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ABSTRACT

The analysis of trabecular bone micro structure from in-vivo
CT images is still limited due to limited spatial resolution
even with the new High Resolution peripheral Quantitative
CT (HR-pQCT) scanners. In previous works, it has been pro-
posed to exploit super resolution techniques to improve spa-
tial resolution. However, the application of such methods re-
quires to know the blurring kernel, which is challenging for
experimental HR-pQCT images. The goal of this work is to
determine the blurring kernel of these scanners in order to fa-
cilitate an increase of the resolution of the bone images and
of the segmentation of the bone structures. To this aim, we
propose a method based on mutual information and compare
it with classical L2-norm minimization methods.

Index Terms— Deconvolution, super-resolution, Total
Variation, 3D CT images, bone micro-architecture

1. INTRODUCTION

X-ray CT techniques are well adapted to image bone structure
at the organ scale. However, imaging bone micro architecture
in vivo remains challenging due to the need of high spatial
resolution (order of 100µ m) while keeping the X-ray dose as
low as possible. High Resolution peripheral Quantitative CT
(HR-pQCT) has been developed to reach these requirements.
HR-pQCT devices providing images with spatial resolution
of about 100-150µm have been installed for research purpose
at different hospitals [1]. However, while the images enables
3D rendering of trabecular bone, the extraction of morphome-
tric and topological quantitative parameters remains somehow
limited. This is related to the segmentation which is an issue
for structures that are of the same order of size as the spa-
tial resolution. To improve spatial resolution, we proposed
to investigate super resolution techniques based on a single
image and prior. In a previous work, we have showed that
Total Variation (TV) regularization allowed to improve image
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quality based on artificially degraded images [2, 3]. The as-
sumption is that the image degradation can be modelled by a
linear spatial invariant system characterized by a point spread
function or a blurring kernel. However, when the method has
to be applied to experimental HR-pQCT images, the kernel is
unknown and has to be determined. Since the accuracy of the
kernel has a strong impact on the results, the blurring kernel
involved in the image formation process must be estimated
with care.

The aim of this work is to estimate the degradation ker-
nel of HR-pQCT for given high resolution and low resolution
images. The origins of blur are various and various meth-
ods have been developed to estimate blur kernels [4–6]. The
blur determination can be regularized with a finite dimen-
sional approximation [7] or patch-based priors [8]. Some spe-
cific methods for motion blurred images have been studied
in [9, 10]. The more classical method to obtain the kernel is
to minimize a L2 distance.

We propose to use a regularization term based on Mutual
Information (MI) with a gradient descent. The kernels ob-
tained with this approach and L2 regularization are then com-
pared with TV regularization applied to real data. They are
used to solve the super-resolution problem in order to improve
the in-vivo HR-pQCT image resolution and evaluated with re-
spect to quantitative parameters of the bone micro-structure.

This paper is organized as follows. In section 2, we
present the image formation model and the regularization
functional used for the kernel estimation. The optimization
methods are detailed in section 3. In section 4, the numerical
results are detailed. Concluding remarks are given at the end
of the article.

2. THE INVERSE PROBLEM OF THE BLURRING
KERNEL ESTIMATION

2.1. The image problem formulation

In order to estimate the degradation kernel of HR-pQCT im-
ages, we consider two experimental CT images of a given
sample, a high resolution µCT image considered as the
ground truth and a low resolution noisy HR-pQCT image.



The reconstruction of a 3D image with an improved reso-
lution from a single low-resolution image can be expressed as
follows. We assume that the low and high resolution images
are defined on a bounded region Ω. The low-resolution im-
age is obtained from a high-resolution image with blur, down
sampling and noise, which can be written as:

g = U(h ∗ (f + c)) + n (1)

where g ∈ RN denotes the N -voxels 3D low-resolution
noisy image, and f ∈ RN ′

denotes an N ′ = N × p3-voxels
high-resolution image with super-resolution factor p = 2
in each dimension, n is the additive noise component, U
is the undersampling operator and h the convolution kernel
accounting for the blurring of images. We also introduce a
constant c corresponding to a shift between the grey levels of
the images f and g. Due to the use of different experimental
devices, recovering the µCT image f from the given HR-
pQCT degraded image g is an ill-posed problem and must be
regularized.

2.2. L2-norm minimization

The determination of the blurring kernel h from a couple of
high and low resolution images can be considered as a linear
inverse problem. The usual approach can be formulated as:

ĥ ∈ arg min
h

J1(h, c) = ‖U(h∗ (f+c))−g‖22 +αR(h) (2)

where α is a regularization parameter and R a regularization
functional [11]. The regularization term R(h) = ‖∇h‖22 is
chosen to penalize the fast variations of the kernel.

The search for the minimizer of the regularization func-
tionals are done using a gradient descent strategy. For both
regularization functionals we use an alternate minimization
method with respect to h and c. The convolution operator
h→ (f + c)∗h is a linear convolution operator. The gradient
of the functional J1 with respect to h and c are:

∂J1(c, h)

∂h
= (f + c) ∗ U((f + c) ∗ h)− (f + c) ∗ g − α4h

∂J1(c, h)

∂c
= 2c||U(E ∗ h)||2 + 2〈U(h ∗ f)− g, U(E ∗ h)〉

where 〈, 〉 is the scalar product associated to L2(Ω), the space
of the square integrable functions on Ω. E is a matrix whose
values are all equal to 1.

2.3. Mutual Information based approach

2.3.1. Why Mutual Information?

Other statistical dissimilarity measures [12] may be more ef-
ficient than the L2 norm for enhancing the similarity between
the histogram distribution of U(h ∗ (f + c)) and g. To this
aim, we propose to exploit the MI between U(h ∗ (f + c))

and g.The estimated kernel h will then be obtained with the
minimization of the regularization functional J2(h, c):

J2(h, c) = −MI(U(h ∗ (f + c)), g) + α‖∇h‖2 (3)

The MI between the two variables U(f ∗h) and g is based
on their joint probability function. It gives an estimate of their
statistical dependence and it has been used for multi-modal
image matching [12]. It is defined by:

MI(U((f + c) ∗ h), g) =
∑
i,j

Pconj(i, j)·

log
Pconj(i, j)

PU(h∗(f+c))(i)Pg(j)

(4)

where Pconj(i, j) is the conjugate probability distribution
of U(h ∗ (f + c)) and g for intensity values i and j, and
PU(h∗(f+c))(i), Pg(j) are the marginal probability distribu-
tion of U(h ∗ (f + c)) and g. In order to evaluate the MI, we
consider a Parzen estimator [13, 14] for the joint probability
function with a Gaussian of variance β, and a normalization
constant |Ω|:

Pconj(i, j) =
1

|Ω|

∫
Ω

exp(− (U(h ∗ (f(x) + c))− i)2

β2
)

· exp(− (g(x)− j)2

β2
)dx

The marginal probability distributions can be obtained as:

PU(h∗(f+c))(i) =
∑
j

Pconj(i,j), Pg(j) =
∑
i

Pconj(i,j)

2.3.2. Minimization algorithm

Similarly to the L2-norm minimization method, the mini-
mization of J2 is implemented by a gradient descent strategy
and an alternate minimization.

The MI is a nonlinear functional of the kernel h. Given an
initial estimate h0, denote NMI = −MI , the minimization of
the kernel with gradient descent of the MI is equivalent to the
solution of the initial value problem:{

dh

dt
= −∂J2(h, c)

∂h
= −(

∂NMI(c, h)

∂h
− α4h)

h(0) = h0

(5)

where
∂J2(h, c)

∂h
is the gradient of J2 with respect to h. We

will admit in this work that this first order differential equa-
tion is well-defined.

The first variation of the MI at h in the direction of k is
defined by:

δkNMI(h) =
∂NMI(h+ εk)

∂ε
|ε=0 (6)



and the gradient is obtained with:

δkNMI(h) = 〈∂NMI(h, c)
∂h

, k〉 (7)

Considering the fact that Pconj is a probability distribu-
tion, we have [12]:

δkNMI(k) = −
∑
i,j

δkPconj(i,j) ln
Pconj(i,j)

PU(h∗(f+c))(i)Pg(j)

(8)
where

δkPconj = − 2

β2

∫
Ω

{U(k ∗ (f(x) + c))(U(h ∗ (f(x) + c))

− i) exp(− (U(h ∗ (f(x) + c))− i)2 + (g(x)− j)2

β2
)}dx

(9)
Based on this formula, we can show that the gradient of

the NMI (negative MI) with respect to h is given by:

∂NMI(c, h)

∂h
= 2(f + c) ∗

∑
i,j

{(U(h ∗ (f(x) + c))− i)·

exp(− (U(h ∗ (f(x) + c))− i)2 + (g(x)− j)2

β2
)·

ln
Pconj(i,j)

PU(h∗(f+c))(i)Pg(j)
}

(10)
On the other hand, the gradient of the negative MI with re-
spect to the constant c is given by:

∂NMI(c, h)

∂c
=∫ ∫ ∫

M(i, j, x)
2U(h ∗ E) · (U(h ∗ (f + c))− i))

−β2
didjdx∫ ∫ ∫

M(i, j, x)
(U(h ∗ E))2

−β2
didjdx

(11)
with

M(i, j, x) = exp(− (U(h ∗ (f + c))− i)2 + (g − j)2

β2
)·

log
Pconj(i, j)

PU(h∗(f+c))(i)Pg(j)
(12)

3. NUMERICAL EXPERIMENTS

3.1. Simulation details

The tests for the determination of the blurring kernel were
performed on 3D experimental images of trabecular bone ob-
tained from HR-pQCT [1] and µCT [15]. The HR-pQCT im-
age is considered as the low resolution image with a resolu-
tion 82µm; the image from µCT is the high resolution image,

with a resolution equal to 41µm (registered from 24µm). The
high and low resolution images were respectively cropped at
N’= 200x200x200 voxels and N=100x100x100 voxels. The
initial kernel h0 is chosen as a Gaussian with a standard de-
viation of 4. Several support sizes for the kernel have been
investigated with odd number ranging from 5 to 13. Differ-
ent regularization parameters have also been tested. The ker-
nels obtained with two regularization functionals based on the
L2 norm or MI are used to solve a super-resolution problem
with Total Variation regularization. The minimization method
is based on the Alternated Direction Method of Multipliers
(ADMM) [3]. Taking account of smoothing constraints, the
augmented Lagrangian considered is:

LA =
µ

2
||U(h ∗ (f + c))− g||2+∑
i

{||vi||+
β

2
||vi −Di ∗ f ||2 − λti(vi −Di ∗ f)}

λi is Lagrangian multipliers for TV, β a Lagrangian parameter
andDi is the gradient operator at the voxel i. The saddle point
of the Lagrangian is estimated with successive updates.

In TV super resolution restoration, parameters are chosen
to obtain the best decrease of the regularization functional,
µ = 10, β = 7 for both kernels. Iterations are stopped
when ||f

n+1−fn||2
||fn+1||2 ≤ 10−3. In order to evaluate the recon-

struction, we have calculated the Peak Signal-to-Noise Ratio

(PSNR) −10 log
(f − fn)2

(max(f)−min(f))2
, where f is the high

resolution image, fn is a super-resolution image, (f − fn)2

the mean square error. The Otsu segmentation method [16] is
applied to calculate DICE ( 2A

⋂
B

A+B , A and B are binary im-
ages so that the rate of overlaps of 2 images is evaluated). We
have also estimated the BV/TV (bone volume/total volume)
and bone connectivity density β1

TV , where β1 is the first order
Betti number evaluated from the Euler number and TV the
total volume [17, 18]).

3.2. Numerical results

The images obtained by TV regularization with these two op-
timized kernels are displayed in Figure 1 together with the
low and high resolution images. Figure 1(c)(d) display more
structural details compared to the low resolution image (b),
but the reconstructed structures are thick regarding to the high
resolution image (a).

The evolutions of PSNR, DICE, BV/TV, connectivity
density (defined in 3.1) as well as data fitting term as a
function of the number of iterations are illustrated in Fig 2-6.
PSNR reflects the similarity of two images in grey level, while
DICE, BV/TV and connectivity density compare binary im-
ages. As expected, we obtain a decrease of the reconstruction
errors evaluated with PSNR or DICE with the two methods.
The kernel obtained with L2 minimization performs slightly



(a) binarized high resolution im-
age

(b) binarized low resolution im-
age

(c) binarized super resolution im-
age with the kernel determined by
L2-norm

(d) binarized super resolution im-
age with the kernel determined by
MI

Fig. 1: illustration of binarized high resolution, low resolution, L2 kernel restored image and MI kernel restored image.

Fig. 2: Evolution of PSNR as a function of iteration for the
two kernels.

better in term of PSNR, whereas the one derived from MI is
better regarding the DICE.

The obtained super-resolution images have thinner struc-
tures than the low resolution image, but the reconstructed
structures are still too thick. This is also illustrated in Fig-
ure 4 where the red short dot line represents the BV/TV of the
high resolution image. Both methods improves image quality
with respect to BV/TV, but this ratio is still too high in the
reconstructed images. Connectivity density is a topological
criterion. Even though it has been improved as displayed in
Figure 5, the final divergence tail shows that the determined
kernels did not well recover the degradation of the topolog-
ical structure. In addition, the kernel from L2 minimization
changes the topological structure of the super-resolution im-
age more slowly than the one from MI optimization. Figure
6 illustrates the data term evolution. This figure also shows
the convergence of the TV reconstructions with the two opti-
mized kernels. In general, the kernel deduced from L2 norm
is more efficient than MI considering connectivity density and
local artifacts, whereas the kernel from MI is slightly better
regarding BV/TV and data fitting term.

Fig. 3: Evolution of DICE as a function of iteration for the
two kernels.

4. CONCLUSION

The determination of the kernel is a major issue in image
restoration. In this paper, we have compared two methods of
determination of the blurring kernel based on the optimization
of MI orL2 norm. Similar results are obtained by both kernels
derived from L2 norm or MI. The kernel from L2 norm pre-
serves a better connectivity density, and the one from MI per-
forms well in BV/TV. One possible improvement for our MI
gradient descent method is to consider local information [12].
Hermosillo et al. proposed a local MI method, which will
generate a spatially variant kernel that may improve the re-
sults. These results need to be further confirmed on other
ROIs and other HR-pQCT images.
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