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Abstract

An original 3D subband coding scheme is proposed. A separable 3D wavelet, taking

full advantage of the 3D structures correlation, decomposes the original volume into

subvolumes which can be separately quantized by an uniform scalar quantizer or by a 3D

lattice vector quantizer. Concentric hyper-pyramids lying on the cubic lattice are used for

searching codewords. A distortion minimization algorithm both selects the best number of

decomposition and the best set of quantizers in order to minimize the overall mean square

error. The whole algorithm is applied on a 3D image data base issued from the Morphometer

(a new true 3D X-Ray scanner). The results presented include traditional signal to noise ratio

performances and a subjective evaluation made by radiologists.

Keywords: 3D image coding, wavelet transform, 3D X-ray scanner,

bit allocation, scalar quantization, pyramidal vector quantization.

Résumé

Un schéma original de compression sous-bande 3D est proposé. Une décomposition

avec une transformation en ondelettes 3D séparable, prenant en compte la corrélation dans les

trois directions, est appliquée sur des volumes. Les sous-volumes obtenus sont quantifiés

indépendamment par un quantifieur scalaire uniforme ou par un quantifieur vectoriel sur

treillis. La recherche des mots-codes se fait à l'intersection d'un ensemble d'hyper-pyramides

concentriques avec le treillis cubique. Un algorithme minimisant l'erreur quadratique globale

pour un débit imposé permet de sélectionner le nombre de décompositions et d'allouer le

meilleur ensemble de quantifieurs aux différents sous-volumes. L'algorithme de codage a été

appliqué sur une base de volumes issus du Morphomètre (un vrai scanner 3D à rayon X). Les

résultats obtenus en terme de rapport signal sur bruit ainsi que les résultats d'une évaluation

subjective effectuée par des radiologues.
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1 Introduction

In medical images, 3D images are generally provided by MRI or CT scanners.

However, these techniques do not offer the spatial resolution needed in some specific

applications, i.e. cardio-vascular imaging. The new true 3D X-Ray scanner, a prototype called

"Morphometer" produces discrete volumes up to 5123 voxels coded on 12 bits with 356

microns of spatial resolution in each direction. The amount of data to store and to transmit is

prohibitive when a 3D sequence is acquired using such a system. Thereby, the storage gain

which can be provided by dedicated compression algorithms is particularly attractive.

Different approaches may be considered for 3D image compression. Since lossless

compression approaches result in a small compression ratio, we consider lossy compression

techniques. Several studies dealing with lossy compression of 2D medical images has been

proposed and applied to different image modalities (Resonance Magnetic Nuclear Images,

Computed Tomography, X-Ray images, ...). Among the main approaches developed, we can

note :

- methods using 2D transforms like Discrete Cosine Transform applied to blocks

[14,23] or to the whole image [8, 35];

- methods using Tree Structured Vector Quantization [12, 29];

- methods using subband decomposition [1, 21].

One can find complementary references on radiological image compression in [40].

In 3D case, many approaches, closed to the MPEG standard [18], using block

matching algorithm for motion estimation has been developed [20, 24] to code medical 2D

sequences as numerical angiographies. Such algorithms are not adapted to the compression of

real 3D medical images because of the artefacts introduced when quantizing the third

dimension which are not acceptable for static data. The 3D Cosine Transform has also been

tested on medical sequences [4, 9].
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Concerning 3D medical images coding, a subband decomposition using mono-

dimensional filter banks associated to a scalar quantizer is proposed in [28, 38, 39]. More

recently, a 3D zerotree quantizer has been associated to such a subband decomposition [26].

Such a decomposition takes advantage of the voxel correlation in the three directions.

Moreover, as the volumes issued from the Morphometer described in section 2 are isotropic,

separable wavelet filter banks is well adapted to this image modality.

In this study, we present an original coding scheme based on a separable 3D wavelet

transform associated to both a scalar quantizer an a lattice vector quantizer. Preliminary

results of this work have already been presented [5]. Section 2 describes the Morphometer

system, its performances and its applications. Section 3 deals with the wavelet transform and

its extension to the 3D case. A complete coding scheme, including a very efficient bit

allocation procedure is proposed in section 4. Finally section 5 presents results on the volumes

issued from the Morphometer.

2 3D Morphometer

The Morphometer [33] is a new true 3D X-ray scanner system installed at the Neuro-

Cardiological Hospital of Lyon (Fig. 1). The main goals of this pilot project supported by the

French government are:

- to validate new concepts of examinations on humans using 3D X-ray data;

- to optimize the acquisition model function of an examined organs;

- to develop new reconstruction algorithms.

The Morphometer acquires a set of 2D digital projections using two X-ray imaging

chains mounted on a modified CT gantry. The rotation speed  of  the gantry around the patient

is 4 to 20 seconds per rotation cycle and provides up to 25 images per second of acquisition.

The 2D projections are processed towards the reconstruction algorithms [32, 37] and the

reconstructed 3D image is displayed with a dedicated software. The system can  generate up to

5123 discrete volumes with isotropic voxels of 356 microns, each voxel coded on 12 bits. The

Morphometer presented in Fig. 2 is divided in four subsystems:
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- the modified CT gantry and a bed with four degrees of freedom;

- the acquisition part including two x-ray tubes, two amplifiers, a biplane x-ray

generator and the digitization unit;

- the control unit administrating the real time tasks, i.e. the gantry and bed movements

and controlling the peripherals in the examination room;

- the processing part including the 3D reconstruction computer and a 3D display

station.

Using a standard 3D Computerised Angiography protocol, an examination consists in

acquiring the mask images when rotating one way and the opacified images the other way.

The injection of contrast agent begins automatically with the inversion of the rotation. 3D

reconstruction is processed using the 2D difference image set.

The Morphometer supports several acquisition and reconstruction protocols associated

with different medical applications: 3D Computerised Angiography [34] (CA) with one or

several injections for neurology (see Fig. 3b), 3D CA gated on ECG for coronarography (Fig.

3a) and also 3D non-vascular applications (bones, articulations, analysis of soft tissues).

The Morphometer offers very important advantages compared to the usual scanners:

The image quality is increased . The spatial resolution is higher (356 microns) and equal in the

three directions. The examination duration (10 sec. to 40 sec.), the X-ray dose and the quantity

of injected contrast agent are considerably reduced.

The proposed coding scheme based on a separable wavelet transform and on the use of

independent quantizers and bit allocation with the Ramchandran algorithm [30] is well

adapted for the 3D data issued from the Morphometer. It takes into account the constraints and

typical properties of the application considered:

- the voxels are isotropic in the three directions. This imposes to consider the same

methodology in each direction, like a separable wavelet transform;

- the blocking effects appearing for example in DCT block coding have to be avoided,

particularly for angiographies;
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- the volumes issued from the Morphometer represent different medical applications

like coronarographies, cerebral vessels or bones. The coding scheme has to adapt itself

to these changing properties. For a given bit budget, our approach detailed in sections

3 and 4 finds the best quantizer and bit allocation for each subband. Any subband is a

priori eliminated. The depth of the wavelet decomposition also changes and adapts

itself to the applications and to the volume size (1283, 2563 or 5123).

3 3D wavelet transform

The continuous wavelet transform of a monodimensional signal f(x), provides a

decomposition of the signal at different scales [13]. It is based on the use of an analyzing

wavelet ψ(x) which is translated and scaled. The properties of the continuous wavelet

transform relies on those of the chosen analyzing wavelet. When this later satisfies a so-called

admissibility property, the transform is reversible and the signal may be recovered as a sum of

the scaled and translated wavelets weighted by the wavelet coefficients.

The discrete wavelet transform may be interpreted as a decomposition of the signal at

different levels of resolution via multiresolution analysis [27] and can be implemented

recursively by using a pair of discrete filters via an analysis/synthesis scheme as given in

Fig. 4.

In such an approach, a signal at a resolution 0 named a0 is decomposed into two low

resolution signals, an approximation signal a-1 and a detail signal d-1, using a low-pass filter

(Ba) and a high-pass filter (Ha) respectively, followed by a 2 to 1 decimation. At each

resolution j, the decomposition could be repeated on the approximation signal aj to get aj-1

and dj-1 (Fig. 4). Finally the wavelet decomposition of the original signal a0 is given by the

approximation signal aK at the lowest resolution K and all the details signal dj. Note that the

approximation signal aj at a resolution j and the detail signal dj at the same resolution are

orthogonal due to the fact that they represent the decomposition of the signal aj+1 on a wavelet

orthonormal  basis. A residual correlation still exists between the approximation signal and

the details signals. However in our approach detailed in section 4, we propose to use "separate

quantizers" in order to have simplicity (independent quantizers) and flexibility (the possibility
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of using any kind of quantizer). After coding/decoding, the signal is reconstructed using the

contributions of all details signals at the different resolutions and the approximation signal at

the lowest resolution. The reconstructed signal âj+1 is calculated by a 1 to 2 upsampling of aj

and dj and by a filtering with the low-pass (Br) and the high-pass (Hr) interpolating filters

(Fig. 4). In the Z transform domain, the previous operations result in:

Âj+1(z) = 1/2.[Ba(z).Br(z) + Ha(z).Hr(z)].Aj+1(z) + [Ba(-z).Br(z) + Ha(-z).Hr(z)].Aj+1(-z) (1)

In this equation, the first term contains the frequency response of the decomposition-

reconstruction system and the second one corresponds to the aliasing terms. By imposing

conditions on filters Ba, Ha, Br and Hr, perfect reconstruction is achieved, then

Âj+1(z)=Aj+1(z) and the decomposition/reconstruction is free of aliasing and free of module

distortion. Many solutions have been proposed to achieve the perfect reconstruction [13, 22,

36]. Recent studies [7, 31] have shown that these solutions lead to very similar coding

performances. In the 3D coding scheme we proposed, Daubechies orthonormal wavelets CQF

[13] have been implemented.

The wavelet transform has been extended [41] to images, by applying separately the

analysis/synthesis scheme on the rows and then on the columns. When using a separable 2D

analysing wavelet, each decomposition level provides four subimages, a low resolution

subimage and three subimages of details. Coding scheme based on such an approach leads to

interesting performances compared to standardized compression algorithms [2, 6].

In the same way, 3D wavelets can be constructed as separable products of 1D wavelets

by successively applying a 1D analyzing wavelet in three spatial directions (x,y,z). Fig. 5

shows a separable 3D decomposition of a volume: after being applied on the rows and on the

columns, the analysis/synthesis filters followed by a 2 to 1 decimation are applied along the

third dimension. At the end of the decomposition, 8 subvolumes of lower resolution are

obtained: the approximation subvolume from resolution '-1' named LLL1 and 7 subvolumes of

details. The separable 3D wavelets will provide an equal decorrelation of the original volume

voxels in the three directions. All the subvolumes can be separately quantized and coded.

4 3D subband coding scheme
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The separable 3D wavelet decomposition has been implemented in the coding scheme

presented in Fig. 6. We first describe the quantizers developed for this scheme. Then we detail

the bit and quantizer set allocation algorithm.

4.1 Quantizers

Uniform Scalar Quantizer (USQ)

 USQ transforms the original voxel (v) in an integer value (q) scaled between 0 and

2B-1 with B a given coding rate in bit per pixel (bpp) using the linear equation

q = round (a.v + b)  (2)

where a and b are reals and both depend of the original voxel dynamic and of the given coding

rate B. The reconstructed voxel ( $v ) is given by

$v  = (q - b) /a (3)

Quantized data is entropy coded using a Huffman coder.

Pyramidal Vector Quantizer (pyramidal VQ)

The rate distortion theory and several studies [15, 19, 42] have underlined the

superiority of vector quantizer over scalar quantizer especially on highly correlated images

which are encoded at a low bit rate.

The basic idea of vector quantizers is to quantize pixel sequences rather than single

pixels. Each original vector (block of pixels) is quantized with the nearest (using a distance

criteria) vector belonging to a codebook. The codebook size is equal to 2BN where B

corresponds to the desired bit rate and N to the vector dimension. The first vector quantization

algorithm has been proposed by Lind Buzo Gray (LBG) [25]. Although this algorithm is able

to provide a locally optimal codebook for a given image, it has two major drawbacks: it is

clear that for a large vector dimension N or for a high coding rate B, the VQ complexity grows

exponentially because the codewords have to be chosen between 2BN possible vectors.

In order to avoid LBG disadvantages, the codebook of the vector quantizer we use

corresponds to a lattice subset. A lattice can be simply defined as a regular set of points in a N

dimensional space ℜ N. The lattice properties have been investigated by Conway et al. [10]

which have determined the optimal lattices for several dimensions. The quantization of a
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vector X consists in finding the closest lattice point Y to X. This search becomes extremely

fast when using quantizing algorithm proposed by Conway et Sloane [11].

The lattice vector quantizer has been initially investigated for uniform and Gaussian

distributions under the name of Spherical Vector Quantizer (SVQ) [11]. Pyramidal Vector

Quantizer (pyramidal VQ) has been proposed by Fischer [16, 17] for the quantization of

images with Laplacian and generalized Gaussian distributions and applied in a multiscale

image coding scheme [3]. The main differences between SVQ and pyramidal VQ lie in the

norm used to compute vector energy: L2 and L1 norm for SVQ and for pyramidal VQ

respectively. This norm also determines a set of hyper-surfaces: hyper-sphere and hyper-

pyramid for SVQ and pyramidal VQ respectively. Vectors lying on a given hyper-surface have

the same energy.

In this study, taking into account the Laplacian distribution of high frequency

subbands, we develop a 3D Pyramidal Vector Quantizer using vector of 2x2x2 pixels. Note

that vector energy EX is computed using  L1 norm as follows:

E X i j kX
kji

=
===

∑∑∑ ( , , )
1

2

1

2

1

2

(4)

where X(i,j,k) is a gray level. The following algorithm is used for quantization and coding:

a) For a given bit rate B, find the radius (energy) E such that the hyper-pyramid of

radius E includes at least 28xB lattice points. The points of the lattice subset delimited by this

pyramid correspond to the possible codebook vectors. They all lie on hyper-pyramids of

integer radius. Using the formula proposed by Fischer [16]:

Num(N,K) = Num(N-1,K) + Num(N-1,K-1) + Num(N,K-1) (5)

we find  the number of lattice points Num(N,K) lying on a hyper-pyramid of radius K in

ℜ N. Adding Num(N,K) for successive concentric hyper-pyramids, we obtain E. 

b) Fix the maximum of energy EM to be encoded. This energy can differ from the

energy of the most energetic vector (Emax). Indeed, taking EM under Emax allows a better
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quantization of low energetic vector (limiting the risk of being quantized to 0 in R8) and also

a specific quantization of few high energetic vectors.

c) Scale each vector  into the hyper-pyramid of radius E using a scaling factor (Fig. 7):

-  X1, vector of energy lower than EM, scaled by A
E

E
M= ;

-  X2, vector of energy equal to EM, scaled by A. As A
E

E

E

E
M X= = 2 , the scaled

X2 lies on the hyper-pyramid of radius E;

-  X3, vector of energy greater than EM, scaled by a proper scaling factor α given

by α = E

E
X 3 .

d) Each scaled vector is projected onto the nearest hyper-pyramid of integer radius and

the nearest cubic lattice point is found on the hyper-pyramid;

e) An enumeration procedure [17] allows us to associate an integer to each quantized

vector. Taking into account the Gaussian distribution of the quantized vectors radius, we

encode the radius EX using an Huffman table. Note that this Huffman table includes an

additional code for vectors of X3 type. This code is computed regarding the cumulative

probability of these vectors. Finally, scaling factor A and α are quantized with 8 bits, their

values do not exceed 255.

The decoding process is very simple:

a) Decoding the radius EX and the enumeration index gives the lattice point.

b) To expand the vectors, we use (Fig. 7):

- 
1

A
   if  EX ≤ EM, case of X1 and X2 type vectors;

- 
1
α if we get the additional code (X3 type vectors with EX > EM)

Note that the specific quantization of few X3 type vectors provides an interesting quality gain

for a negligible bit rate cost.

4.2 Distortion Minimization Algorithm (DMA)

 This algorithm has been proposed [30] for 2D image coding using wavelet packets

which differ from wavelets decomposition by the fact that even the detail subimages are
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recursively decomposed. DMA selects the best quantizers (the bit allocation and the quantizer

for each subimage) in the set of quantizer proposed and the best number of decompositions in

order to minimize the overall mean square error (D) under the constraint of a total number of

coding bits (R) lower than a coding bit budget (Rb). This is a minimization problem under a

constraint given by

Min D
R Rb≤

( ) (6)

Using the additivity properties of the rate and the distortion over one step of decomposition

[30] provided by using orthonormal filters, the constraint problem (6) is treated by an

unconstrained optimization procedure using a Lagrangian cost function J which merges the

rate and the distortion in the Lagrangian multiplier λ. J is defined by

J = D + λR (7)

Let us describe the main steps of DMA:

a) Nq possible quantizers (quantization and coding) and a maximum number of

decompositions Nd are fixed.

b) The volume to encode is decomposed Nd times. Each decomposition provides 8

subvolumes. Thus the total number of subvolumes (Nsb) to work with, is given by (8xNd).

DMA really begins at step c).

c) The original volume and the Nsb subvolumes are quantized separately by all the Nq

quantizers. Each time, the local distortion (Djik) induced by the kth quantizer on the ith

subvolume at resolution j is computed as well as the resulting number of coding bits Rjik.

d) Then DMA calls successively two procedures:

- Procedure 1 searches, for a given λ, the best decomposition and the best set of

quantizers in order to minimize the total Lagrangian cost J. This could be written as

Min
q

J Min
q

D R Min D R
k k

kq
i

i
i( ) ( ) ( )= + = +∑λ λ (8)

This procedure is easy to implement. Indeed, for each subvolume i of a resolution j, it searches

the quantizer which minimizes the local Lagrangian cost i
jJ . If the sum of all the Lagrangian

costs at a resolution j is greater than the Lagrangian cost of the approximation subvolume at

the upper resolution j+1, which is formulated as follows

J J D R Jj
i
j

i
i
j

i
j i

i

= = + >
=

+

=
∑ ∑

0

7

0
1

0

7

λ (9)
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then the decomposition tree is pruned of the resolution j and thus the best level of

decomposition becomes (j+1).

- Procedure 2 searches the optimal Lagrangian multiplier λopt, which assumes R≤Rb.

The Lagrangian multiplier λ equal to λopt is in fact the solution of the following problem:

( )[ ]Max D R Rbλ
λ λ λ( ) ( )+ − (10)

This maximization procedure is done by a Newton algorithm [30] which quickly converges to

the optimal point (Ropt,Dopt) with (Ropt≤Rb).

Both procedures are illustrated on Fig. 8. Plotting all the possible (R,D) points, coming

from all the combinations (R Dik
j

ik
j, ) leads to a cluster on the (R,D) plan. The optimal solution

(Ropt,Dopt) is on the convex hull of the cluster. In fact Procedure 1 searches the first

intersection between a line of slope -λ and the convex hull. On Fig. 8, point A corresponds to

the intersection with the line of slope -λ1. Procedure 2 searches λopt which maximizes the y-

coordinate of the intersection between the line of slope -λopt and the vertical line of x-

coordinate Rb. Point I corresponds to this intersection on Fig. 8: y-coordinate of I is equal to

D+λ(R-Rb).

For easy visualization, a 2D example of bit allocation with DMA is presented  in Fig.

9. DMA decomposes Lena 512x512x8 until level 3 with 8 taps Daubechies FIR filters. 2x2

blocks are used for pyramidal VQ. The given bit budget is 1 bpp. The PSNR after

reconstruction is 36.1 dB.

Note that DMA algorithm selects the best wavelet decomposition depth which depends

on the image to be encoded and on the image modality considered. This way, our algorithm is

fully adaptive to the different image modalities (vessels, bones,...) and to the image size (1283

to 5123. In Fig. 10, we present PSNR/bpp curves on Lena 512x512x8 showing an example of

the gain obtained by adapting the scale versus keeping a fixed scale.
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5 Results

In this section we present results obtained on an image data base issued from the

Morphometer. The volumes are encoded with the coding scheme described in section 4. The

maximum number of decompositions has been fixed to 3. So 2 bits are necessary to code the

resolution j, varying from 0 (original image) to 3. The subvolume number i is also coded with

3 bits for a given resolution. Finally, 1 bit is used to distinguish the selected quantizer:

uniform scalar quantizer or  pyramidal vector quantizer. The wavelet decomposition is

performed using 8 taps, approximately linear phase and orthonormal wavelet filter of

Daubechies [13] with a circular convolution. The set of possible quantizers is constituted with

19 USQ corresponding to bit rates from 1 to 9 bpp with a 0.5 bpp step and 9 pyramidal VQ

from 1 to 5 bpp with the same step. Note that for pyramidal VQ, we use 2x2x2 blocks. This

corresponds to varying the radius of the bounded space in ℜ 8 to obtain lattices containing

from 28 to 240 points. Both original 1283 volumes and 1283 ROI in 2563 volumes have been

treated with our algorithm.

Table 1 and Table 2 present the bit and quantizer allocation realized using DMA on

the coronarography of Fig. 3a. In Table 1, DMA uses only USQ for a given bit budget of  0.8

bpp and gives PSNR = 40dB. In Table 2, USQ and pyramidal VQ are possible quantizers for

DMA. High frequency subbands (specially the resolution "-1") are quantized with pyramidal

VQ at low bit rates. Indeed, pyramidal VQ allows to go down in bpp and remains the most

performant quantizer until about 1.7 bpp. USQ is chosen when DMA allocates more then

about 1.9 bpp. Combining two quantizers, PSNR is increased to 44.7dB for the same bpp (0.8

bpp). This analysis has been validated with several experiments done on the image data base.

Fig. 11a shows the decoded 3D coronarography after Table 2 allocation and after

reconstruction ( 0.8 bpp, PSNR = 44.7 dB).  The quality is very satisfying when compared

with the original image (Fig. 3a). Fig. 11b presents the decoded image associated to Fig. 3b.

We obtain PSNR =  40.4 dB for the same bit budget 0.8 bpp.

Fig. 12 presents PSNR/bpp results obtained with an angiography issued from the data

base and compares our method to a 3D DCT approach [4]. The results show the limitation of

the 3D DCT based algorithm, especially for low bit rates.
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As our algorithm has been found efficient using objective criteria (PSNR/bpp), we

perform a subjective quality evaluation with radiologists. The results presented have been

obtained on a specific Morphometer modality: 3D mini-pig left ventricle angiography. Each

volume is coded using 6 bit per pixel rate : 0.1, 0.13, 016, 0.2, 0.26 and 0.4 bpp  (compression

ratios of 80, 60, 48, 40, 30 and 20 respectively). Two blinded experienced senior radiologists

were asked to evaluate "the quality of the image for diagnosis purposes". As in [12], five

subjective image qualities were distinguished by the allowed responses:

1. Unacceptable quality (image not usable)

2. low quality (image very difficult to use)

3. passable quality (image usable but below standard)

4. good quality (image usable and very adequate)

5.  excellent quality (image usable)

The quality evaluation is mainly based on the sharpness of small vessels (internal

mammary arteries and the major trunk of the coronary artery), on the quality of the "pig tail"

catheter and on the stepping effects. The volumes are visualized  on the display station of the

Morphometer using the RAO projection. Note that the radiologists can modify lightness and

contrast interactively.

The evaluation has been done on 20 volumes of 1283 voxels. These volumes are all

taken from sequences of 3D Coronarograpy of a mini pig's left ventricle. Each reader

evaluated 120 decoded volumes divided in 6 sessions of 20 volumes. In each session, a

random sequence is presented without the knowledge of the bit rates. The reader could not go

back to review a previous volume. After independent evaluation, the two readers discussed

and made the final evaluation in consensus [43, 44]. This leads to a "subjective quality" / bit

rate(bpp) curve obtained using a cubic spline interpolation where the 'o' represents the mean

score on 20 volumes for a given bit rate. Note that a bit rate with a score under the quality 3 is

unacceptable. The curve shows (Fig. 13) that 0.18 bpp rate (compression ratio of 44) seems to

be a lower bound giving a usable image quality for diagnosis purposes considering this image

modality.
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The CPU time on a Silicon Graphics Indigo II station associated to the 3D

compression algorithm is 300 seconds for 1283 volumes with 70 % used by the DMA. It is

about 40 seconds for the 3D decompression program. These 3D programs are not optimized in

term of runtime. Optimizing the dynamic memory allocation and implementing a fast

algorithm for the circular convolution in the 2D case led us to considerably reduce the CPU

time needed (8 sec. to 1 sec. for the compression of a 512x512x8 image on SG Indigo II). The

optimization of the 3D programs is under investigation.

One drawback of the approach presented in this paper is the computational time of the

DMA. This inconvenient aspect could be removed, by a learning step: indeed for each image

modality and for a set of compression rates, the DMA can be used to choose the best quantizer

and the best number of decompositions. Then the DMA could be replaced in the coding

scheme by parameters chosen during the learning step. This approach avoids to execute the

whole "Distortion Minimization Algorithm" for coding an image belonging to the same

modality.

6 Conclusion

In this paper, we have proposed an original 3D coding scheme based on 3D wavelet

transforms associated with 3D lattice vector quantization and uniform scalar quantization. A

Distortion Minimization Algorithm (DMA) selects the best set of quantizers (bit and quantizer

allocation) and the best number of decomposition and makes our algorithm fully adaptive to

different image modalities. This scheme has been used to code images issued from a real 3D

scanner, the Morphometer. The results obtained on an image data base issued from the

Morphometer have been presented. The quality of the reconstructed images is significantly

improved comparing to a classical 3D DCT approach. For high compression ratios, the signal-

to-noise ratios are very satisfactory. A subjective quality evaluation done by two senior

radiologists on mini-pig left ventricle angiography volumes has given a lower bound in bpp

(0.18 bpp) which gives an acceptable image quality for diagnosis using this image modality.

These results urge us to continue the medical evaluations using large data bases and involving

4 or 5 radiologists. The final goal is to determine a bit rate bound for each Morphometer

application.
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Captions

Fig. 1 The CT gantry of the Morphometer at the Neuro-Cardiological Hospital of Lyon.

Fig. 2 Subsystems of the Morphometer.

Fig. 3 3a Angiography of a pig's left ventricle;

3b Angiography of pig's carotid artery.

Fig. 4 Wavelet decomposition/reconstruction implemented by using pairs of discrete filters

via multiresolution analysis.

Fig. 5 Separable 3D wavelet decomposition.

Fig. 6 Coding scheme using separable 3D wavelets.

Fig. 7 Graphic illustration of the DMA

Fig. 8 Pyramidal Lattice Vector Quantization of  2D vectors in ℜ 2.

Fig. 9 Example of bit assignement on Lena (512x512x8) for a given bit rate of 1 bpp, using

a 8 taps Daubechies FIR (PSNR=36.1 dB at the reconstruction). S and V mean USQ

and pyramidal VQ respectively.

Fig. 10 PSNR(dB)/ bit rate(bpp) curves obtained with Lena 512x512x8 showing the gain

obtained by adapting the wavelet transform depth versus keeping a fixed depth (2 and

3).

Fig. 11 11a Angiography of Fig. 3a coded at 0.8 bpp: PSNR= 44.7 dB.

11b Angiography of Fig. 3b coded at 0.8 bpp: PSNR = 40.4 dB.

Fig. 12 PSNR(dB)/ bit rate(bpp) curves obtained with an angiography issued from the image

data base, comparing our method to a 3D DCT approach.

Fig. 13 Subjective quality evaluation after consensus versus bit rate(bpp): 'o' represents the

mean score on 20 volumes; '*' represents the minimum bpp to have usuable quality.

Table 1 Number of bpp allocated by DMA to the subvolumes for a total coding rate of 0.8

bpp on Fig. 3a, using only USQ: PSNR = 40 dB.

Table 2 Number of bpp allocated by DMA to the subvolumes for a total coding rate of 0.8

bpp on Fig. 3a, using USQ and pyramidal VQ: PSNR = 44.7 dB.
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Fig. 3a

Fig. 3b
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Fig. 5
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Fig. 7
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Fig. 11a
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Resolution
number

LLL LLH LHL LHH HLL HLH HHL HHH

0 - - - - - - - -
1 - 1.3 1.2 0 1.2 0 0 0
2 - 1.8 1.7 1.5 1.7 1.4 1.5 1.4
3 3.5 2.8 3.3 2.8 3.2 2.7 2.9 2.2

Table 1

Resolution
number

LLL LLH LHL LHH HLL HLH HHL HHH

0 - - - - - - - -
1 - V:0.5 V:0.8 V:0.6 V:0.6 V:0.4 V:0.5 V:0.5
2 - S:2.1 S:2.0 V:1.0 S:1.9 V:1.0 S:1.7 V:1.1
3 S:5.7 S:3.5 S:3.3 S:2.8 S:3.2 S:2.7 S:2.9 V:1.9

Table 2


