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ABSTRACT

The analysis of trabecular bone micro structure from in-vivo
CT images is still limited due to insufficient spatial resolution.
In a previous work, we have investigated the use of super res-
olution techniques to improve image quality based on a TV
based approach. However, the method is limited to recover
the bimodal nature of the image. In this work, we investigate
the use of a double well non convex constraint to solve the
joint super resolution/segmentation problem. Two different
minimization schemes are proposed to obtain a critical point
of the non convex functional. The two methods improve the
reconstruction results on real data.

Index Terms— Super-resolution/segmentation, noncon-
vex, nonsmooth, Cahn Hilliard, total variation, 3D CT image,
bone micro-architecture.

1. INTRODUCTION

The study of the trabecular bone micro-architecture is crucial
in the diagnosis of osteoporosis because it is one of the deter-
minant of bone strength [1]. New High Resolution peripheral
Quantitative CT (HR-pQCT) devices with improved spatial
resolution are now available to investigate the bone micro-
architecture with in-vivo [2] measurements.

The bone structure analysis is based on the segmentation
of the images to extract the bone from background. This seg-
mentation is the first step to calculate morphological or topo-
logical parameters describing the bone micro-structure. Yet,
the segmentation step remains an issue because the spatial
resolution of the images is still too low compared with the
trabeculae bone size.

The aim of this work is to investigate joint super-resolution
and segmentation methods to improve the trabecular bone
analysis from in-vivo HR-pQCT images. In previous works,
we investigated methods to improve the quality of trabecular
bone micro-CT images based on Total Variation regulariza-
tion [3, 4]. The images we considered having a quasi-binary
structure, good results were obtained with single-image
super-resolution. Results on experimental micro-CT images
artificially deteriorated showed an improvement of the bone
parameters. However, the effect of convex constraint used in
our TV regularization method remains limited to recover the
bimodal histogram of the ground truth image.

In this work, we propose to investigate the addition of
a double well non convex constraint to the TV regularized
functional in view to enhance the bimodality of the estimated
image. A good candidate is the Cahn-Hilliard model [5]
which is characterized by a double-well potential. This func-
tional is difficult to minimize but numerical methods adapted
to this type of non-convex functional have been investi-
gated [6–8]. On the other hand, nonconvex and nonsmooth
problems have received much attention nowadays in signal
and image processing. Recently, different approaches have
been proposed to find critical points for non convex and non
differentiable functionals based on proximal operators [9],
iterative reweighted algorithms [10] or the Alternating Direc-
tion Method of Multipliers (ADMM).

Our main objective here is to compare two minimization
schemes for the regularization functional. This paper is or-
ganized as follows. In the second section, we introduce the
joint segmentation/super-resolution inverse problem and the
Cahn-Hilliard model. Two different methods to minimize the
regularization functional will be described in section 3. In
section 4, we present numerical results based on HR-pQCT
images of bone samples. Conclusion and perspective work
will be presented in section 5.

2. SUPER-RESOLUTION/SEGMENTATION
PROBLEM WITH TV AND CAHN-HILLIARD

DOUBLE WELL POTENTIAL
2.1. The inverse problem formulation
The reconstruction of a 3D image with an improved resolu-
tion from a single low-resolution image is based on the direct
problem of the image degradation. In our approach, we as-
sume that the low-resolution image is obtained from a high-
resolution image with blur, down sampling and noise. The
forward problem can be written as:

g = Af + n (1)
where g ∈ RN denotes theN -voxels 3D low-resolution noisy
image, and f ∈ RN ′

denotes an N ′ = N × p3-voxels 3D
high-resolution image with super-resolution factor p = 2 in
each dimension, A : RN ⊂ L2(Ω) → RN ′ ⊂ L2(Ω) is
the linear operator accounting for blurring followed by down-
sampling defined on the bounded domain Ω and n is the noise
component. Our inverse problem is to recover the image f
from the given degraded image g. We assume the blurring



kernel is known from preliminary measurements. It is an ill-
posed problem, errors in the data will be magnified and this
problem must be regularized. Stable solutions can be obtained
by minimizing a regularization functional of the form:

J(f) = min
f
‖Af − gδ‖22 + µR(f) (2)

whereR(f) is a regularization term introducing some a priori
knowledge on the solution. The first term enforces the fitting
to the data. The regularization parameter µ controls the bal-
ance between the two terms of the regularization functional.

The images considered are quasi-binary and the problem
can be understood as a joint segmentation/reconstruction
problem. Recently, we investigated Total Variation(TV)
schemes as a regularization term to solve this problem to
obtain stable solutions [3]. The TV regularization term is
defined as TV (f) =

∫
Ω
|∇f(r)|dr, where |∇f(r)| is the

Euclidean norm of the gradient. As a well-known way to
recover edges of an image, the TV is also easy to minimize
because of its convexity. However, other non convex regular-
izers can be investigated to enforce the quasi binary nature of
the image.
2.2. Double well potential Cahn-Hilliard model
The double well potential of Cahn-Hilliard model for bi-
nary images is defined by W (f) = f2(1 − f)2. A class
of fourth order inpainting algorithms for binary images us-
ing a modified Cahn-Hilliard equation has been proposed by
Bertozzi, Esedoglu and Gilette [7, 8] considering convexity
methods with the Sobolev H−1 gradient and the inner prod-
uct 〈., .〉−1 = 〈∇4−1,∇4−1〉. In this work, we consider the
potential W (f) = (f − f1)2(f − f2)2, where f1 and f2 are
the positions of two peaks of the histogram. We will consider
the following minimization problem including the TV term
and the Cahn-Hilliard term:

J(f) = min
f
‖Af − gδ‖22 + µ1TV (f) + µ2W (f) (3)

µ1 and µ2 have a balancing effects for regularization terms.

3. TWO DIFFERENT NONCONVEX OPTIMIZATION
ALGORITHMS

In this section, we present two different algorithms for non-
smooth and nonconvex minimization. The first one is based
on the method for nonconvex and nonsmooth minimization
with linear constraints presented in [11]. The second one is
a combination of the ADMM scheme with the minimization
method of the Cahn-Hilliard potential presented in [7].

3.1. Linearly constrained nonsmooth and nonconvex
minimization method(LCNNM)
The principle of the algorithm is to add a sequence of
quadratic perturbations to the non convex functional to build
a strongly convex functional. In order to use the algorithm
proposed in [11], we define the following functionals:

J(f) = ||Af − g||2 + µ2

∑
i

W (f)

Jω,v(f) = J(f) + µ2ω||f − v||2

For the double well potential, the constant ω = 1
2 ( f1+f2

2 )2+1
is chosen such that Jω,v is ν-strongly convex. Then we define
the following convex functional with linear constraints:

Jω,v(f, u) = Jω,v(f) + µ1

∑
i

||ui|| s.t. Df = u

with Df = (Dxf,Dyf,Dzf)i. The sum is extended to the
voxel i. In order to take into account the linear constraint
an augmented Lagrangien is considered with a Lagrangien
parameter λ. A saddle point of the Lagrangien is obtained
with optimization with respect to the primal and dual vari-
ables. The method and the convergence properties are de-
tailed in [11].
3.2. An ADMM approach for the minimization with the
H−1 minimization
The existence of a solution for the Cahn-Hilliard potential and
the image inpainting was proven in the framework of theH−1

Sobolev spaces in [5, 7, 12]. Here we apply ADMM to com-
bine the double well potential W (f) and TV. One difference
with respect to the previous algorithm is that W (f) will be
minimized by H−1 gradient. This method will be denoted
CH+TV in the following.

Taking into account the linear constraints, the augmented
Lagrangian can be formulated as:

LA =
1

2
||Af − g||22 + µ1

∑
i

{||hi||+
β

2
||hi −Dif ||2

− λti(hi −Dif)}+ µ2{
∑
i

1

ε
W (s) + ε||∇s||2

+
β

2
||s− f ||22 − λtD(s− f)}

hi and s are splitting variables and λi and λD are Lagrangian
multipliers for TV and double well functions respectively.
The saddle point of the Lagrangian is obtained with succes-
sive updates:

1. update of f (k+1)

(AtA+ µ1

∑
i

βDt
iDi + µ2βI)f = Atg

+ µ1

∑
i

(βDt
ih

(k)
i −D

t
iλ

(k)
i ) + µ2(βs(k) − λ(k)

D )

The solution of this linear equation was obtained with
a conjugate gradient method.

2. update of h(k+1)
i : h(k+1)

i = Sβ(Dif
(k+1) + λ

(k)
i /β)

where Sβ(u) = max(1 − 1

β|u|+ ε
, 0) · u. Here ε is a

small number ensuring the stability of algorithm in case
that |u| ' 0.

3. update of s(k+1), here we use the approach of Esedoglu
et al.

s(k+1)+4t(ε42s(k+1) − C14s(k+1) + C2s
(k+1)) =

4t(4(
1

ε
W ′(s(k))) + β(f (k+1) − s) + λD

− C14s(k) + C2s
(k)) + s(k)



Fig. 1: first column: images from µCT (first row), HR-pQCT (second row); second column: TV optimization for HR-pQCT
image, binarized TV optimization; third column: CH+TV results from TV gray level estimation, binarized CH+TV optimization
results; fourth column: LCNNM results based on TV gray level estimation and binarized LCNNM results.

where4t is time step length. Following the work on [6,
7], the solution was obtained with Fourier transforms.
The constants C1, C2 and ε are chosen to ensure the
convergence of the algorithm.

4. update of λ(k+1)
i and λ(k+1)

D

λ
(k+1)
i = λ

(k)
i − β(h

(k+1)
i −Dif

(k+1))

λ
(k+1)
D = λ

(k)
D − β(s(k+1) − f (k+1))

4. NUMERICAL EXPERIMENTS

4.1. Simulation details
The tests were performed on experimental images of trabec-
ular bone obtained from HR-pQCT [2] and micro-CT. We
regard the images from HR-pQCT as low resolution images
with a resolution 82µm; the images from micro-CT as high
resolution image, with a resolution equal to 41µm. After
registration, the size of cropped ROI (region of interest) are
100x100x100 and 200x200x200 respectively. A first TV re-
construction is performed as a starting point for the two min-
imization schemes.

For each iteration, the PSNR, Dice and the BV/TV ra-
tio are calculated. The grey level image is segmented with
Otsu method [13], projected on the average values of the seg-
mented regions to obtain an image with two discrete levels fb.
The data term is estimated by ||Afb−g||22. The first algorithm
has been demonstrated to reach a stationary point. The sec-
ond algorithm is stopped at the minimum of the former data
term.

4.2. Results
Fig.1 shows the high and low resolution images, the gray
level and binary images reconstructed with the TV regular-
ization, with the TV and Cahn-Hilliard regularization terms
with the two minimization schemes, LCNNM and CH+TV.
Figures 2, 3 and 4 illustrate the evolution of the PSNR, of

the Dice (Dice =
2fbr · f∗b
fbr + f∗b

, fbr is the binarized reconstruc-

tion image, f∗b is the binarized high resolution image), of the
BV/TV (ratio of bone volume to total volume) and of the data
term evaluated on the binary image with the iterations for the
two minimization schemes. The reconstruction results are im-
proved with the nonconvex penalty and the two minimization
methods. Fig.2 3 illustrate that CH+TV and LCNNM lead to
similar Dice index if the CH+TV iterations are stopped at the
minima of the data term as shown on Fig.5. The divergence
of the data term for CH+TV might be related to the noncon-
vexity of the regularization functional. The convergence is
guaranteed for LCNNM. Moreover, the reconstruction results
with CH+TV are better regarding the BV/TV.

5. CONCLUSION

In this paper, we proposed to use a non convex functional
based on the Cahn-Hilliard double well potential to improve
the segmentation/super-resolution results obtained with the
TV regularization on HR-pQCT images. Two different min-
imization schemes are proposed. The Dice as well as the
BV/TV were improved by the two methods. We will validate
CH+TV algorithm for a larger range of images with various
bone densities.



Fig. 2: Evolution of PSNR criterion as a function of the iteration
number for the two algorithms.

Fig. 3: Evolution of DICE criterion as a function of the iteration
number for the two algorithms.
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