
ReproVIP Report #2.1.1
Application Deployment Strategies

Emmanuel Medernach1, Gaël Vila2, Axel Bonnet2, Sorina Camarasu-Pop2

1 Univ Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
2 INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm,

CREATIS UMR 5220, U1294, Lyon, France

Abstract. This paper reports achievements of the ReproVIP project, regarding
the deployment of the targeted applications on the available infrastructures to
ensure reproducibility. One publication has been produced in this framework
and submited for evaluation at ACM REP’24

Résumé. Ce document rapporte des avancées du projet ReproVIP concernant
le déploiement des applications ciblées dans le cadre du projet sur les infras-
tructures disponibles pour assurer la reproductibilité. Une publication a été
réalisée dans ce cadre et soumise pour évaluation à ACM REP’24

Contents

1 Introduction 2

1.1 Context . 2

1.2 Objectives . 3

2 Materials & Methods 3

2.1 Infrastructures . 3

2.2 Deployment strategies . 3

2.3 Use-case . 5

3 Reproducibility Experiments 5

4 Discussions and conclusions 5

1. Introduction

1.1. Context

As mentioned in previous reports [1], a scientific result depends on (i) a methodological
choice (e.g., a parameter set), applied on (ii) a given pipeline (e.g., a scientific application),
executed within (iii) a computing environment (comprising both software dependencies
& hardware architectures). Within this study we focus on the deployment of scientific
applications as a means of improving reproducibility at the environment level.

We consider reproducibility as one’s ability to get identical outputs when applying the
same treatments to the same set of inputs. The causes for the lack of reproducibility on the
computational environment level are mainly related to the library dependencies and their
evolution over time, but also to numerical instability due to floating point arithmetic issues
(rounding errors, hardware and compiler optimizations). For a deterministic application,
there may be different sources of variability:

• the source code of the application itself
• versions of all its (build and runtime) software dependencies
• the compiler and compilation options, or the interpreter
• the hardware architecture
• parallelisation (when applicable), which is beyond the scope of this study.

Approaches to mitigate the extent of environment-introduced variability often rely
on package managers or containers [2]1. There exist different types of package managers,
such as (i) OS-level (e.g., yum or apt), (ii) user-level (e.g., pip or conda), or (iii) functional
user-level (e.g., Nix or Guix). Containers allow developers to package and run an appli-
cation and its dependencies — including all configuration files and dependent libraries —
in a portable environment. The most popular container technologies are currently Docker
and Singularity (renamed Apptainer).

The Virtual Imaging Platform (VIP) deploys and executes pipelines on the distributed
and heterogeneous computing resources of the EGI e-infrastructure. Most of VIP com-
putations use the legacy EGI high throughput computing (HTC) nodes available to the
biomed Virtual Organization through the Dirac interware. HTC clusters are administrated
independently and jobs have standard user rights, with no possibility of using OS-level
package managers or Docker containers as such. Available alternatives are Singularity,
udocker2 and access to a central software distribution solution based on the CernVM File
System (CVMFS)3. VIP jobs have to run seamlessly on all available computing resources,
regardless of their architecture and configuration. Application deployment on the comput-
ing resources is thus a key element, for ensuring both successful execution and a certain
level of reproducibility. Current VIP applications are deployed using either static built
executables or udocker containers stored on CVMFS. The use of local clusters and Cloud
resources, in addition to HTC, is also possible and increasing in VIP. Figure 1 summarizes
the VIP ecosystem.

1See also https://epcced.github.io/2020-12-08-Containers-Online
2https://github.com/indigo-dc/udocker
3https://cernvm.cern.ch/fs/

2

https://epcced.github.io/2020-12-08-Containers-Online
https://github.com/indigo-dc/udocker
https://cernvm.cern.ch/fs/

Figure 1. VIP ecosystem

1.2. Objectives

In this context, one of the aims of the ReproVIP project is to evaluate different application
deployment technologies with respect to the:

• Reproducibility impact at the environment level
• Applicability to the targeted infrastructures and use-cases.

This deliverable gives the global overview of our study and then concentrates mostly
on the second point. The reproducibility impact at the environment level has been pub-
lished in [3].

2. Materials & Methods

2.1. Infrastructures

For VIP usage we target the EGI infrastructure, but since EGI is a production infrastruc-
ture, we used Grid’5000 [4] in our study. Grid’5000 is a large-scale testbed deployed in
France for experiment-driven research in all areas of computer science. It provides access
to a large amount of resources highly reconfigurable and controllable, which allowed us
to adopt solutions available on EGI, such as CVMFS. The computation experiment on
Grid’5000 is summarized in Figure 2.

2.2. Deployment strategies

Given the large adoption of containers by various platforms, such as VIP, Neurodesk[2],
BIDS apps[5] or Boutiques[6], their choice among the studied technologies seemed straight-
forward. In addition to containers, we also considered Guix, which is a package and
system manager allowing to build reproducible computational environments with the
help of modules that accurately document the software building chain and its dependen-
cies. Moreover, Guix packages could be exported as Docker containers or other types of
archives.

3

Figure 2. Summary of the Grid’5000 experiment

2.2.1. CVMFS

CVMFS provides a scalable software distribution service. CVMFS is implemented as
a POSIX read-only file system in user space. Files and directories are hosted on stan-
dard web servers and mounted in the universal namespace /cvmfs. The STFC Scientific
Computing Department at RAL maintains a CVMFS server for the EGI communities,
among which biomed. CVMFS is currently the main software-distribution solution for
the biomed community using the EGI HTC resources.

VIP has been using CVMFS in production for the last few years. We see it as an
efficient and scalable solution to make software available on EGI computing nodes, in
addition to other software packaging and distribution strategies, such as containerization
or Guix packages. This is also the way CVMFS has been used in this study.

In addition to the CVMFS uploader maintained by RAL, we also installed a local
CVMFS server in a virtual machine on the SCIGNE4 infrastructure. This server was
mainly used for jobs running on the Grid’5000 infrastructure, but we were also able to
use it for EGI jobs. On Grid’5000 nodes, we installed and configured a CVMFS client to
access files on our CVMFS server. For VIP jobs running on EGI, we configured them to
use our local CVMFS server instead of the default one.

2.2.2. Docker

For the Docker deployment, we used the FSL Docker image vnmd/fsl_6.0.5.1 provided
on Docker Hub. On Grid’5000 nodes we were able to to install and use Docker (package
docker-desktop-4.20.1-amd64.deb), while on EGI HTC resources we use udocker. We
cloned the udocker repository (version 1.3.1) on the CVMFS biomed uploader where we
used it to pull the Docker image and to create a container stored in the biomed CVMFS
folder. Jobs running on EGI HTC nodes cloned the same udocker repository and used

4https://scigne.fr/

4

https://scigne.fr/

udocker for executing the container.

2.2.3. Guix

We wrote FSL Guix modules to compile FSL and all its dependencies in a reproducible
manner. In Guix, all packages are installed in separate directories. We adapted the com-
pilation scripts to reference these paths. Package compilation with Guix was done using
the guix pack command and using relocatable packages options.

Our Guix build sever was a virtual machine deployed on a local cloud infrastructure
(SCIGNE). The packages were build on our Guix build server with gcc compiler version
9.5.0 and then deployed using our local CVMFS server.

FSL Guix modules are available at: gitlab.in2p3.fr/reprovip/reprovip-guix

2.3. Use-case

We chose to focus on the FSL FLIRT application, a software tool frequently used as
a building block in neuroimaging analyses (and which had previously been deployed
through VIP on EGI as an executable compiled on CentOS). For this study, FSL was
executed on the OASIS-I dataset comprising 148 brain scans from 39 healthy subjects.

3. Reproducibility Experiments
Using the Grid’5000 infrastructure, we studied the effect of nine different CPU mod-
els using both Docker and Guix and we compared the resulting hardware variability to
numerical variability measured with random rounding. Results showed that hardware,
software, and numerical variability led to perturbations of similar magnitudes — al-
though uncorrelated — suggesting that these three types of variability act as independent
sources of numerical noise with similar magnitude. The effect of hardware perturbations
on linear registration remained moderate, but might impact downstream analyses when
linear registration is used as initialization step for other operations.

The study will be presented at the 2024 ACM Conference on Reproducibility and
Replicability (ACM REP ‘24) . The preprint can be downloaded below:

https://hal.science/hal-04006152

4. Discussions and conclusions
We used the Grid’5000 infrastructure to study the variability in results obtained with a
neuroimaging application packaged with Docker and Guix and executed on nine different
CPU models. The setup was conceived as close as possible to the one used by VIP on
EGI in production conditions.

Docker and Guix, the two packaging solutions used in our experiments, are known to
mitigate software variability. From a computational bit-wise reproducibility point of view,
experiments conducted in this study show that the two packaging solutions lead to similar
conclusions: results are bit-wise reproducible when using the same packaged executable
on equivalent micro-architectures. However, the Docker image is a black box providing
little or no information on how the executable was built (both on the compilation process,

5

https://gitlab.in2p3.fr/reprovip/reprovip-guix
https://acm-rep.github.io/2024/cfp/
https://acm-rep.github.io/2024/cfp/
https://hal.science/hal-04480308/file/ACMREP24_preprint_hal.pdf

and on software dependency stack). In contrast, Guix enforces full transparency on both
compiling and runtime environments, requesting for the description and availability of all
dependencies. The Guix package is thus more complex to produce than a Docker image,
but, once available, variations can be easily built by modifying compiler options or by
using other versions of dependent packages. Moreover, Guix allows to save a manifest
file, creating a profile which contains provenance metadata, and able to rebuild the exact
same image at any future time.

Bit-wise reproducibility would require freezing all software, compiler and depen-
dency versions, using no compiler optimizations and disabling dynamic architecture sup-
port. While this can be important in some cases, we can also question the pertinence of
such an approach on a larger scale and the longer term. Computing environments cannot
be frozen eternally and scientific results are subject to certain degrees of variability that
need to be taken into account.

If we take into account the applicability of the studied solutions to the targeted infras-
tructure, we need to consider that Guix is currently not available on the EGI HTC nodes.
Guix packages need therefore to be deployed on CVMFS using relocatable packages op-
tions. However, deploying all the Guix generated files on CVMFS may be challenging
because of their large number5. For this reason, the current Guix-CVMFS based solution
is available in VIP in test mode only. The adoption of Guix as package manager on top of
the CVMFS software distribution solution could help solve these issues.

References
[1] Gaël Vila, Morgane Des Ligneris, Axel Bonnet, et al., “ReproVIP Report #1.1.1 Selected

Metrics and Reproducibility Results,” Tech. Rep., CREATIS Université Lyon 1, Feb.
2023.

[2] Angela I. Renton, Thanh Thuy Dao, David F. Abbott, et al., “Neurodesk: An accessi-
ble, flexible, and portable data analysis environment for reproducible neuroimaging,”
bioRxiv, 2022.

[3] Gaël Vila, Emmanuel Medernach, Inés Gonzalez, et al., “The Impact of Hardware Vari-
ability on Applications Packaged with Docker and Guix: a Case Study in Neuroimag-
ing,” Submitted at https://acm-rep.github.io/2024/, Feb. 2024.

[4] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, et al., “Adding virtualiza-
tion capabilities to the Grid’5000 testbed,” in Cloud Computing and Services Science,
Ivan I. Ivanov, Marten van Sinderen, Frank Leymann, and Tony Shan, Eds., vol. 367
of Communications in Computer and Information Science, pp. 3–20. Springer Inter-
national Publishing, 2013.

[5] Krzysztof J Gorgolewski, Fidel Alfaro-Almagro, Tibor Auer, et al., “Bids apps: Im-
proving ease of use, accessibility, and reproducibility of neuroimaging data analysis
methods,” PLoS computational biology, vol. 13, no. 3, pp. e1005209, 2017.

[6] Tristan Glatard, Gregory Kiar, Tristan Aumentado-Armstrong, et al., “Boutiques: a flexi-
ble framework to integrate command-line applications in computing platforms,” Gi-
gaScience, vol. 7, no. 5, pp. giy016, 2018.

5Large catalogs stress the CernVM-FS transport infrastructure and mai require splitting into nested
catalogs

6

	Introduction
	Context
	Objectives

	Materials & Methods
	Infrastructures
	Deployment strategies
	Use-case

	Reproducibility Experiments
	Discussions and conclusions

