the 70% proximal and distal edge range with respect to the maximum. To
extract the range value, which corresponds to the 80% distal edge with respect to the
Bragg peak position, a linear interpolation was done to the fitted data (Figure C.2).
The exact length of each insert material was determined using a caliper with a precision
of ± 10 µm. The resulting SPR values determined for each phantom insert are shown
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in Tables C.1, C.2 and C.3.

  

PTW PeakFinder Water Column

Beam line nozzle

Phantom alignment 
with room lasers

Moving couch

Figure C.1: Experimental setup to determine the Bragg Peak position

Insert SPR Insert SPR

Lung inhale set 1 0.215 Lung inhale set 2 0.207
Lung exhale set 1 0.482 Lung exhale set 2 0.483

Adipose set 1 0.967 Adipose set 2 0.967
Breast 50/50 set 1 0.991 Breast 50/50 set 2 0.992

Muscle set 1 1.043 Muscle set 2 1.045
Liver set 1 1.058 Liver set 2 1.056

Trabecular Bone set 1 1.091 Trabecular Bone set 2 1.094
Dense Bone 800 set 1 1.402 Dense Bone 800 set 2 1.401

Bone 1250 1.616 Plastic Water 1.005

Table C.1: CIRS 062M phantom. set 1: black line on the capsule; set 2: no line.
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(d) CIRS Dynamic Thorax Lung tissue

Figure C.2: Measured depth-dose distributions (dots), fifth degree polynomial fit in the
70% proximal to distal region (red line) and range position (green star) at the 80% distal
edge.
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Insert SPR Insert SPR

LN-300 Lung 0.248 LN-300 Lung* 0.248
LN-450 Lung 0.453 LN-450 Lung* 0.455
AP6 Adipose 0.941 AP6 Adipose* 0.941

BR-12 Avg. Breast 0.970 BR-12 Avg. Breast* 0.971
CT Solid Water 1.000 CT Solid Water* 1.000
BRN-SR2 Brain 1.061 BRN-SR2 Brain* 1.062

LV1 Liver 1.075 LV1 Liver* 1.076
IB3 Inner Bone 1.083 IB3 Inner Bone* 1.083

B200 Bone Mineral 1.095 B200 Bone Mineral* 1.094
CB2 Resin 30% CaCO3 1.260 CB2 Resin 30% CaCO3* 1.258
CB2 Resin 50% CaCO3 1.427 CB2 Resin 50% CaCO3* 1.427

SB3 Cortical Bone 1.620 SB3 Cortical Bone* 1.621

Table C.2: Gammex 467 phantom. Left) ∆P value computed from the DDD measure-
ments without etiquette: the average 0.2 mm etiquette thickness was subtracted to the
measured a value to compute the SPR. Right *) ∆P value computed from the DDD
measurements with etiquette minus the average 0.5 mm water equivalent length of the
etiquette.

Insert SPR

Lung Insert Thorax Phantom 0.191
Plastic Water DT Thorax Phantom 0.988

Lung Tissue Thorax Phantom 0.197

Table C.3: CIRS Dynamic Thorax phantom



AppendixD
Conversion into water-equivalent
materials

D.1 Introduction

To compute patient dose distributions of a proton treatment plan based on MC,
a conversion from patient CT numbers to material composition and mass densities is
required [Schneider et al., 2000; Paganetti, 2009]. Another approach consists in coverting
SPR maps voxel-by-voxel into water equivalent materials and in adjusting the mass
density in each voxel to match its reconstructed SPR value [Arbor et al., 2015]. The
immediate consequence of converting patient CT voxels into water equivalent materials
is that we lose information on the chemical composition, i.e. we make the assumption
that all voxels have the same chemical composition.

Motivated by this approximation, a simulation-based study was designed to qual-
itatively study the impact of this wrong material assignment on the transverse dose
distribution, at the Bragg Peak depth. We also verified that there were no significant
range errors in the longitudinal direction of the proton pencil beam.

D.2 Materials and Methods

A 50 cm phantom box (material M , mass density ρ) was irradiated with proton
beams of 150 MeV and 250 MeV of initial squared shape of 10 mm and beam intensity
of 106 protons. These proton energies corresponded to a mean proton path of 158.3 mm
and 381.0 mm in water, respectively. Five human tissue materials M , extracted from
GATE’s material database [Jan et al., 2004], were considered: adipose, liver, cartilage,
spine bone and rib bone. MC simulations in GATE with a Dose Actor attached to
the phantom volume were performed. When computing the dose deposit, two different
setups were considered for each material (Table D.1): first, material M was assigned
to the phantom box; second, water material with mass density ρ corresponding to the
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SPR of M computed at 300 MeV was assigned to the phantom box. For the first part
of the study, the 2D dose distribution was laterally integrated to obtain the depth dose
distribution. The BP curves were fitted with a fifth degree polynomial. To extract the
range value, which corresponds to the 80% distal edge with respect to the BP position, a
linear interpolation was done to the fitted data. For each material, range values obtained
with the two setups and for both proton energies were compared. For the second part of
the study, the normalized lateral dose profiles, at 150 MeV and 250 MeV, were compared
for both irradiation setups at the BP position, at the BP-2 mm and at the BP-4 mm.

D.3 Results and Discussion

The corresponding absolute and relative range errors at 150 MeV and 250 MeV when
assigning the materialM to the phantom voxels or when assigning water equivalent mate-
rial with mass density equal to the SPR value of M are summarized in Table D.1. Those
materials having a chemical composition or a mass density much different from that of
water, i.e. adipose and rib bone tissues, exhibit a larger range difference when computing
the depth-dose deposit in the material M or in the water equivalent medium. Never-
theless, relative range errors were comprised between -0.4% and 0.4% for the 150 MeV
beam, and between -0.2% and 0.3% for the 250 MeV beam. Consequently, with respect
to the longitudinal depth-dose comparison, we can conclude that it is accurate to convert
patient CT voxels into water equivalent materials.

Material M ρ ∆R1 (mm) %R1 ∆R2 (mm) %R2

Adipose 0.920 - - - -
Water eq. adipose @ 78 eV 0.951 -0.7 -0.4% -0.8 -0.2%

Liver 1.060 - -
Water eq. liver @ 78 eV 1.064 -0.2 -0.13% -0.4 -0.11%

Cartilage 1.100 - -
Water eq. cartilage @ 78 eV 1.093 -0.09 -0.06% -0.14 -0.04%

Spine bone 1.420 - -
Water eq. spine bone @ 78 eV 1.341 0.16 0.14% 0.2 0.07%

Rib bone 1.920 - -
Water eq. rib bone @ 78 eV 1.724 0.4 0.4% 0.6 0.3%

Table D.1: Absolute range errors at 150 MeV (∆R1) and 250 MeV (∆R2), and the corre-
sponding relative range errors (%R1) and (%R2), respectively, caused by wrong material
assignment. When the material M is assigned to the phantom voxels, ρ corresponds to
its mass density value (expressed in g/cm3), whereas ρ equals the SPR value of M com-
puted at 300 MeV using an I-value for water of 78 eV when water equivalent material
is assigned.

The transverse dose profiles at the BP position (80% distal edge), at BP -2 mm,
and at BP -4 mm; for the adipose, the cartilage and the rib bone tissues are shown in
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Figures D.1, D.2 and D.3, respectively. On the one hand, small lateral dose differences
are observed for the cartilage tissue between the pure material and the water equivalent
material. The differences are larger for the 250 MeV proton energy beam. On the other
hand, lateral dose differences become more significant for the adipose and the rib bone
tissues. Dose profiles in rib bone are wider than the ones in the water equivalent rib
bone, whereas lateral dose profiles are wider for the water equivalent adipose tissue than
for the pure adipose tissue. These results are reasonable because scattering strongly
depends on the atomic number of the traversed material.
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Figure D.1: Transverse dose profiles at the Bragg Peak (BP) position (red), at the BP-
2 mm (blue) and at the BP-4 mm (green) for the adipose tissue (solid line) and the
water equivalent adipose tissue (dashed line) at 150 MeV (left) and 250 MeV (right).
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Figure D.2: Transverse dose profiles at the Bragg Peak (BP) position (red), at the BP-
2 mm (blue) and at the BP-4 mm (green) for the cartilage tissue (solid line) and the
water equivalent cartilage tissue (dashed line) at 150 MeV (left) and 250 MeV (right).

Regarding the qualitative lateral dose profile comparison, these results suggest that
the conversion into water equivalent materials is accurate for most tissues close to water,
but it is no longer applicable for materials having a chemical composition much different
from that of water. Nevertheless, a 50 cm homogeneous material cube as the one used
in this study is not a realistic irradiation setup when dealing with patients.
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Figure D.3: Transverse dose profiles at the Bragg Peak (BP) position (red), at the BP-
2 mm (blue) and at the BP-4 mm (green) for the rib bone tissue (solid line) and the
water equivalent rib bone tissue (dashed line) at 150 MeV (left) and 250 MeV (right).

D.4 Conclusions

The aim of this simulation-based experiment was to investigate the impact of con-
verting CT voxels into water equivalent materials on the longitudinal and on the lateral
dose distributions. From these results we can conclude that the conversion into water
equivalent materials could be used in a MC proton dose calculation framework to re-
produce patient treatment plans. However, special care should be taken for materials
with mass densities and chemical compositions much different from that of water, as
this approximation has some limits. For two reasons: first, because the proton energy
loss depends on the electron density of the traversed media and thus, on the mass den-
sity, which would introduce errors in the range estimation; second, because scattering
strongly depends on the atomic number and, therefore, lateral dose profiles would not
be correct. Moreover, special care should be taken for deeply seated tumors as lateral
dose differences become more significant at higher proton energies.



AppendixE
Résumé étendu

Les images tomodensitométriques (Computed Tomography en Anglais, CT) mon-
trent la distribution spatiale du coefficient d’atténuation linéaire de l’objet dont on
prend l’image. Deux objets ayant une densité massique et une composition élémentaire
différentes peuvent montrer la même atténuation et, en conséquence, ne peuvent pas être
différenciées avec un scanner CT. Cependant, si on profite de la dépendance énergétique
du coefficient d’atténuation des tissus, deux matériaux peuvent être différenciés en en-
registrant l’atténuation à différents spectres. Ceci est le principe de base de l’imagerie
bi-énergie, auquel faisait déjà référence en 1973 Sir Hounsfield dans l’article qui décrivait
l’invention du scanner CT [Hounsfield, 1973].

La proton thérapie est une modalité de traitement du cancer qui utilise des faisceaux
de protons pour endommager les cellules cancérigènes en les empêchant de grandir et
se diviser. En principe, la portée de protons est finie et contrôlable en ajustant leur
énergie cinétique. La réduction de la dose intégrale que reçoit le patient par rapport
aux photons permet, pour la même dose à la tumeur, une radiothérapie plus conforme.
Les systèmes de planification de traitement actuels se basent sur une image CT de
l’anatomie du patient pour concevoir le plan de traitement. Le pouvoir d’arrêt des
protons relatif à l’eau (Stopping Power Ratio en anglais, SPR) est déterminé à partir
des unités Hounsfield (Hounsfield Units en anglais, HU) pour calculer la dose absorbée
au patient. Les protons sont plus vulnérables que les photons aux modifications du SPR
du tissu dans la direction du faisceau dues au mouvement, au mauvais positionnement ou
aux changements anatomiques. De plus, les inexactitudes issues du CT de planification
et intrinsèques à la conversion HU-SPR contribuent énormément à l’incertitude sur la
portée des protons. Dans la pratique clinique, des marges de sécurité s’ajoutent au
volume de traitement pour tenir compte de ces incertitudes au détriment de la capacité
d’épargner les tissus autour de la tumeur. L’usage de l’imagerie bi-énergie (Dual-energy
en anglais, DE) pour les plans de traitement avec protons a été proposé pour la première
fois en 2009 pour mieux estimer le SPR du patient par rapport à l’imagerie mono-énergie.

Les travaux présentés dans cette thèse visaient à améliorer l’estimation du SPR en
utilisant l’imagerie bi-énergie, en ayant pour but de réduire l’incertitude sur la prédiction
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de la portée des protons dans le patient. Cette thèse est appliquée à un nouveau système
d’imagerie, l’Imaging Ring (IR), un scanner tomodensitométrique conique (Cone-Beam
CT en anglais, CBCT) développé pour la radiothérapie guidée par l’image (Image-guided
Radiotherapy en anglais, IGRT). L’IR est équipé d’une source de rayons X avec un
système d’alternance rapide du voltage (Fast-kV switching en anglais, FKVS), synchro-
nisé avec une roue contenant des filtres de différents matériaux qui permet des acquisi-
tions de tomodensitométries coniques multi-énergie.

Un objectif de la thèse était de proposer un modèle pour la source et la réponse en
énergie du détecteur du système IR pour réaliser des simulations de l’IR avec GATE
et des décompositions bi-énergie de fantômes numériques. Une procédure expérimentale
pour calibrer et valider les modèles de source et détecteur d’une unité CBCT a été
proposée et a été évaluée avec trois systèmes commerciaux. Pour certaines applications,
comme l’implémentation de corrections Monte Carlo (MC) du diffusé, le fait d’avoir des
modèles séparés et validés de la source et du détecteur du système étudié est nécessaire.
Néanmoins, pour d’autres objectifs, comme dans la plupart des applications de la bi-
énergie, le produit des spectres énergétiques de la source par la réponse en énergie du
détecteur est suffisant. Une autre procédure expérimentale a été proposée pour estimer
simultanément la validité des modèles de la source et de la réponse du détecteur. Le
fait d’avoir un modèle d’une unité CBCT dans un cadre de recherche est extrêmement
important car cela permet de prendre des décisions basées sur des simulations d’images
contrôlées. Par exemple, les simulations d’images sont l’outil le plus pratique pour
décider de la composition et de l’épaisseur les plus appropriées des matériaux des filtres
de la roue (Chapitre 5) en fonction de l’application finale, par exemple le diagnostic, la
segmentation en matériaux, la détermination de la carte du SPR, etc.

L’idée d’obtenir des informations sur les tissus du patient en réalisant deux acqui-
sitions avec des faisceaux ayant des spectres différents pour améliorer la distinction des
matériaux, notamment le nombre atomique et la densité électronique relative, fut déjà
proposée pendant les années 70. A cause des limitations des premiers scanners DECT,
telles que la basse résolution ou les artefacts de reconstruction dus au mouvement, la
bi-énergie ne s’est pas répandue dans la pratique clinique jusqu’à 2006, quand le premier
scanner commercial bi-énergie a résolu la plupart de ces limitations. Ce n’est qu’en 2009
que l’imagerie bi-énergie a été proposée pour la première fois comme une alternative
valide à la CT mono-énergie pour améliorer les calculs de dose en proton thérapie. Il
y a principalement deux approches pour utiliser les données bi-énergie pour déterminer
l’image SPR du patient. La première est de reconstruire directement l’image SPR à
partir des données du DECT (sections 4.2-4.3). De manière alternative, on peut aussi
combiner les données de la bi-énergie pour reconstruire des images CT monochroma-
tiques à une certaine énergie, et utiliser alors la table de conversion (lookup table en
anglais) HU-SPR pour déterminer l’image SPR. Contrairement aux images polychroma-
tiques, ces pseudo-images monochromatiques sont moins susceptibles au durcissement
de faisceau, aux artefacts métalliques et elles montrent plus de contraste des tissus (sec-
tion 2.3). Le principal avantage de la première approche est que la carte du SPR est
spécifique au patient tandis que la deuxième approche est basée sur une conversion entre
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HU et SPR déterminée en utilisant des substituts plastiques aux tissus et ne tient donc
pas compte des variations intra- et inter-patient. L’avantage de la deuxième approche
est qu’elle est compatible avec les TPS actuels qui se basent sur les HU de la CT pour
la conversion SPR. Néanmoins, celle-ci est seulement une limitation algorithmique des
actuels TPS et la nouvelle génération de TPS devrait incorporer les images SPR du
patient dérivées du DECT dans les processus de calcul de dose.

Une vue d’ensemble de la littérature sur les méthodes existantes pour estimer le SPR
à partir des donnés DECT a montré que la plupart des approches de décomposition pour
des applications en radiothérapie étaient basées dans le domaine image. Il y a plusieurs
manières de combiner les données de sortie de la bi-énergie pour obtenir le SPR ou
d’autres paramètres pertinents pour les calculs de dose en proton thérapie. On a proposé
de reconstruire la section efficace électronique à un certain niveau d’énergie ainsi que
la densité électronique relative à l’eau (Relative Electron Density en anglais, RED) à
partir des images de densité obtenues par l’approche de décomposition en matériaux.
Deux relations calibrées pour estimer le SPR à partir de ces données de sortie bi-énergie
ont été proposées : entre la section efficace électronique et le logarithme du potentiel
d’ionisation, et entre la section efficace électronique et le ratio SPR/RED. Ces relations
ont été comparées aux méthodes existantes et les résultats obtenus ont été similaires en
termes de justesse du SPR. En outre, une étude basée sur des simulations a été réalisée
pour déterminer si les approches de décomposition basées sur les projections étaient
indiquées pour des applications en proton thérapie. A la vue de ces résultats et avec le
développement de nouveaux systèmes d’imagerie comme les systèmes bi-couches ou les
détecteurs à comptage de photons, nous avons conclu que les méthodes basées sur les
projections devraient aussi être envisagées pour déterminer le SPR des protons.

Un autre objectif de cette thèse a été l’optimisation de protocoles d’acquisition pour
la proton thérapie. Avec cette finalité, les paramètres qui pourraient avoir une influence
sur les données de sortie de la décomposition ont été évalués en utilisant une méthode de
décomposition basée sur les projections, des paramètres d’acquisition au post-traitement.
En particulier, nous avons évalué l’impact des spectres bi-énergie, la répartition de la
dose entre les niveaux d’énergie, le choix des bases de décomposition, et la manière
de résoudre le système d’équations non linéaires du problème de la bi-énergie utilisant
comme figure de mérite la justesse et la précision du SPR. Ensuite, sur la base de ces
simulations, le transfert de ces résultats sur la justesse de la portée des protons a été
évalué en utilisant des fantômes anthropomorphiques numériques. Le travail exposé
dans cette thèse montre que la précision du SPR s’améliore quand on augmente la
séparation énergétique entre les spectres incidents, tandis que la justesse montre une
faible dépendance à cette séparation énergétique. De plus, la répartition de la dose
entre les niveaux d’énergie n’est pas sensible pour la justesse du SPR, mais elle l’est
pour la précision du SPR, c’est-à-dire que le bruit de l’image diminue quand un tiers
de la dose totale est donné avec l’acquisition de basse énergie. La paire de spectres
bi-énergie optimale dépend du matériau, cependant, le gain en justesse du SPR ne se
traduisait pas en une estimation améliorée de la portée des protons quand on réalisait
des mesures sur des fantômes anthropomorphiques hétérogènes. En conséquence, pour
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des applications en proton thérapie, le choix des spectres devrait être motivé par la
précision, c’est-à-dire la séparation énergétique. De plus, nous n’avons pas trouvé de
différences significatives en comparant les trois bases de décomposition. En fonction
de si l’information du scanner est disponible, comme les spectres de la source ou la
réponse du détecteur, le système d’équation non-linéaires peut être résolu soit avec une
approche d’optimisation itérative, avec temps de calcul plus élevé, soit sur la base d’une
calibration pour estimer indirectement les caractéristiques du scanner en interposant des
plaques de matériau et d’épaisseur connus devant le faisceau de rayons X. Les prochaines
étapes permettront de valider ces résultats basés sur des simulations par l’acquisition de
données réelles. Concrètement, ce serait intéressant de réaliser des acquisitions DECT à
différentes doses d’imagerie pour déterminer de manière expérimentale l’impact du bruit
sur l’estimation de la portée des protons.

La connaissance limitée sur l’énergie moyenne d’excitation (ou potentiel d’ionisation)
de composés et mélanges, comme les tissus du corps humain, introduit une incertitude
quand on calcule le SPR et, en conséquence, quand on détermine la portée des pro-
tons. La loi d’additivité de Bragg est utilisée comme alternative pour déterminer les
potentiels d’ionisation des tissus, mais elle est une approximation et elle est basée sur
des tableaux de données moyennées des tissus humains. Nous avons mis en place une
étude basée sur des simulations qui combine deux modalités d’images tomographiques,
CT proton et CT bi-énergie, pour vérifier s’il était possible de déduire la distribution
volumétrique moyenne d’énergie d’excitation de l’objet imagé. Nous avons obtenu des
résultats prometteurs, mais la technique d’imagerie proposée n’est pas encore réalisable
parce qu’il n’y a pas encore de scanners CT proton cliniques. L’intérêt clinique de
cette technique d’imagerie est la possibilité de déterminer de manière expérimentale
des données de référence de potentiels d’ionisation de tissus humains, qui manquent
actuellement, et de dériver la variabilité inter-patients de ces potentiels d’ionisation. Les
prochaines étapes serviront à déterminer la distribution d’énergie moyenne d’excitation
des matériaux des fantômes et/ou des tissus d’animaux en réalisant des radiographies
avec protons et radiographies bi-énergie, en utilisant des équipements déjà disponibles
dans la plupart des centres de proton thérapie [Farace et al., 2016].

Actuellement, il existe plusieurs solutions technologiques pour réaliser des images
bi-énergétiques. Les avantages et les limitations de chaque scanner ont été revués. Le
système IR est l’un des premiers systèmes commerciaux disponibles capable de réaliser
des acquisitions bi-énergie CBCT FKVS à chaque impulsion synchronisé avec une roue
contenant des filtres. Ce système offre la possibilité de réaliser des images multi-énergie
en insérant des projections du patient acquises à différents voltages et filtrations. Dans
cette thèse, nous avons évalué la performance du système IR pour estimer le SPR de
fantômes réels en réalisant des acquisitions séquentielles bi-énergie CBCT et FKVS.
Pour minimiser la contamination due au diffusé au niveau de la projection, nous avons
réalisé des acquisitions bi-énergie CBCT avec une fente de 3 cm à l’isocentre. Nous
avons aussi étudié la possibilité d’exploiter l’information derrière les lames du collima-
teur pour estimer la contribution résiduelle du diffusé au signal de transmission mesuré
et de réaliser des corrections du diffusé hors-ligne. Nous avons obtenu des résultats
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comparables aux approches de déconvolution de correction du diffusé. On a aussi ob-
servé que l’interpolation linéaire entre projections consécutives pour implémenter des
décompositions bi-énergie dans le domaine de la projection donne des images de qualité
suffisante. Néanmoins, le niveau de justesse atteint pour l’instant n’est pas suffisant
pour l’utilisation clinique des images du SPR reconstruites avec l’IR pour des calculs de
dose de protons, même si quelques voies d’amélioration ont été identifiées. Pour com-
mencer, l’approche de la décomposition implémentée basée sur les projections se base
sur la connaissance parfaite des spectres de la source et de la réponse du détecteur, dont
les modèles pourraient ne pas être correctement déterminés pour des faisceaux très dur-
cis. En outre, les inexactitudes sur l’épaisseur des filtres ou sur la composition chimique
pourraient modifier les spectres incidents et induire des erreurs sur l’estimation du SPR.
La présence de bruit dans les projections et un faible rapport signal sur bruit (Signal
Noise Ratio en anglais, SNR) peuvent aussi avoir une influence sur les données de sortie
de la décomposition en matériaux. De futurs travaux pourraient être l’amélioration des
modèles de la source et de la réponse du détecteur et leur validation par rapport aux
matériaux des filtres de la roue pour mieux estimer les spectres incidents. Au lieu de
faire la calibration proposée des modèles, il serait intéressant d’évaluer la justesse du
SPR avec une méthode de décomposition bi-énergie basée sur d’autres mesures de cali-
brations, pour lesquelles nous n’aurions pas besoin de connâıtre les modèles de source ni
détecteur car ils sont déterminés indirectement par la calibration. En outre, les méthodes
de décomposition basées sur l’image CT pourraient aussi être évaluées.

Dans cette thèse, nous avons réalisé plusieurs études basées sur des données simulées
plutôt que des données expérimentales. Même si un rapport bruit-dose a été établi et
que du bruit de Poisson a été appliqué aux projections correspondant à une valeur de
dose centrale déterminée, nous avons réalisées nos études dans un cadre idéal, exempt
d’artefacts de mouvement, instabilité temporelle du nombre CT et de contamination due
au rayonnement diffusé. D’autre part, il manque dans cette thèse une quantification ex-
haustive de l’éventuel gain de la CT bi-énergie par rapport à la CT mono-énergie avec des
données expérimentales. Il faudrait enfin résoudre le problème du bruit observé quand
on décompose les données de bi-énergie avec une approche basée sur les projections. La
meilleure manière de comparer la performance des deux modalités d’imagerie serait de
calculer des distributions de dose de protons basées sur les cartes du SPR reconstruites
avec des images DECT et SECT de patients.

Le système IR a été développé pour l’IGRT et, donc, on peut acquérir des images
du patient dans la position de traitement. Une application intéressante de l’imagerie bi-
énergie avec le système IR, ou avec un scanner similaire, est la possibilité de réaliser la
proton thérapie adaptative (Adaptive Proton Therapy en anglais, APT) en re-planifiant
le traitement avec les images du SPR reconstruites à partir des acquisitions DE-CBCT
enregistrées à la position de traitement. De nos jours, il y a un intérêt croissant dans
l’utilisation d’images CBCT pour les calculs de dose, en photon comme en proton
thérapie [Niu et al., 2010; Park et al., 2015; Landry et al., 2015]. La question de si
on peut ou pas utiliser les images DE-CBCT pour calculer les distributions de dose de
protons a été partiellement évoquée dans cette thèse. Tous les scanners CBCT ont été
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réalisés avec une fente de 2 ou 3 cm à l’isocentre. Les travaux futurs incluront l’évaluation
de la justesse du SPR avec des acquisitions DE-CBCT sans fente, c’est-à-dire à champ
ouvert, mais une meilleure correction du rayonnement diffusé semblerait nécessaire dû à
la forte influence sur le résultat de la décomposition en matériaux [Sossin et al., 2014].
En outre, les techniques de vérification in-vivo basées sur la détection des particules
secondaires, comme la tomodensitometrie par emission de positrons (TEP) et l’imagerie
gamma rapide (prompt-gamma), pourraient bénéficier de l’imagerie bi-énergie en po-
sition de traitement pour déterminer la composition élémentaire des tissus du corps,
notamment les contenus d’oxygène, carbone, phosphore et calcium, avec une justesse
plus élevée par rapport au SECT [Landry et al., 2013a].

Les méthodes de décomposition basées sur les projections consistent en deux étapes
: la première, la décomposition des projections en sinogrammes de base de matériaux;
la deuxième, la reconstruction CT de ces sinogrammes de base. Comme remarqué pen-
dant la reconstruction de cartes du SPR à partir des acquisitions de données réelles
des fantômes (section 4.6), cette approche en deux étapes semblerait être sensible au
bruit. On a observé que la présence de bruit dans les projections CT pourrait avoir
une influence sur le résultat de la décomposition du matériau car elle introduit une in-
stabilité à l’étape de décomposition. Pour dépasser cette limitation, la possibilité de
décomposer et reconstruire des données bi-énergie (ou spectrales) en une seule étape
a sucité l’intérêt de la communauté. Des méthodes itératives avec régularisation sont
actuellement investiguées [Schmidt et al., 2015; Sidky et al., 2016; Foygel Barber et al.,
2016].

La dépendance énergétique des coefficients d’atténuation linéaires de différents tissus,
laquelle permet la segmentation en matériaux par imagerie bi-énergie, pourrait être plus
exploitée pour obtenir une information additionnelle du tissu en passant de l’imagerie
bi-énergie à la multi-énergie. Il y a différentes approches pour réaliser cette imagerie
multi-énergie avec la technologie actuelle, au niveau de la source comme au niveau du
détecteur. D’un côté, l’imagerie multi-énergie au niveau de la source peut être réalisée en
filtrant le spectre incident avec différents matériaux en même temps. Le système IR avec
la roue contenant des filtres synchronisée avec l’émission du faisceau permet l’imagerie
multi-énergie en filtrant le spectre incident avec jusqu’à quatre matériaux différents. Les
projections avec différents filtres seraient acquises séquentiellement et une bonne inter-
polation des sinogrammes serait nécessaire pour échantillonner les projections au même
angle pour implémenter schémas de décomposition basés sur les projections. D’un autre
côté, au niveau du détecteur, l’imagerie multi-énergie peut être implémentée en utilisant
les systèmes de comptage de photons qui sont capables d’enregistrer le spectre incident
en différentes bôıtes d’énergie ou fenêtres. Un inconvénient de ces systèmes est que la
technologie du détecteur n’a pas encore abouti [Atak and Shikhaliev, 2015] et certains
problèmes doivent être résolus avant qu’elle soit disponible en clinique, comme le partage
de charge, l’empilement, la sensibilité énergetique, etc. Une fois que les deux technologies
seront comparables, ce serait intéressant d’évaluer la performance des deux approches.
De plus, ce serait également intéressant d’investiguer si les détecteurs à comptage de
photons peuvent être utilisés en scanners CBCT pour combiner les avantages des deux
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technologies, c’est-à-dire les acquisitions volumétriques résolues en énergie.
L’objectif principal de cette thèse était d’utiliser l’imagerie bi-énergie pour réduire

les marges de traitement en proton thérapie. Dans la pratique clinique, des marges
latérales et de portée sont ajoutées au CTV pour chaque faisceau dans le TPS. On
s’est principalement intéressé à l’étude des approches pour réaliser la décomposition bi-
énergie dans le but de réduire l’incertitude associée à la conversion des HU en valeurs
de SPR, normalement réalisée avec une image SECT, laquelle a 1% d’erreur associée.
Quand on considère uniquement les artefacts de durcissement du faisceau, cela contribue
jusqu’à un 1.1% et 1.8% de la portée des protons dans l’eau pour les tissus mous et
l’os respectivement [Schaffner and Pedroni, 1998; Paganetti, 2012]. Néanmoins, il y a
d’autres incertitudes liées au scanner, comme la stabilité temporelle des nombres CT,
c’est-à-dire les variations jour après jour, et les artefacts dus au rayonnement diffusé,
particulièrement avec les scanners CBCT, qui contribuent par ailleurs à l’incertitude de
la portée. Malgré ces valeurs d’erreur de la portée, des marges plus conservatrices comme
3.5% +1 mm qui peuvent varier d’une institution à une autre- sont actuellement utilisées
à la place. Les marges sont prises comme un concept géométrique comme dans le milieu
des photons, dans lequel ces marges sont principalement utilisées pour tenir compte
des incertitudes latérales [Both, 2012]. La prochaine étape est de planifier directement
les traitements sur la base d’images du SPR reconstruites à partir d’images DECT,
combinée à des marges personnalisées et spécifiques aux faisceaux [Park et al., 2012].
Cela pourrait ouvrir une nouvelle ligne d’étude et devrait donner davantage de confiance
aux cliniciens et physiciens médicaux pour réduire les marges en proton thérapie, pour
réduire les volumes de traitement et ainsi diminuer la probabilité de complications et
effets tardifs.
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perimental verification of ion stopping power prediction from dual energy CT data in
tissue surrogates. Phys. Med. Biol., 59(1):83–96, 2014a. Cited on pages 44, 74, 77, 81,
116, and 137.

N. Hünemohr, N. Niebuhr, and S. Greilich. Reply to Comment on Experimental verifica-
tion of ion stopping power prediction from dual energy CT data in tissue surrogates’.
Phys. Med. Biol., 59(22):7085–7087, nov 2014b. Cited on page 89.



BIBLIOGRAPHY 189

N. Hünemohr, H. Paganetti, S. Greilich, O. Jäkel, and J. Seco. Tissue decomposition
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J. Ödén, J. Zimmerman, R. Bujila, P. Nowik, and G. Poludniowski. Technical Note:
On the calculation of stopping-power ratio for stoichiometric calibration in proton
therapy. Med. Phys., 42(9):5252–5257, 2015. Cited on pages 27 and 153.

K. C. Oeffinger, A. C. Mertens, C. A. Sklar, T. Kawashima, M. M. Hudson, A. T. Mead-
ows, D. L. Friedman, N. Marina, W. Hobbie, N. S. Kadan-Lottick, C. L. Schwartz,
W. Leisenring, and L. L. Robison. Chronic Health Conditions in Adult Survivors of
Childhood Cancer. N. Engl. J. Med., 355:1572–82, 2006. Cited on page 17.

B. Ohnesorge, T. Flohr, and K. Klingenbeck-Regn. Efficient object scatter correction
algorithm for third and fourth generation CT scanners. Eur. Radiol., 9:563–569, 1999.
Cited on page 67.

T. Okada, T. Kamada, H. Tsuji, J.-E. Mizoe, M. Baba, S. Kato, S. Yamada, S. Sugahara,
S. Yasuda, N. Yamamoto, R. Imai, A. Hasegawa, H. Imada, H. Kiyohara, K. Jingu,
M. Shinoto, and H. Tsujii. Carbon Ion Radiotherapy: Clinical Experiences at National
Institute of Radiological Science (NIRS). J. Radiat. Res., 51(4):355–364, 2010. Cited
on page 6.

H. Paganetti. Dose to water versus dose to medium in proton beam therapy. Phys. Med.
Biol, 54:4399–4421, 2009. Cited on pages 21, 26, 148, 149, and 172.

H. Paganetti. Proton therapy: History and rationale. In H. Paganetti, editor, Prot. Ther.
Physics, Ser. Med. Phys. Biomed. Eng., chapter 1, pages 1–19. Taylor & Francis, 2011.
Cited on pages 6 and 17.

H. Paganetti. Range uncertainties in proton therapy and the role of Monte Carlo sim-
ulations. Phys. Med. Biol., 57(11):R99–R117, 2012. Cited on pages 12, 29, 30, 136,
147, 148, 161, and 182.

H. Paganetti and T. Bortfeld. Proton beam radiotherapy - The state of the art. Number
October. 2005. Cited on page 17.

P. C. Park, X. R. Zhu, A. K. Lee, N. Sahoo, A. D. Melancon, L. Zhang, and L. Dong. A
beam-specific planning target volume (PTV) design for proton therapy to account for
setup and range uncertainties. Int. J. Radiat. Oncol. Biol. Phys., 82(2):1–15, 2012.
Cited on pages 30, 162, and 182.



BIBLIOGRAPHY 194

P. C. Park, J. P. Cheung, X. R. Zhu, A. K. Lee, N. Sahoo, S. L. Tucker, W. Liu, H. Li,
R. Mohan, L. E. Court, and L. Dong. Statistical assessment of proton treatment
plans under setup and range uncertainties. Int. J. Radiat. Oncol. Biol. Phys., 86(5):
1007–1013, 2013. Cited on page 30.

Y.-K. Park, G. C. Sharp, J. Phillips, and B. A. Winey. Proton dose calculation on
scatter-corrected CBCT image: Feasibility study for adaptive proton therapy. Med.
Phys., 42(8):4449–4459, 2015. Cited on pages 160 and 180.

E. Pessis, J. M. Sverzut, R. Campagna, H. Guerini, A. Feydy, and J. L. Drapé. Reduction
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