
Fast Tracking of the Left Ventricle Using Global

Anatomical Affine Optical Flow and Local

Recursive Block Matching

Daniel Barbosa1, Denis Friboulet2, Jan D’hooge3, and Olivier Bernard2

1 Life and Health Sciences Research Institute (ICVS), University of Minho, Portugal
2 Lab on Cardiovascular Imaging & Dynamics, Department of Cardiovascular

Sciences, KU Leuven, Belgium
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Abstract. We present a novel method for segmentation and tracking of
the left ventricle (LV) in 4D ultrasound sequences using a combination
of automatic segmentation at the end-diastolic frame and tracking using
both a global optical flow-based tracker and local block matching. The
core novelty of the proposed algorithm relies on the recursive formulation
of the block-matching problem, which introduces temporal consistency
on the patterns being tracked. The proposed method offers a competitive
solution, with average segmentation errors of 2.29 and 2.26mm in the
training (#=15) and testing (#=15) datasets respectively.

1 Introduction

While magnetic resonance imaging remains the gold standard for cardiac mor-
phology and function assessment, several studies have shown that real-time 3D
echocardiography (RT3DE) is a competitive modality for this clinical task [1].
Indeed, RT3DE offers superior performance when compared to conventional 2D
ultrasound imaging on the visualization of the entire left ventricle (LV), thus
avoiding several pitfalls of 2D echocardiography such as foreshortening, out-of-
plane motion and the need of geometric assumptions for volume estimation [2].
On the other hand, and due to the intrinsic physical limits of acoustical wave
propagation, 3D ultrasound imaging requires advanced beam-forming strategies
to sweep the entire scan volume with a number of ultrasound pulses compati-
ble with real-time imaging. As a consequence, image quality may be impaired as
compared to conventional 2D echo. Simultaneously, the increased dimensionality
of the data poses some challenges on the data analysis pipeline, which has trig-
gered a significant effort from both industrial and academic research teams on
the development of automated software packages for LV volumetric assessment
[3, 4]. However, even state-of-the-art commercial solutions still require some de-
gree of user interaction both at the initialization step and for a correction step
of the segmentation/tracking results [5]. Thus, tools allowing automatic fast 3D
LV segmentation are still needed [6].



Our prior approaches to LV tracking focused on the problem from a global
perspective, since we have developed an algorithm modeling the LV motion dur-
ing the cardiac cycle as an affine transformation. Despite its interesting perfor-
mance for the quantification of global functional indices [7], there is still room for
improved tracking performance using local refinement of the globally deformed
LV surface. We have initially used a hybrid method relying on the combina-
tion of the global tracking-based algorithm with a local refinement based on
segmentation-oriented clues. We have shown that this positively contributes to
the tracking performance [8], but it remains limited to the assumption that the
boundary position matches the optimal value of the associated data attachment
term. Since often the physicians do not delineate the LV boundaries at maxi-
mum local contrast positions, the development of accurate segmentation energies
is challenging. Thus, in the present paper we follow the global tracking plus lo-
cal refinement strategy but we drive the local tracking using a block matching
approach rather than a segmentation-based term.

2 Methods

2.1 Automatic LV Segmentation at End-Diastole

B-Spline Explicit Active Surfaces (BEAS) is a real-time segmentation framework
recently introduced [9]. The fundamental concept of the BEAS framework is
to regard the boundary of an object as an explicit function, where one of the
coordinates of the points within the surface, x1, is given explicitly as a function
of the remaining coordinates, i.e. x1 = ψ(x2, · · · , xn) = ψ(x∗). Following [9],
ψ was defined as a linear combination of B-spline basis functions, where the
segmented surface is explicitly controlled through the B-spline coefficients c[k],
where k defined the position of the B-spline kernel spanned on a grid.

In the present work, we use a modified version of the localized means sepa-
ration energy which takes advantage of the darker appearance of the blood with
respect to the myocardial tissue [10]. While this approach evolves the contours
towards the positions of maximum local contrast, the expert physicians usually
prefer to delineate the LV surface closer to the blood-tissue interface. Thus, we
have previously introduced a hyper-parameter that allows controlling the bal-
ance between the forces exerted by the inner and the outer regions [11]. This
allows to globally steer the LV surface position inwards or outwards, in order
to better match the manual contouring protocol. Thus, in the present work the
B-spline coefficients c[k] are updated using the following expression:
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where ux and vx are the local means estimated inside and outside a local neigh-
borhood B around each point on the LV surface, respectively. For clarity sake,
Ī(x∗) corresponds to the image value at the position x = {ψ(x∗), x2, · · · , xn}.
αin controls the balance between the forces exerted by the inner and outer re-
gions. A value of αin > 1 will increase the influence of the inner regions, thus



attracting the segmented LV towards the blood-tissue interface. For the present
work, ψ is defined in the spherical space, i.e. ρ = ψ(θ, ϕ). The initialization of
the segmentation algorithm was obtained with the method introduced in [10],
which provides an ellipsoid approximation to the LV endocardial surface.

2.2 Combination of Global Affine Optical Flow and Recursive

Block Matching For Efficient LV Tracking

We propose a two-step tracking strategy. First, we estimate the global defor-
mation between two subsequent frames using the anatomical affine optical flow
introduced in [7]. This allows a robust tracking over the cardiac cycle, while also
keeping a consistent shape since only affine transformations are allowed. The
novelty of the proposed solution lies in the subsequent local refinement based
on a block matching approach. Since the larger displacements were already ac-
counted for in the global tracking stage, the block matching can be restricted to
a smaller search region.

The traditional block-matching approaches perform an exhaustive search of a
given image kernel in the subsequent frame. The position optimizing the chosen
similarity criterion (such as sum of absolute differences, normalized cross correla-
tion, among others) is taken as the most likely new position and the inter-frame
displacement is computed accordingly. However, errors can cumulate over the
entire cardiac cycle and indeed it can be shown that there is an intrinsic opti-
mal relationship between the frame rate and the displacement to be recovered
[12]. One of the key drivers of error accumulation is the fact that the tracking
problem is posed as a sequential block matching problem, thus not enforcing
temporal continuity between multiple frames. Indeed, the kernel being tracked
at frame t might be completely distinct from the kernel found in t − 2. In the
present paper, we introduce the concept of temporally recursive block matching
by considering a dynamic version of the block to be searched in the next image.
Indeed, instead of considering that the kernel is simply a block from the frame
t, we use a dynamic block which is recursively built not only with the image
patterns from frame t but also from the previous frames.

Traditional block matching approaches estimate motion by tracking a 3-D
kernel between subsequent frames using a sliding window technique and using
a given similarity measure to estimate the optimal match. Considering the sum
of squared differences, the motion for a given point would be estimated as the
minimum over (u, v, w) of:

SSD(u, v, w) =
∑

x∈Ω

(I(x1, x2, x3, t)− I(x1 + u, x2 + v, x3 + w, t+ 1))2, (2)

where x ∈ Ω corresponds to the local region of interest (ROI) being tracked.
Typically the search region is limited by constraining the values of the dis-
placement vector (u, v, w) where the SSD is estimated. In this case the optimal
displacement (ut, vt, wt) is taken as the minimum of SSD(u, v, w).



In the proposed approach, instead of taking the local region of interest from
the previous frame, we recursively combine the kernel of the current frame being
tracked with the previously tracked ROI’s through:

RSSD(u, v, w) =
∑

x∈Ω

(Ĩ(x1, x2, x3, t)− I(x1 + u, x2 + v, x3 + w, t+ 1))2, (3)

where

Ĩ(x1, x2, x3, t) = 0.5 · Ĩ(x1−ut−1, x2−vt−1, x3−wt−1, t−1)+0.5 ·I(x1, x2, x3, t).
(4)

Using the proposed approach, if the tracking fails at a given frame, it can
still recover from the error since the temporal consistency introduced through
the recursive estimation of the ROI will steer the block matching in the next
frame towards the patterns previously being tracked.

3 Implementation Details

Prior to processing, each 4D ultrasound sequence was re-sampled to guarantee
isotropic voxel size, which was set to the smallest voxel dimension of the original
dataset. Regarding the underlying segmentation framework, all the parameters
were set as originally reported in [9] and [10], with two notable exceptions. First,
the size of the sliding plane used to detect the LV base position was set to rmin
(i.e. 15 mm) rather than rmax (i.e. 35 mm), contrarily to what was proposed
in [10]. Secondly, and since there was significant differences in the voxel size,
the radius of the local neighborhood was set to 16 mm rather than 16 voxels
as previously reported in [10]. The parameter controlling the balance between
the forces of the inner and outer regions, i.e. αin, was empirically set to 1.25.
The anatomical optical flow parameters were set as in [7], whereas the sizes of
the ROI and search kernels in the block matching stage were set to[7x7x7] and
[11x11x11], as proposed in [13]. No sub-pixel accuracy strategies were used for
the block-matching stage.

4 Experiments and Results

The proposed pipeline was tested in the database from the CETUS challenge,
which is composed by 4D ultrasound sequences from healthy volunteers and pa-
tients with myocardial infarction and dilative cardiomyopathy. This data has
been acquired with multiple imaging platforms from different vendors, namely
a Siemens SC 2000, a Philips i33 and a GE E9. This database is divided into
two subsets of 15 exams for training and testing. While for the training dataset
the meshes for the reference segmentation are provided, this information is not
available for the testing dataset. The performance of the algorithm was assessed
using distance metrics to the reference segmentation result, namely mean ab-
solute distance (MAD), Hausdorff distance (HD) and modified Dice coefficient



Table 1. Segmentation performance of the proposed algorithm in the CETUS training
dataset, starting from the ground truth surface at ED and evaluating the LV surfaces
at end-systole (MAD: mean absolute distance; HD: Hausdorff distance; Dice*: mod-
ified Dice coefficient (i.e. 1-Dice); R: Pearson correlation coefficient; LOA: Limits of
agreement, estimated as µ± 1.96σ). MAD and HD values given in mm.

Algorithm MAD HD Dice*
SV (ml) EF (%)

R LOA R LOA

Proposed 1.19±0.3 4.38±1.1 0.063±0.03 0.951 3.42±15.0 0.958 0.70±8.6

GAOF+BM 1.20±0.3 4.29±1.0 0.061±0.02 0.944 4.04±16.2 0.953 1.12±9.1

GAOF [7] 1.18±0.3 4.53±1.0 0.063±0.02 0.953 4.48±14.9 0.959 1.53±8.6

Table 2. Segmentation performance of the proposed algorithm in the CETUS database
(MAD: mean absolute distance; HD: Hausdorff distance; Dice*: modified Dice coeffi-
cient (i.e. 1-Dice)). All values given as µ± σ, MAD and HD values given in mm.

Training Dataset Testing Dataset

Algorithm MAD HD Dice* MAD HD Dice*

Proposed 2.29±0.6 8.20±2.4 0.102±0.03 2.26±0.8 8.45±2.5 0.127±0.05

HT [8] 2.47±0.7 8.61±2.4 0.107±0.04 2.36±0.9 8.99±2.8 0.131±0.06

GAOF [7] 2.29±0.6 8.21±2.4 0.102±0.05 2.25±0.7 8.45±2.5 0.127±0.05

(Dice∗, estimated as 1-Dice). These metrics were computed directly through the
challenge MIDAS platform, thus guaranteeing a common evaluation platform
for all the participants in the challenge. The accuracy of the estimation of LV
volumetric indices used in clinical routine, namely end-diastolic volumes (EDV),
end-systolic volumes (ESV), stroke volumes (SV) and ejection fraction (EF), was
equally included. The reported CPU timings refer to a MATLAB-based imple-
mentation running on a standard Windows 7 laptop equipped with a dual-core
i7-640m processor and 4 GB of RAM.

We have carried an initial experiment using the training dataset in order to
evaluate the added value of the proposed dynamic ROI introduced in (3) versus
the classical pairwise block matching for local refinement (GAOF+BM), as well
as against the global affine anatomical optical flow baseline tracker (GAOF).
The results of this initial experiment are presented in Table 1.

The summary of the results for the distance segmentation metrics is pre-
sented in Table 2, while the accuracy of the estimation of LV volumetric indices
can be found in Tables 3 and 4. Fig. 1 illustrates the local surface errors on a
representative sub-set of 3D ultrasound frames. We have equally compared the
performance of the proposed method with the baseline global affine optical flow
tracker and with the hybrid framework (HT) introduced in [8], where the local
refinement is done using segmentation-based clues, as opposed to local tracking-
based hints in the proposed algorithm. An example of a 4D RT3DE segmented
with the proposed approach is illustrated in Fig. 2



Table 3. Assessment of LV volumetric indices in the training database (R: Pearson
correlation coefficient; LOA: Limits of agreement, estimated as µ± 1.96σ).

Algorithm EDV (ml) ESV (ml) SV (ml) EF (%)

R LOA R LOA R LOA R LOA

Proposed 0.99 13.8±36.2 0.99 9.4±34.8 0.92 4.3±18.8 0.92 1.1±11.4

HT [8] 0.99 13.8±36.2 0.98 11.7±40.9 0.91 2.0±20.5 0.90 0.3±13.3

GAOF [7] 0.99 13.8±36.2 0.99 9.6±34.5 0.93 4.1±18.2 0.92 1.0±10.9

Table 4. Assessment of LV volumetric indices in the testing database (R: Pearson
correlation coefficient; LOA: Limits of agreement, estimated as µ± 1.96σ).

Algorithm EDV (ml) ESV (ml) SV (ml) EF (%)

R LOA R LOA R LOA R LOA

Proposed 0.97 -11.2±22.7 0.99 -13.3±13.3 0.50 2.1±20.0 0.93 4.7±7.8

HT [8] 0.97 -11.2±22.7 0.97 -9.6±19.5 0.71 -1.6±18.4 0.84 3.0±11.2

GAOF [7] 0.97 -11.2±22.7 0.99 -13.0±13.0 0.51 1.9±19.8 0.93 4.5±7.7

5 Discussion

The results of the initial experiment put an evidence on the trade-off between
local accuracy and global tracking performance. Indeed, while starting from the
reference LV surfaces, the global affine optical flow algorithm introduced in [7]
presents the lower MAD, the local refinement using block matching improves the
local tracking, as supported by the lower HD values. Regarding the added value
of the proposed algorithm, the memory effect of the ROI being locally tracked
improves the estimation accuracy of the functional LV volumetric indices (SV
and EF), reducing the bias and the limits of agreements of the estimated values
when compared to the traditional block matching refinement.

For the complete pipeline (ED segmentation + LV tracking over the entire
cycle), the method in [8] presents lower tracking performance than the one in-
troduced in the present manuscript, whose local refinement strategy is primarily
driven by tracking-based clues. While this observation does not imply that hy-
brid strategies are not suited to LV tracking problems, it stresses the need to
develop more accurate segmentation energies adapted to the complexity of the
local appearance of RT3DE images around the endocardial surface, since posi-
tions of higher contrast do not always correspond to the true endocardium.

The global tracker [7] remains very competitive when compared with the
proposed approach, thus not being trivial to identify the best tracking strategy.
Indeed, while the LV motion using the proposed approach appears more realistic,
since it presents more complex deformation patterns with local variations, the
global tracker remains more insensitive to errors. Since the analyzed dataset only
assesses the LV position at ED and ES frames, a more complete 4D analysis
would likely be necessary to put in evidence the differences between the global
tracking approach and the locally refined LV surface using the proposed method.



Fig. 1. Best (left) and worse (right) segmentation results for the training (up) and test-
ing (down) datasets. The local segmentation error is color encoded, while the reference
LV surface is shown in white for the training dataset cases.

6 Conclusion

The proposed LV segmentation and tracking framework offers competitive per-
formance for the fully automatic detection of LV endocardial borders in 4D
ultrasound sequences. This is supported by the low segmentation errors and ac-
curate volume estimates found in a cohort of 30 exams with a wide range of image
quality and cardiac functional status. Furthermore, the computational burden
of the proposed method remains low, allowing global affine tracking plus local
refinement to be done in approximately 2s for two consecutive frames. From
our prior experience, this indicates that near-real time performance could be
achieved by using a more efficient coding of the algorithm in, for instance, C++.
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